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Chelator-assisted phytoremediation is an economical, sustainable, and ecologically
friendly method of extracting heavy metals and metalloids from the soil. Organic
chelators are thought to enhance metal availability and mobility in contaminated media,
thereby improving phytoextraction. The aim of the present study was to examine whether
exogenous application of glutamic acid (GA) could improve chromium (Cr) phytoextraction
by sunflower plants (Helianthus annuus L.). Seeds were planted in plastic pots filled with
5 kg of local agricultural soil spiked with increasing concentrations of Cr (1, 2, and
5 mg kg−1). Glutamic acid (5 mM) was applied to soil in solution according to a completely
randomized experimental design, and the sunflower plants were harvested after 8 weeks.
The results indicated that increasing Cr-induced stress significantly inhibited plant growth,
leading to reduced biomass, photosynthetic pigment content, activities of antioxidant
enzymes, and leaf area of the sunflower plants. However, exogenous addition of GA
significantly reduced the Cr-associated toxic effects while also increasing the
accumulation of Cr in the plants. Moreover, increasing concentrations of Cr in the soil
increased the generation of reactive oxygen species (ROS) responsible for the altered
antioxidant enzyme activities. The results revealed that GA application to the topsoil
enhanced the Cr concentration and accumulation in the root, stem, and leaves by up to
254, 225, 355, and 47, 59, 150% respectively. Further the GA addition reduced the Cr-
induced toxicity in plants and might be helpful for enhancing Cr phytoextraction by
sunflower plants.
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INTRODUCTION

Topsoil provides macro- and micronutrients that are essential
for plants and serves as a sink for toxic heavy metals. Among the
heavy metals, cadmium (Cd), lead (Pb), chromium (Cr), arsenic
(As), and mercury (Hg) are known to be some of the most
harmful poisonous elements in the environment (Ali et al., 2013;
Adrees et al., 2015a; Shakoor et al., 2014; Ali et al., 2015).
Numerous natural and anthropogenic activities result in the
escape of hazardous substances into the air, water, and soil
that can harm both human health and the environment. Under
natural conditions, many crops are vulnerable to a variety of
stresses, including those associated with heavy metals, drought,
salinity, and disease (Shahid et al., 2017). Heavy metal toxicity is
the most common problem affecting plant growth and yield.
Heavy metals can also enter the food chain and accumulate in
plant and human body tissues (Rizwan et al., 2016). Chromium
is a relatively abundant heavy metal in the topsoil owing to its
utility in various industrial processes (Farid et al., 2018a). It is
used both in the electroplating industry as an anticorrosive and
antibiofouling agent, as well as in steel and automobile
manufacturing (Farid et al., 2017a). Chromium-mediated
toxicity to plants depends on its valence state, with Cr(VI)
being very toxic to plants, and Cr(III) less so (Ali et al., 2013;
Ali et al., 2015). There is evidence that plants grown on Cr-
polluted soil undergo changes in the germination process and
exhibit retarded growth (Farid et al., 2017a; Habiba et al., 2018).
Additionally, Cr causes many physiological disorders in plants
by altering nutrient uptake and the activity of the photosynthetic
machinery (Nguyen et al., 2017).

The process of microbial conversion of hexavalent Cr to its
trivalent form is cost-effective. The continuous monitoring of
Frontiers in Plant Science | www.frontiersin.org 2
microbial activity is essential for this process due to higher
sensitivity (Narayania and Shetty, 2012). Although alkaline
digestion is used for extracting assimilated and soluble Cr(VI)
from soil media (Forte and Mutiti, 2017), this method does not
allow for the complete recovery of metals owing to limitations
such as the oxidation of Cr(III) (Shahid et al., 2017).

Plants are increasingly used for the remediation of
contaminated soil and water as a substitute for the more
expensive conventional purifying techniques (Nguyen et al.,
2017). Phytoremediation refers to the use of plants for
minimizing the concentration of toxic metals in contaminated
soil. Plants that are used for phytoremediation and that have an
enhanced capacity to accumulate metals from contaminated soil
with greater ability to translocate metals in the above ground
biomass generally considered as translocation factor greater than
1 (TF > 1) are known as hyperaccumulator plants (Cunningham
et al., 1995; Mantry and Patra, 2017). Generally, metals cannot be
easily extracted from soil media in great quantities because they
form complex bonds with ligands in the soil. Recent studies have
shown that plants used for remediation accumulate larger amounts
of heavy metals in their roots and then transfer them to above-
ground biomass (Wei et al., 2011; Saleem et al., 2015; Lukina et al.,
2016). This suggests that plants with greater biomass, such as
mustard, rapeseed, maize and sunflower plants, can be beneficial in
the field and can survive in the presence of toxic heavy metals
(Cekic et al., 2017; Rizwan et al., 2017a). Along with higher biomass
plants, many vegetables, ornamental and floating plant species also
showed greater accumulation potential (Amir et al., 2020; Khair
et al., 2020; Khalid et al., 2020) Phytoremediation refers to the use of
plants for the extractive removal of metal contamination from soil
and aquatic media. (Salt et al., 1998; USEPA, 2000). An increasing
number of studies have shown that specific plant species can
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remove, degrade, and immobilize a wide range of harmful
contaminants (Lasat, 2000). Phytostabilization is used to treat Cr
(VI) by converting it into the less toxic Cr(III) with the help of pre-
existing plant species (Ali et al., 2013; Farid et al., 2015; Farid et al.,
2017b). Different amendments are used worldwide, including
organic and inorganic acids (Rizwan et al., 2017a). However, the
focus is currently centered on organic acids due to their rapid
degradation and potential to enhance metal bioavailability and
plant growth (Wiszniewska et al., 2016). Several studies have
demonstrated the potential of glutamic acid (GA) as a
biodegradable chelating agent (Farid et al., 2018b), such as its
ability to enhance the capacity of plants for phytoremediation of
different heavy metals (Wei et al., 2011). The success of
phytoextraction is mainly reliant on the ability of plants to
produce enough aboveground biomass and on their
hyperaccumulation potential (translocation of metals from root
to shoot) (Yeh and Pan, 2012; Fatima et al., 2020). The results of
recent studies have demonstrated the potential of the sunflower
plant for the phytoextraction of heavy metals such as Pb, Cd, Cr,
Hg, and nickel (Ni) (Yeh and Pan, 2012; DeMaria et al., 2013; Farid
et al., 2018a; Farid et al., 2018b). Furthermore, the added-value of
edible oil yield from the sunflower reduces the costs of
phytoremediation (Nehnevajova et al., 2007; 2012). Chemical
mutagenesis can also help to increase the capacity of the
sunflower to extract heavy metals (Nehnevajova et al., 2009).
However, there are only few studies reported on the chelating
effect of glutamic acid (GA). Farid et al. (2018a; 2018b) reported
that the translocation and accumulation of Cr and Ni were
increased in sunflower plants treated with organic chelating acids.
Artificially prepared chelators have been extensively used for the
plant-mediated extraction of toxic metals in both water and soil
media (Huang et al., 1997; Epstein et al., 1999); however, the risks of
leaching into groundwater and heavy metal persistence renders
them unsuitable for this technique (Farid et al., 2015). The
application of gallic acid to the soil of growing sunflower
seedlings greatly enhances growth parameters such as oil yield
and carbohydrate and protein contents of the plants, as well as the
uptake of Ni (Farid et al., 2017b).

