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Monilinia laxa is a necrotrophic plant pathogen able to infect and produce substantial
losses on stone fruit. Three different isolates of M. laxa were characterized according to
their aggressiveness on nectarines. M. laxa 8L isolate was the most aggressive on fruit,
33L isolate displayed intermediated virulence level, and 5L was classified as a weak
aggressive isolate. Nectarine colonization process by the weak isolate 5L was strongly
delayed. nLC-MS/MS proteomic studies using in vitro peach cultures provided data on
exoproteomes of the three isolates at equivalent stages of brown rot colonization; 3 days
for 8L and 33L, and 7 days for 5L. A total of 181 proteins were identified from 8L
exoproteome and 289 proteins from 33L at 3 dpi, and 206 proteins were identified in 5L
exoproteome at 7 dpi. Although an elevated number of proteins lacked a predicted
function, the vast majority of proteins belong to OG group “metabolism”, composed of
categories such as “carbohydrate transport and metabolism” in 5L, and “energy
production and conversion” most represented in 8L and 33L. Among identified
proteins, 157 that carried a signal peptide were further examined and classified.
Carbohydrate-active enzymes and peptidases were the main groups revealing different
protein alternatives with the same function among isolates. Our data suggested a subset
of secreted proteins as possible markers of differential virulence in more aggressive
isolates, MlPG1 MlPME3, NEP-like, or endoglucanase proteins. A core-exoproteome
among isolates independently of their virulence but time-dependent was also described.
This core included several well-known virulence factors involved in host-tissue factors like
cutinase, pectin lyases, and acid proteases. The secretion patterns supported the
assumption that M. laxa deploys an extensive repertoire of proteins to facilitate the host
infection and colonization and provided information for further characterization of M.
laxa pathogenesis.
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INTRODUCTION

Brown rot is an economically important fungal disease on stone
and pome fruit in Europe caused by Monilinia fructicola,
Monilinia fructigena, and Monilinia laxa (Byrde and Willetts,
1977; Oliveira Lino et al., 2016). Monilinia spp. are necrotrophic
fungi, which acquire nutrients and establish the disease from
dead cells through toxic molecules and lytic enzymes (Garcia-
Benitez et al., 2018). Cell wall degrading enzymes (CWDE) and
toxins are virulence factors that necrotrophic fungi exploit to
infect and colonize host plants (Ma et al., 2019). Accordingly, the
polygalacturonase family (Chou et al., 2015) and MfCUT1
cutinase (Lee et al., 2010) have also captured significant attention
due to their essential roles in the pathogenesis of M. fructicola.
Polygalacturonase, pectin and pectate lyase, rhamnogalacturonan
acetyl esterase, rhamnogalacturonan hydrolase, and a-L-rhamnosidase
gene families related to pectin degradation have been identified from
M. laxa (Baró-Montel et al., 2019; Rodrıǵuez-Pires et al., 2020). The
application of transcriptomics toMonilinia spp. (DeMiccolis Angelini
et al., 2018), and the genome availability of two strains of M. laxa,
including 8L strain under study in this work (Naranjo-Ortıź et al.,
2018; Landi et al., 2020) provides the information to decipher the key
factors underlying Monilinia spp. pathogenicity mechanisms.