The use of GA as a mediator to improve plant growth for
enhanced metal extraction has not been comprehensively
investigated (Barros-Galvao et al., 2017). Therefore, the aim of the
current study was a) to observe the influence of metal concentration
on growth characteristics of sunflower (b) to measure the effect of
GA on the growth and physiology of sunflower under Cr stress, and
(c) to evaluate the phytoextraction potential of sunflower for Cr
with AA amendment.
MATERIALS AND METHODS

Plant Resources and Growing Conditions
In the present study, loamy clay soil (52% clay, 26% silt, 22%
sand) was collected from the botanical garden of the University
of Gujrat, Pakistan, at a depth of 0–20 cm. To eliminate debris
and plant residues, the soil was passed through a 2-mm sieve.
Healthy seeds of the sunflower (Helianthus annuus L.) genotype
Frontiers in Plant Science | www.frontiersin.org 3
Faisalabad Hybrid FH-614 were collected from the Oilseeds
Research Institute, AARI, Faisalabad (Farid et al., 2017b).
Experiments were carried out in the botanical garden of the
University of Gujrat under controlled semi-dry weather
conditions. The seeds were washed and rinsed with 10%
hydrogen peroxide (H2O2) to remove germs and then rinsed
with distilled water. Ten seeds were sown per pot filled with 5 kg
of soil, and after 15 days of germination the plants were thinned
to five plants per pot to give five experimental replicates. The
plants that were removed were then crushed and mixed in the
same pot for green manure. The experiment was performed
under a complete randomized design (CRD). After 15 and 30
days of germination, each pot was supplied with a 500-ml
solution of fertilizer comprising 2.14 g L−1 K (as K2SO4), 2.19 g
L−1 N [as (NH2)2CO], and 0.5 g L−1 P [as (NH4)2HPO4].

Treatments
At 4 weeks post-germination, juvenile plants grown in Cr-spiked
soil (1, 2, and 5 mg kg−1) were treated with GA (5 mM). The
following eight combinations consisting five replicated for each
treatment were used in the present study: T1, Cr (0 mg kg−1) +
GA (0 mM); T2, Cr (1 mg kg−1); T3, Cr (2 mg kg−1); T4, Cr (5 mg
kg−1); T5, GA (5 mM); T6, Cr (1 mg kg−1) + GA (5 mM); T7, Cr
(2 mg kg−1) + GA (5 mM); T8, Cr (5 mg kg−1) + GA (5 mM). The
Cr(VI) background level was 0.12 mg kg−1 of soil. The GA was
dissolved in deionized water and exogenously applied to the
soil by pouring into the pot weekly for the following
8 consecutive weeks.

Plant Sampling and Analysis
After 8 weeks of treatment, three biological replicate plants were
harvested to provide a mean for each of the five experimental
replicates. All the samples were washed with deionized water,
and leftover water was absorbed using a napkin. All the plants
were systematically separated into leaves, stems, and roots.
Agronomic traits such as root length, plant height, number of
flowers and leaves per plant, leaf area, and dry and fresh weight
of all parts (leaf, stem, and root) were measured. An electric scale
was used for the measurement of fresh and dry biomass. After
drying at 90°C in an electric oven, the samples were used for
further analysis.

Plant Accessory Pigment Assay
After 8 weeks of treatment, the fully expanded sunflower leaves
were collected to assess the chlorophyll (Chl a, Chl b, total Chl)
and carotenoid contents using a spectrophotometer (Halo DB20/
DB-20S, Dynamica Labs, London, UK) according to the method
of Metzner et al. (1965) with some modifications. Leaf pigments
were collected by normalizing with an 85% (v/v) solution of
acetone at 4°C with continuous stirring in the dark until staining
was completed.

The extracted pigment was centrifuged for 10 min at
4,000 rpm, and the resulting pigment was placed in a
spectrophotometer to record the absorbance at the wavelengths
of 663, 644, and 452.5 nm against a blank of 85% acetone (v/v)
solution. To estimate chlorophyll a and b and carotenoid
September 2020 | Volume 11 | Article 1297
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contents, the results were integrated according to the adjusted
extinction constants and the equation given by Lichtenthaler
(1987) as follows:

Chlorophyll a(mg kg−1) = 10:3� E663 − 0:98b� bE644

Chlorophyll b(mg kg−1) = 19:7� E644 − 3:87b� bE663

Total chlorophyll = chlorophyll a + chlorophyll b

Total carotenoids (mg kg−1)

= 4:2� E452:5 − f(0:0264� chlorophyll aÞ + (0:426

� chlorophyll b)g
The pigment quantities were expressed as milligrams per

gram fresh weight.

Analysis of Chromium Content
A known weight of leaves, stems, or roots samples dehydrated at
90°C was placed in a muffle-type furnace for 7 h at 650°C then
the remnants were mixed with nitric acid (HNO3) and
hydrochloric acid (HCl) at a 3:1 ratio, and the samples were
then diluted to 50 ml with deionized water and examined using
an atomic absorption spectrometer (NOVA A400 Analytik Jena,
Germany) to measure the Cr concentration, as described by
Ehsan et al. (2013).

The amount of Cr was calculated as follows:

Cr concentration ðmg kg−1Þ 
¼  metal reading of digested sample ðmg L

− 1Þ �  dilution factor

Cr accumulation was measured with the following formula:

Cr accumulation ðmg plant−1Þ 
¼  Cr concentration in each organ ðmg kg−1Þ

� dry weight of the organ ðkgÞ

Determination of Electrolyte Leakage
and Levels of MDA and H2O2
Electrolyte leakage (EL) was estimated using a technique defined
by Dionisio-Sese and Tobita (1998). After 8 weeks of treatment,
the uppermost and fully stretched sunflower leaves were cut into
5-mm long pieces and then inserted into test tubes filled with
8 ml of deionized water. The initial electrical conductivity (EC1)
was then measured after incubation in a water bath at 32°C for
2 h. To discharge all the electrolytes into the solution, the test
tubes containing the same samples as of EC1 were first
autoclaved at 121°C for 20 min; when the samples had cooled
to room temperature (25°C), the second electrical conductivity
(EC2) was measured using a pH/conductivity meter (INCO-
LAB, Model 720, Kuwait). The following equation was used to
compute EL:
Frontiers in Plant Science | www.frontiersin.org 4
EL  ¼  ðEC1=EC2Þ � 100

The malondialdehyde (MDA) concentration in the roots and
leaves of the sunflower was determined by the thiobarbituric acid
(TBA) reaction method (Heath and Packer, 1968) modified by
Dhindsa et al. (1981) and Zhang and Kirkham (1994). Root and
leaf samples (0.25 g) were homogenized with 5 ml (0.1%) of
trichloroacetic acid (TCA). The resulting mixture was
centrifuged at 10,000 × g for 5 min, and an additional 4 ml of
TCA (20%) containing TBA (0.5%) was mixed into 1 ml of the
supernatant solution. The solution was heated for 30 min at 95°C
and subsequently cooled in an ice bath. The post-centrifugation
absorbance at 600 nm was subtracted from the absorbance at 532
nm of the same mixture. An extinction coefficient of 155 mM−1

cm−1 was used to compute MDA content.
The H2O2 concentration was measured using the colorimetric

method of Jana and Choudhuri, 1981. To extract the H2O2, leaf and
root samples (50 mg) were homogenized with 3 ml of 50 mM
phosphate buffer (pH 6.5) and subsequently centrifuged at 6,000 × g
for 25 min. To measure the concentration of H2O2, the supernatant
was mixed with 1 ml of titanium sulfate (0.1%) and 20% H2SO4

(v/v), and 3 ml of the solution was again centrifuged at 6000 × g for
15 min until the supernatant turned yellow. The supernatant was
subsequently analyzed at 410 nm to determine the concentration
of H2O2 which was calculated using the extinction coefficient
0.28 μmol−1 cm−1.

SPAD Value
One week before plant harvest, leaf greenness (chlorophyll) was
measured in the second uppermost fully expanded leaf using a
SPAD chlorophyll meter SPAD-502 (Zhejiang Top Cloud-Agri
Technology Co., Ltd.).

Evaluation of Antioxidant Enzymes and
Protein Content
The contents of antioxidant enzymes (SOD, POD, APX, and
CAT) in the roots and leaves were determined using a UV-
Visible spectrophotometer (Halo DB20/DB-20S, Dynamica Labs,
London, UK). Samples of roots and fully expanded leaves were
collected after 8 weeks of treatment to measure the enzyme
content. Leaf and root samples (1 g) were snap-frozen in liquid
nitrogen and ground using a precooled mortar and pestle and
then mixed with 0.05 M phosphate buffer (pH 7.8). The prepared
samples were then filtered through four layers of muslin cloth
and the homogenates centrifuged at 12,000 × g for 10 min at 4°C.
The final supernatant was directly used to measure the SOD and
POD contents according to the method described by Zhang
(1992). The same supernatant was used for measurement of the
soluble protein content using standard albumin and dye
(Coomassie brilliant blue G-250) as reported by Bradford
(Bradford, 1976).

The CAT (EC 1.11.1.6) content was measured following the
protocol of Aebi (1984). The assay mixture was prepared by
adding 100 ml of the extract of each enzyme and H2O2 (300 mM)
to 2.8 ml of 50 mM phosphate buffer (2 mM citric acid (CA), pH
7.0). The CAT concentration was recorded by measuring the
decrease in absorbance at 240 nm as a consequence of the
September 2020 | Volume 11 | Article 1297
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consumption of H2O2 (ϵ = 39.4 mM−1 cm−1). Similarly, APX (EC
1.11.1.11) content was assessed by mixing 100 ml of enzyme
extract, 100 ml of H2O2 (300 mM), 2.7 ml of 25 mM potassium
phosphate buffer (2 mM CA, pH 7.0), and 100 ml of ascorbic acid
(7.5 mM) (Nakano and Asada, 1981). The oxidation pattern of
ascorbate was estimated from the variations in wavelength at 290
nm (ϵ = 2.8 mM−1 cm−1).

Statistical Analysis
Data are expressed as the average values offive replicates for each
treatment. One-way Analysis-of-variance (ANOVA) followed by
Tukey’s post-hoc test, and significant differences were calculated
by all pairwise comparison to determine significant differences
and standard deviation (SD). The different small letters in figures
and tables describe values that are significantly different at p ≤
0.05. All analyses were carried out using Statistix 10.0 software.
RESULTS

Plant Agronomic Traits
Significant variation was observed in biomass and growth
parameters, including fresh and dry mass of the root, stem,
and leaf, along with root length, plant height, leaf area, leaf
number, and total number of flowers (Table 1). All the plants
showed reduced growth and impaired agronomic traits resulting
from Cr toxicity. Compared with controls, the most severe effects
were seen at the highest concentration of Cr used (5 mg kg−1).