Pathogenic strategies have been more intensely studied in
other fungal genera of Sclerotiniaceae family than in the case of
Monilinia spp. (van Kan, 2006; Andrew et al., 2012). Some defined
virulence factors are involved in different phases of Botrytis cinerea
pathogenesis process, such as cutinases, polygalacturonases,
cellulases, among other lytic and cell wall degrading activities.
Cutinases are presumably necessary for penetration through the
cuticle, namely cutB was only expressed in the presence of plant
lipids (Leroch et al., 2013), but cutA was not essential for
penetration in tomato (van Kan et al., 1997). Extracellular
hydrolytic enzymes such as endo- and exo-polygalacturonases
had a significant role in pectin breakdown, being BcPG1 the most
host-widely expressed (Ten Have et al., 2001; Blanco-Ulate et al.,
2014). On the other hand, the pectin methyl esterases seem to be a
host-dependent virulence function (Valette-Collet et al., 2003;
Kars et al., 2005). Regarding cellulose and hemicellulose lytic
enzymes, several CAZymes families were expressed in different
hosts in addition to pectinases (Blanco-Ulate et al., 2014), some of
which may have more than just enzymatic activity. For example,
beyond the putative xylanase activity of BcXyn11A, this protein
contributed to B. cinerea pathogenesis with necrotizing activity
and was required for full virulence (Brito et al., 2006; Noda et al.,
2010). Toxins and phytotoxic Nep1-like proteins produced by
B. cinerea during its host progress colonization were also included
as virulence factors (Collado et al., 2000; Schouten et al., 2008;
Dalmais et al., 2011). Several of the virulence factors mentioned
above were also described to be produced by Sclerotinia
sclerotiorum, such as polygalacturonases (Li et al., 2004),
cutinase (Zhang et al., 2014), and Nep proteins (Dallal Bashi
et al., 2010). In the Sclerotiniaceae family, in addition to CWDEs,
other lytic enzymes such as peptidases could play an essential role
in nutrition and defense against antifungal compounds (Billon-
Grand et al., 2002; Ten Have et al., 2010).
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Since their emergence, proteomic techniques have been
applied in plant pathology, although more slowly and not as
extensively as in other research topics (Ashwin et al., 2017; Vincent
et al., 2020). Proteomics was a powerful tool to evaluate samples
containing a large number of proteins generated in diverse
biological states (El-Akhal et al., 2013; Loginov and Šebela, 2016).
The proteome has been used to determine proteins related to
pathogenesis (El-Bebany et al., 2010; Ismail and Able, 2016) and in
plant-based interactions (Shah et al., 2012). In this sense, a great
effort has been made in the closely necrotrophic fungus B. cinerea
to understand molecular mechanisms from a proteomic view, such
as conidial germination (Espino et al., 2010; González-Rodrıǵuez
et al., 2014), modulation of protein secretion patterns under
different carbon sources (Fernández-Acero et al., 2009; Shah
et al., 2009b) and plant-based elicitors (Shah et al., 2009a;
Fernández-Acero et al., 2010). Furthermore, how B. cinerea
responded to non-nutritional changes such as pH (Li et al., 2012)
and the involvement of membrane proteins in signal transduction
cascades (Escobar-Niño et al., 2019). Besides, protein profiling
focused on virulence-related functions between wild-type strains
and B. cinerea mutants (Müller et al., 2018; de Vallée et al., 2019).

However, a few proteomic studies have been reported to date
applied to Monilinia spp. Essentially, the group of Bregar et al.
(2012) using LC-MS/MS determined host specificity proteins
between M. laxa isolates obtained from apricots and apples. In
this work, we proceeded to identify possible key proteins
produced by the fungus in contact with lyophilized peaches.
For this purpose, we used proteomic analyses from diverse
M. laxa isolates, with confirmed different virulence levels on
nectarines in order to identify potential virulence factors and to
understand M. laxa brown rot development.
MATERIALS AND METHODS

Fungal Isolates and Virulence
Characterization
Three single-spore isolates ofMonilinia laxa (namely 5L, 8L, and
33L) were used in this study. All of them were isolated from
mummified plum fruit (cv. Sungold) from a commercial orchard
in Lagunilla (Salamanca, Spain), and belong to the culture
collection of the Plant Protection Department of INIA (Madrid,
Spain).M. laxa 8L was also deposited in the Spanish Culture Type
Collection (CECT 21100). The isolates were identified as M. laxa
using their growth characteristics and PCR (Gell et al., 2007) and
maintained as conidial suspensions in 20% glycerol at −80°C for
long-term storage or as cultures on potato dextrose agar (Difco) at
4°C for short-term storage. For conidia production, M. laxa
strains were grown on potato dextrose agar amended with 20%
of tomato pulp at 22°C for 7 to 9 days with a 12-h photoperiod.

The virulence ofM. laxa isolates was tested on nectarines (cv.
Big Top) harvested at commercial maturity from Ebro Valley
(Spain) previously described in Villarino et al. (2016) with some
modifications. The nectarines were surface disinfected (Sauer
and Burroughs, 1986) and dried in a laminar flow cabinet.
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Experiments were carried out with five fruit for each isolate and
three unwounded points, with 15 ml droplet of 103 conidia ml−1