Chromium application at 5 mg kg−1 reduced root length,
plant height, and leaf area by 71, 63, and 51%, respectively, when
compared with controls. Similarly, fresh and dry mass of the leaf,
stem, and root declined by 69 and 61%, 73 and 68%, and 68
and 73%, respectively, compared with control. However, GA
Frontiers in Plant Science | www.frontiersin.org 5
application reduced the Cr-induced toxicity and exerted an
ameliorative effect on the morphology of the sunflower plants
(Table 1). The addition of GA (5 mM) alone or with Cr (1, 2, or 5
mg kg−1) significantly improved the agronomic traits of the
plants. Root length (40%) and plant height (55%) were both
increased under combined GA (5 mM) and Cr (5 mg kg−1)
treatment when compared with Cr treatment alone (5 mg kg−1).
A similar trend was observed for fresh and dry biomass of the
leaf, stem, and root (44 and 54%, 53 and 53%, and 77 and 87%,
respectively) under T8 (5 mg kg−1 Cr and 5 mM GA) when
compared with the respective controls.

Plant Accessory Pigments
Increasing the Cr concentration in the treatments led to a
significant reduction in the chlorophyll and carotenoid
contents compared with the controls (Figure 1). Extreme
reductions of 82 and 71% in the carotenoid and total
chlorophyll contents, respectively, were observed with Cr
addition at 5 mg kg−1 when compared with the controls. Co-
amendment of GA and Cr decreased the Cr-induced toxicity in
terms of improved chlorophyll and carotenoid contents.
Maximum increases were observed in Chl a (79%), Chl b
(55%), total Chl (69%), and carotenoid (109%) contents under
T8 (5 mg kg−1 Cr and 5 mM GA). Plants co-treated with Cr and
GA showed greater potential to tolerate Cr stress, as evidenced by
their ability to retain greater amounts of carotenoid and
chlorophyll contents.

Soluble Protein and SPAD Value
Soluble protein content in the leaf and root and the SPAD value
of the sunflower plants were significantly reduced with
increasing Cr concentrations compared with the control
(Figure 2). At the higher level of Cr used (5 mg kg−1), the
TABLE 1 | Effect of different concentrations of Cr alone and/or in combination with GA on agronomic traits of sunflower.

Treatments Cr Concentration (mg kg−1) Cr Concentration (mg kg−1)

Cr 0 Cr 1 Cr 2 Cr 5 Cr 0 Cr 1 Cr 2 Cr 5

Root Fresh Weight (g) Stem Fresh Weight (g)
GA 0 21.43 ± 1.17a 14.50 ± 1.32c 10.83 ± 0.76d 6.16 ± 1.52e 50.59 ± 1.52a 31.96 ± 0.51bc 24.13 ± 2.80de 12.4 ± 0.86f
GA 5 mM 22.36 ± 1.20a 17.60 ± 0.65b 14.43 ± 0.51c 10.93 ± 0.95d 51.73 ± 2.41a 39.13 ± 0.80b 30.00 ± 1.30cd 20.60 ± 1.60ef

Root Dry Weight (g) Stem Dry Weight (g)
GA 0 7.90 ± 0.52a 5.06 ± 0.20c 2.76 ± 0.51d 2.10 ± 0.1e 17.56 ± 1.00a 11.26 ± 0.60c 9.06 ± 0.40de 5.49 ± 0.50f
GA 5 mM 8.26 ± 0.25a 6.36 ± 0.40b 5.13 ± 0.15c 3.93 ± 0.30d 16.36 ± 0.70a 14.10 ± 0.55b 10.73 ± 0.40cd 8.43 ± 0.40e

Leaf Fresh Weight (g) Leaf Dry Weight (g)
GA 0 24.76 ± 1.50a 17.20 ± 1.25bc 12.00 ± 1.94d 7.60 ± 1.49e 7.86 ± 0.15a 5.26 ± 0.25c 4.23 ± 0.25d 3.03 ± 0.05e
GA 5 mM 24.43 ± 0.75a 20.63 ± 0.70b 16.00 ± 0.50c 11.00 ± 1.50de 7.9 ± 0.10a 6.86 ± 0.15b 4.56 ± 0.40cd 4.66 ± 0.49cd

Plant Height (cm) Root Length (cm)
GA 0 99.16 ± 5.20a 71.6 ± 3.04c 55.50 ± 2.68d 36.63 ± 5.29e 35.73 ± 2.27a 24.76 ± 3.95bc 19.7 ± 1.44cd 10.13 ± 1.04e
GA 5 mM 101.5 ± 3.77a 86.21 ± 3.43b 78.13 ± 6.19bc 56.9 ± 2.50d 36.46 ± 0.60a 30.5 ± 1.93ab 25.03 ± 3.06bc 14.23 ± 1.44de

No. of Leaves Plant−1 No. of Flowers Plant−1

GA 0 16.66 ± 1.15b 13.66 ± 0.57c 8.33 ± 0.57e 7.00 ± 0.00e 8.66 ± 0.57a 6.16 ± 0.57bc 4.34 ± 0.57d 2.00 ± 0.00e
GA 5 mM 19.00 ± 1.00a 16.00 ± 1.00b 13.33 ± 0.57cd 11.33 ± 0.57d 8.00 ± 1.00a 7.34 ± 0.57ab 5.34 ± 0.57cd 3.67 ± 0.57de

Leaf Area (cm2)
GA 0 154.37 ± 6.24a 124.03 ± 13.4b 96.56 ± 2.21c 75.4 ± 5.04d
GA 5 mM 156.13 ± 1.97a 140.1 ± 4.41ab 125.90 ± 2.40b 88.05 ± 5.28cd
September 2020
 | Volume 1
Values are means of five replicates ± S.D. Mean values followed by small different letters are significantly different from each-others at P ≤ 0.05.
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letters indicate that values are significantly different at P < 0.05.
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protein content in the root and leaf was reduced by 74 and 38%,
respectively, compared with the control samples. In addition, the
greatest decrease in the SPAD value (68%) was recorded at the
highest Cr concentration. The application of GA resulted in a
gradual improvement in the SPAD rate and the protein content
in the leaves and roots under Cr-induced stress conditions.
Glutamic acid treatment led to increases in the soluble protein
content of roots and leaves of 40 and 20%, receptively, under 5
mg kg−1 Cr treatment. Similarly, the maximum SPAD value also
increased by 60% with T8 (5 mg kg−1 Cr and 5 mM GA)
compared with the other GA treatments.

Electrolyte Leakage and MDA and
Hydrogen Peroxide Content
The levels of reactive oxygen species (ROS) and EL in the roots
and leaves of the sunflower plants treated with Cr and/or GA are
shown in Figure 3. H2O2 and MDA content and EL of the plants
increased with increasing Cr concentrations (1, 2, and 5 mg kg−1)
Frontiers in Plant Science | www.frontiersin.org 7
compared with control. The largest increases in H2O2, MDA
content, and EL were 143, 153, and 148% in leaves and 108, 176,
and 116% in roots, respectively, in soils treated with Cr (5 mg
kg−1). Glutamic acid application significantly attenuated the Cr-
induced oxidative stress in both roots and leaves by reducing
ROS production at all Cr levels tested, while a slight increase was
also noted in control plants under GA treatment (Figure 3).
Under combined Cr and GA treatment, the major decrease in
H2O2 generation was 16% in leaves and 14% in roots in soil
treated with 2 mg kg−1 Cr; for MDA production, the greatest
decrease was 14% in leaves with 2 mg kg−1 Cr treatment and 23%
in roots with 1 mg kg−1 at Cr; and for EL, the maximum
reduction was 17% in leaves with 2 mg kg−1 Cr and 18% in
roots at 1 mg kg−1 Cr.

Antioxidant Enzyme Activities
The activities/concentrations of antioxidant enzymes, including
APX, CAT, POD, and SOD, in both leaves and roots were
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measured under Cr and GA co-application (Figure 4).
Compared with the control, soil spiked with 1 and 2 mg kg−1

Cr significantly improved the activities of all antioxidant
enzymes in both roots and leaves (231 and 311% for SOD; 124
and 88% for POD; 106 and 163% for APX; and 114 and 123% for
CAT, respectively). At the highest concentration of Cr tested (5
mg kg−1), the activities of these enzymes tended to decrease in
both roots and leaves (26 and 34% for SOD; 18 and 20% for
Frontiers in Plant Science | www.frontiersin.org 8
POD; 15 and 14% for APX; and 14 and 15% for CAT,
respectively) compared with Cr treatment at 2 mg kg−1.
Glutamic acid application further increased the activities of
these antioxidant enzymes and exerted an additive effect under
Cr stress. The greatest antioxidant enzyme activities were
observed in both roots and leaves of the sunflower when GA
was co-applied with 2 mg kg−1 Cr. Under combined Cr and GA
treatment, the largest increase in SOD activity was 15% in roots
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and 31% in leaves at 1 mg kg−1 Cr; for POD activity, the largest
increase was 27% in roots and 19% in leaves at 5 mg kg−1 Cr; for
APX activity, the largest increase was 23% in roots at 2 mg kg−1

Cr and 29% in leaves at 1 mg kg−1 Cr; and for CAT activity, the
largest increase was 33% in roots and 28% in leaves at 1 mg
kg−1 Cr.

Chromium Uptake
Chromium addition at the concentrations of 1, 2, and 5 mg kg−1

significantly enhanced the Cr concentration and accumulation in
the roots, stems, and leaves of the sunflower plants (Table 2).
Trace levels of Cr were detected in control plants, likely due to
background Cr concentrations in the soil. The highest
concentration and accumulation of Cr in the root, stem, and
leaf were observed at the greatest concentration of Cr tested (5
mg kg−1) (increases of 254, 225, 355 and 47, 59, 150%,
respectively, compared with Cr treatment at 1 mg kg−1). The
combined GA and Cr treatment further markedly enhanced the
absorption and accumulation of Cr in the root, stem, and leaf of
the sunflower plant. At the highest concentrations of Cr (5 mg
kg−1) and GA (5mM), the concentration and accumulation
increased by 24 and 132% in the root, 31 and 59% in the stem,
and 19 and 150% in the leaf, respectively.
DISCUSSION

Agronomic Traits
The increased Cr concentrations led to a significant decrease in
the growth of the sunflower plants (Table 1). Several studies
regarding Cr-induced toxic effects on sunflower plant have been
widely reported (Farid et al., 2017a; Farid et al., 2018a; Farid
et al., 2018b). Chromium-induced toxicity was shown to severely
impair nutrient uptake in plants, leading to reduced biomass
production and stunted growth (Tauqeer et al., 2016; Fozia et al.,
2008). Similarly, Cr stress has been reported to inhibit the growth
(Atta et al., 2013) and reduce the fresh and dry biomass of
sunflower plants (Saleem et al., 2015). In addition to Cr,
sunflower plants also show suppressed growth under Ni (Lin
et al., 2003), Ag (Farid et al., 2018a), Cd (Junior et al., 2015), As
(Farid et al., 2016), and Cu stress (Imran et al., 2013).
Chromium-associated toxicity has also been reported in
Frontiers in Plant Science | www.frontiersin.org 9
different plants such as Braccisa napus L. (Afshan et al., 2015),
Pisum sativum L. (Tripathi et al., 2015), Lemna minor L. (Sallah-
Ud-Din et al., 2017), Echinochloa colona (Rout et al., 2000), pea
(Rodriguez et al., 2012), and wheat (Ali B. et al., 2015; Mathur
et al., 2016). A significant reduction in the quality and yield has
been observed in carrots grown on Cr-contaminated soil
exceeding the permissible limit (Ding et al., 2014). In our
study, plants treated with GA showed improved growth and
greater biomass when compared with those treated with Cr
alone. Moreover, at the greatest Cr concentrations tested, GA
application alleviated the Cr-induced stress in the sunflower. The
growth- moderating role of GA under cold stress for rice (Jia
et al., 2017) and under drought stress for wheat (Liu et al., 2011)
has previously been reported. The addition of GA was shown to
regulate plant nutrient uptake and translocation by enhancing
nutrient availability (Farid et al., 2018b). As depicted in Table 1,
GA exerted a growth-moderating effect on sunflower plants at all
Cr concentrations applied. Similar stress-alleviating effects were
observed when GA was applied to sunflower plants under Ag
stress (Farid et al., 2018a). This growth-moderating role of GA is
very similar to that of other organic chelators such as citric acid,
aminolaevulinic acid, and abscisic acid (Barros-Galvao et al.,
2017; Farid et al., 2018a; Farid et al., 2018b). In the present study,
we confirmed the growth- moderating and growth-regulatory
effects of GA on sunflower plants under heavy metal stress.

Chlorophyll Content
In plants, Cr-related toxicity is similar to that of Ag, Ni, Cd, Pb,
as well as other metals (Habiba et al., 2015; Farooq et al., 2016;
Farid et al., 2018a). The increasing concentrations of Cr applied
and the associated toxicity significantly reduced the performance
of the photosynthetic machinery (Figure 1). This decrease in
chlorophyll and carotenoid contents in sunflower plants is in
agreement with the results reported by Farid et al. (2017a) and
Fozia et al. (2008). Atta et al. (2013) and Saleem et al. (2015) both
reported that Cr stress can disrupt water translocation and cause
nutrient deficiency in plants, whereas Singh et al. (2013) and
Najeeb et al. (2011) described that reduced chlorophyll and
carotenoid content might result from an impaired electron
chain due to the deterioration of the photosynthetic system.
Disruption of the photosynthetic machinery linked to Cr toxicity
has also been reported in wheat (Jabeen et al., 2016), Brassica
TABLE 2 | Effect of different concentrations of Cr alone and/or in combination with GA on Cr concentration and accumulation in sunflower.

Treatments Cr Concentration (mg kg−1) Cr accumulation (µg plant−1)

Leaf Stem Root Leaf Stem Root

CK 2.06 ± 0.15g 10.71 ± 3.12f 13.53 ± 0.51g 18.40 ± 1.32f 190.41 ± 67.44e 106.88 ± 6.90e
GA 3.16 ± 0.04g 12.66 ± 2.08f 22.48 ± 0.54g 29.18 ± 0.225f 207.90 ± 40.88e 185.82 ± 3.79e
Cr 1 62.46 ± 8.19f 142.15 ± 13.01e 175.49 ± 12.78f 328.99 ± 50.77e 1598.03 ± 101.17d 887.70 ± 39.70d
Cr 1+ GA 100.50 ± 5.25e 189.36 ± 13.24e 237.33 ± 24.96e 690.10 ± 28.02cd 2667.36 ± 196.17c 1506.29 ± 116.88c
Cr 2 151.24 ± 3.11d 258.33 ± 17.23d 360.01 ± 17.32d 640.24 ± 32.23d 2344.83 ± 237.35c 1360.33 ± 238.03c
Cr 2+GA 193.83 ± 12.98c 378.33 ± 17.55c 478.33 ± 17.55c 885.17 ± 54.92b 4071.50 ± 533.58b 2457.16 ± 161.94b
Cr 5 271.76 ± 10.52b 462.33 ± 42.85b 622.33 ± 30.27b 824.35 ± 28.94bc 2545.16 ± 359.40c 1307.66 ± 106.20cd
Cr 5+GA 325.61 ± 15.01a 606.10 ± 24.24a 772.66 ± 24.07a 1519.54 ± 105.67a 5104.33 ± 80.50a 3043.33 ± 328.51a
September 2020 | Vo
Values are means of five replicates ± S.D. Mean values followed by small different letters are significantly different from each-others at P ≤ 0.05.
lume 11 | Article 1297

https://www.frontiersin.org/journals/plant-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


Farid et al. Glutamic Acid-Assisted Phytoremediation of Cr by Sunflower
napus (Afshan et al., 2015), Lemna minor (Sallah-Ud-Din et al.,
2017), and mung bean (Adrees et al., 2015a). In the current
study, the decreased levels of carotenoids and photosynthetic
pigments might be a consequence of exacerbated electrolyte
leakage and ROS generation (Figure 3). The results clearly
demonstrated that the introduction of GA markedly improved
the Cr-associated toxic effects and the functioning of the
photosynthetic machinery of the plants, an idea that is
supported by the similar findings of Farid et al. (2018a). Forde
et al. (2007) also reported that the chlorophyll and carotenoid
contents were increased in plants under GA supply.

Soluble Protein and SPAD
Both the soluble protein content and SPAD value of the
sunflower decreased in the leaves and roots with increasing
Cr concentrations (Figure 2). Our findings are in line with the
conclusions of Farid et al. (2017a; 2018a; 2018b) and Saleem
et al. (2015) who reported a decline in soluble protein content
and SPAD value of sunflower plants exposed to Cr stress. In
agreement with the present findings, many plant species also
show reduced soluble protein content and SPAD values, such
as cotton exposed to Pb (Anwaar et al., 2015), wheat exposed to
Cr (Adrees et al., 2015b), and maize and mung bean exposed to
Cd (Hussain et al., 2006; Sabir et al., 2014). Rizwan et al.
(2017a) stated that the SPAD value is directly associated with
the leaf chlorophyll content, suggesting that a decrease in
chlorophyll content and water translocation might be
responsible for the observed decrease in the SPAD value. The
results indicated that the application of GA alone or in
combination with Cr greatly increased the soluble protein
content and SPAD value (Figure 3), which was in close
agreement with the results of studies by Jia et al. (2017) and
Farid et al. (2018a). Increased enzymatic activities (Figure 4)
are the indication of damage to the soluble protein levels in
plant (Forde and Mutiti, 2017). Increased soluble protein
content under GA application has been observed for plants
under different heavy metal stresses, such as Cd, Cu, Pb, and
Zn, as reported by Doumett et al. (2010).

Reactive Oxygen Species
Exposure of sunflower plants to Cr resulted in oxidative damage,
which was attributable to electrolyte leakage and ROS generation
(Figure 4; Farid et al., 2018a; Farid et al., 2018b). Ahmad et al.
(2017) also reported oxidative damage in sunflower plants
exposed to Cr stress. This response of sunflower plants to
stress induced by various heavy metals is concisely reviewed by
Rizwan et al. (2017b). Similar to sunflower plants, Brassica
napus, soybean, barley, and wheat also show higher ROS
production under Cr stress (Adrees et al., 2015b; Gill et al.,
2016). Chromium-induced toxicity was shown to alter K+ efflux
and impair the electron transport chain in plants, leading to
increased production of OH− and O− free radicals, further
enhancing EL (Fozia et al., 2008; Rizwan et al., 2017a). Recent
studies reported that high levels of EL and ROS generation were
observed in plants exposed to biotic and abiotic stresses, such as
salinity (Noman et al., 2015), drought (Arshad et al., 2016),
pathogen attack (Giovanini et al., 2006), and herbicide
Frontiers in Plant Science | www.frontiersin.org 10
application (Song et al., 2007). Gallic acid application to soil
reduced EL and ROS generation in plants under Cr stress. This
decrease might be due to the activation of the antioxidant defense
system and repair of the plant electron transport chain and water
translocation system, similar to the findings of Sallah-Ud-Din
et al. (2017). Furthermore, GA is reported to act like other
organic chelators in scavenging ROS by improving the natural
protection system of plants. In this study, the improvements in
plant growth, biomass, and photosynthetic machinery might
have resulted from decreased EL and ROS production caused
by the addition of GA.

Antioxidant Defense System
The sunflower is known to activate its antioxidant enzyme
defense system under biotic and abiotic stresses (Farid et al.,
2018a). Activation of these enzymes was also observed in the
current study (Figure 4). Increasing the Cr concentration
significantly enhanced the activities of POD, SOD, CAT, and
APX. Interestingly, at the highest Cr concentration used (5 mg
kg−1), the activities of these enzymes tended to decrease. This
behavior of the sunflower plant under Cr stress has also been
previously reported by Farid et al. (2017a; 2018a; 2018b).
Additionally, the sunflower also showed a similar trend under
Pb, Cu, and Cd stress (Li et al., 2011; Shamsi et al., 2014). Rizwan
et al. (2017a; 2017b) reported an increase in antioxidant enzyme
activity resulting from ROS production under heavy metal stress.
Demidchik (2012) reported that plants activate the ROS
scavenging defense system by regulating the electron transport
chain and K+ efflux. At lower Cr concentrations, antioxidant
enzymes favored normal plant activity; however, the antioxidant
defense system could not cope with the higher Cr concentrations.
This phenomenon has been observed in sunflower plants under
the stress of various heavy metals, as summarized by Rizwan
et al. (2017a), as well as in sunflower plants under drought,
salinity, and heat stress (Naeem et al., 2012; Kanto et al., 2015).
Similar to that observed with other organic acids, GA application
led to a significant increase in the activities of all antioxidant
enzymes in sunflower plants supplemented with Cr (Sallah-Ud-
Din et al., 2017; Farid et al., 2018a).

Chromium Concentration and
Accumulation
The sunflower plant is widely reported to be a hyperaccumulator
plant for various heavy metals due to its height and root structure
(Farid et al., 2017a, Rizwan et al., 2017a; Rizwan et al., 2017b;
Farid et al., 2018a; Farid et al., 2018b). In this study, Cr
accumulation gradually increased in all the plant organs with
increasing Cr content in the soil (Table 2), which is similar to the
findings reported by Fozia et al. (2008) and Saleem et al. (2015).
Several studies have reported that Cr can be readily absorbed by
different plants, including Lemna minor (Sallah-Ud-Din et al.,
2017), Brassica napus (Afshan et al., 2015), wheat (Adrees et al.,
2015b), and mung bean (Jabeen et al., 2016). Chromium uptake
and accumulation are mainly dependent on its availability and
mobility in the soil (Ali et al., 2011; Ali et al., 2013) and can be
affected by the addition of exogenously applied chelators
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(Shahid et al., 2017). Similarly, the addition of GA under Cr
stress significantly enhanced Cr uptake and accumulation in our
study. This increased accumulation could be attributed to the
chelating properties of GA, which has the ability to detach metals
from organic fractions in the soil as reported by Doumett et al.
(2010). The chelating properties of GA have also been reported
by Farid et al. (2018a) and Jia et al. (2017). The greater the plant
biomass, the higher the accumulation of metal in plant tissues.
Relatively few studies have investigated the chelating ability of
GA for heavy metals and the response of the sunflower at the
genetic and molecular levels. Our results were broadly in
agreement with our stated hypothesis that GA can enhance
metal accumulation, growth, and biomass in plants.

Conclusions
The results of the present study indicated that sunflower growth,
biomass, and biochemical attributes were significantly reduced as a
result of Cr-induced toxicity. Increasing the concentration of
applied Cr significantly increased Cr concentration and
accumulation in the root, stem and leaf of sunflower plant.
Meanwhile, we also found a positive role of GA due to its ability
to regulate normal functioning and plant growth. Glutamic acid
markedly ameliorated the Cr-induced toxicity in the sunflower,
improving its morphological, physiological, and biochemical
attributes. Our results indicated that the sunflower might be a
suitable and potential candidate for Cr phytoextraction under GA
application in Cr contaminated soils. Future studies are required
to elucidate the associated molecular and genetic mechanisms.
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Schmülling, T. (2012). Metal accumulation and response of antioxidant
enzymes in seedlings and adult sunflower mutants with improved metal
removal traits on a metal-contaminated soil. Environ. Exp. Bot. 76, 39–48.
doi: 10.1016/j.envexpbot.2011.10.005

Nguyen, K. L., Nguyen, H. A., Richter, O., Pham, M. T., and Nguyen, V. P. (2017).
Ecophysiological responses of young mangrove species Rhizophora apiculata
(Blume) to different chromium contaminated environments. Sci. Total
Environ. 574, 369–380. doi: 10.1016/j.scitotenv.2016.09.063

Noman, A., Ali, S., Naheed, F., Ali, Q., Farid, M., Rizwan, M., et al. (2015). Foliar
application of ascorbate enhances the physiological and biochemical attributes
of maize (Zea mays L.) cultivars under drought stress. Arch. Agron. Soil Sci. 61,
1659–1672. doi: 10.1080/03650340.2015.1028379

Rizwan, M., Ali, S., Rizvi, H., Rinklebe, J. T., Sang, D. C., Meers, E., et al. (2016).
Phytomanagement of heavy metals in contaminated soils using sunflower: a
review. Crit. Rev. Environ. Sci. Technol. 46, 1498–1528. doi: 10.1080/
10643389.2016.1248199

Rizwan, M., Ali, S., Abbas, F., Adrees, M., Zia-ur-Rehman, M., Farid, M., et al.
(2017a). “Role of organic and inorganic amendments in alleviating heavy metal
stress in oil seed crops,” in Oil Seed Crops: Yield and Adaptations under
Environmental Stress, 1st ed., vol. 12 . Ed. P. Ahmad (USA: John Wiley & Sons,
Ltd), 224–235. Published 2017 by John Wiley & Sons, Ltd. doi: 10.1002/
9781119048800

Rizwan, M., Ali, S., Qayyum, M. F., Ok, Y. S., Adrees, M., Ibrahim, M., et al.
(2017b). Effect of metal and metal oxide nanoparticles on growth and
Frontiers in Plant Science | www.frontiersin.org 13
physiology of globally important food crops: a critical review. J. Hazard.
Mater. 322, 2–16. doi: 10.1016/j.jhazmat.2016.05.061

Rodriguez, E., Santos, C., Azevedo, R., Moutinho-Pereira, J., Correia, C., and Dias,
M. C. (2012). Chromium (VI) induces toxicity at different photosynthetic
levels in pea. Plant Physiol. Biochem. 53, 94–100. doi: 10.1016/
j.plaphy.2012.01.013

Rout, G. R., Samantaray, S., and Das, P. (2000). Effects of chromium and nickel on
germination and growth intolerant and non-tolerant populations of
Echinochloa colona (L.) link. Chemosphere 40, 855–859. doi: 10.1016/S0045-
6535(99)00303-3

Sabir, M., Hanafi, M. M., Zia-Ur-Rehman, M., Saifullah, Ahmad, H. R., Hakeem,
K. R., et al. (2014). Comparison of low-molecular-weight organic acids and
ethylenediaminetetraacetic acid to enhance phytoextraction of heavy metals by
maize. Commun. Soil Sci. Plant Anal. 45, 42–52. doi: 10.1080/
00103624.2013.848879

Saleem, M., Asghar, H. N., Khan, M. Y., and Zahir, Z. A. (2015). Gibberellic acid in
combination with pressmud enhances the growth of sunflower and stabilizes
chromium (VI) contaminated soil. Environ. Sci. Pollut. Res. 22, 10610–10617.
doi: 10.1007/s11356-015-4275-3

Sallah-Ud-Din, R., Farid, M., Saeed, R., Ali, S., Rizwan, M., Tauqeer, H. M., et al.
(2017). Citric acid enhanced the antioxidant defense system and chromium
uptake by Lemna minor L. grown in hydroponics under Cr stress. Environ. Sci.
Pollut. Res. 24 (21), 17669–17675. doi: 10.1007/s11356-017-9290-0

Salt, D. E., Smith, R. D., and Raskin, I. (1998). Phytoremediation. Anal. Plant Bio.
49 (1), 643–668. doi: 10.1146/annurev.arplant.49.1.643

Shahid, M., Shamshad, S., Rafiq, M., Khalid, S., Bibi, I., Niazi, N. K., et al. (2017).
Chromium speciation, bioavailability, uptake, toxicity and detoxification in
soil-plant system: A review. Chemosphere 178, 513–533. doi: 10.1016/
j.chemosphere.2017.03.074

Shakoor, M. B., Ali, S., Hameed, A., Farid, M., Hussain, S., Yasmeen, T., et al.
(2014). Citric acid improves lead (Pb) phytoextraction in Brassica napus L. by
mitigating Pb-induced morphological and biochemical damages. Ecotoxicol.
Environ. Saf. 109, 38–47. doi: 10.1016/j.ecoenv.2014.07.033

Shamsi, I. H., Zhang, G. P., Hu, H. L., Xue, Q. Y., Hussain, N., Ali, E., et al. (2014).
Assessment of the hazardous effects of Cd on physiological and biochemical
characteristics of soybean genotypes. Int. J. Agric. Biol. 16, 41–48.

Singh, H. P., Mahajan, P., Kaur, S., Batish, D. R., and Kohli, R. K. (2013).
Chromium toxicity and tolerance in plants. Environ. Chem. Lett. 11, 229–
254. doi: 10.1007/s10311-013-0407-5

Song, N. H., Yin, X. L., Chen, G. F., and Yang, H. (2007). Biological responses of
wheat (Triticum aestivum) plants to the herbicide chlorotoluron in soils.
Chemosphere 68, 1779–1787. doi: 10.1016/j.chemosphere.2007.03.023

Tauqeer, H. M., Ali, S., Rizwan, M., Ali, Q., Saeed, R., Iftikhar, U., et al. (2016).
Phytoremediation of heavy metals by Alternanthera bettzickiana: growth and
physiological response. Ecotoxicol. Environ. Saf. 126, 138–146. doi: 10.1016/
j.ecoenv.2015.12.031

Tripathi, D. K., Singh, V. P., Prasad, S. M., Chauhan, D. K., and Dubey, N. K.
(2015). Silicon nanoparticles (SiNp) alleviate chromium (VI) phytotoxicity in
Pisum sativum (L.) seedlings. Plant Physiol. Biochem. 96, 189–198.
doi: 10.1016/j.plaphy.2015.07.026

USEPA. United States Environmental Protection Agency Reports (2000).
Introduction to Phytoremediation, – EPA 600/R-99/107, National Service
Center for Environmental Publications (NSCEP), USA.

Wei, Z. B., Guo, X. F., Wu, Q. T., Long, X. X., and Penn, C. J. (2011).
Phytoextraction of heavy metals from contaminated soil by co-cropping with
chelator application and assessment of associated leaching risk. Int. J. Phyto. 13
(7), 717–729. doi: 10.1080/15226514.2010.525554

Wiszniewska, A., Hanus-Fajerska, E., Muszyńska, E., and Ciarkowska, K. (2016).
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