of aqueous conidial suspension. Fruit were incubated in a
humidity chamber at 25°C for 12 days (16 h photoperiod).
Each fruit was daily evaluated for symptoms of brown rot
(incidence and incubation period), the onset of sporulation
(latency period), and lesion diameter was measured at each
inoculation point (Villarino et al., 2016). The complete
experiment was repeated three times. Data were analyzed by
analysis of variance (Snedecor and Cochran, 1967). When the F
test was significant at P ≤ 0.05, the means were compared by the
Student–Newman–Keuls multiple range test.
Protein Isolation
Freshly harvested conidia from M. laxa isolates, produced as
described above, were collected with sterile distilled water by
filtration through Miracloth. Erlenmeyer flask containing 100 ml
of 1% lyophilized peach in water were inoculated with the
conidial suspension of each isolate to a final concentration of
105 conidia ml−1 and incubated in an orbital shaker at 120 rpm
and 22°C. For preparing lyophilized peach, peaches were first
lyophilized for 48 to 72 h using a Cryodos-50 lyophilizer (Telstar,
Spain). The lyophilized peach was then made into a powder by
bead beating using a tissue homogenizer (FastPrep®-24, MP
Biomedicals) two times for 30 s at 4 m/s. Culture media
(exoproteome) were harvested by filtration through two Whatman
1 filters (Cat No 1001 090) after 3 days post-inoculation (dpi) for
aggressive isolates (8L and 33L) and 7 dpi for weak aggressive isolate
(5L). Visual inspection using a microscope ensured the absence of
conidia or hyphae as contaminants in culture media. Proteins
present in 100 ml of culture media were precipitated by adding
trichloroacetic acid to a final concentration of 10% (Hernández-
Ortiz and Espeso, 2013). Samples were incubated on ice for 20 min,
centrifuged at 10,000 rpm for 10 min at 4°C to collect precipitated
proteins. The pellets were washed firstly with 1 ml of ethanol-ethyl
ether (1:1), centrifuged at 13,000 rpm for 10 min at 4°C and then
secondly with 1 ml of ethanol-ethyl ether (1:3) followed by
centrifugation at 13,000 rpm for 10 min at 4°C. Protein pellets
from exoproteome were dried at room temperature and then
dissolved in 50 ml Laemmli cracking buffer and maintained at
−20°C until use for nLC-MS/MS.
1https://blast.ncbi.nlm.nih.gov/Blast.cgi
2https://services.healthtech.dtu.dk/service.php?TMHMM-2.0
3http://www.cazy.org
4https://www.ebi.ac.uk/merops/
nLC-MS/MS Proteomics
The procedures for nLC-MS/MS were previously described in
Manoli and Espeso (2019). A 20-ml aliquot of extracellular
protein precipitate was loaded onto a 10% polyacrylamide gel
and allowed to run 1 cm into the resolving gel. The piece of the
gel was excised and proteins were treated with trypsin (Cristobo
et al., 2011). Digested samples were analyzed on a nano Easy nLC
1000 (Proxeon) coupled to an LTQ–Orbitrap Velos (Thermo
Scientific). Peptides were loaded onto Acclaim PepMap 100
(Thermo Scientific) trap column and eluted onto Acclaim
PepMap 100 C18 3 mm (Thermo Scientific, 75 mm x 25 cm). A
110-min gradient was run at 250 nl/min flow rate using gradients
from 0% to 35% buffer B (0.1% formic acid in acetonitrile)
Frontiers in Plant Science | www.frontiersin.org 3
90 min, from 45% to 95% buffer B 10 min, 95% buffer B 9 min
and 10% buffer B 1 min. Mass spectra analyses were conducted
on an LTQ–Orbitrap Velos (Thermo Scientific) in positive mode,
full scan MS spectra (m/z 400–2000) at a resolution of 60,000.
The top 15 most intense ions were selected and fragmented using
collision-induced dissociation (CID) in the ion tramp with 35%
normalized collision energy, and a dynamic exclusion time of 45 s
was applied. Exoproteome of each isolate sample raw files were
searched with Sequest through Proteome Discoverer version
1.4.1.14 against M. laxa 8L proteome (Naranjo-Ortıź et al.,
2018) with peptide tolerance of 10 ppm and fragment tolerance
of 0.5 Da. Cysteine carbamidomethylation and methionine
oxidation were considered fixed modifications. False discovery
rate calculations were generated using Percolator at q ≤ 0,01 (Käll
et al., 2007).
Protein Annotation and Classification
Functional annotation of LC-MS/MS identified proteins from
each isolate was carried out with Blast2GO v5.0 and BLASTp
from NCBI1. BLASTp search was performed against the fungi
non-redundant protein database of NCBI with a threshold e-
value <10−5. All identified proteins from each sample were classified
intomainmetabolic pathways using the OG classification against the
EggNog database (Huerta-Cepas et al., 2018), and classification into
gene ontology analysis of candidates was carried out using Blast2go
v5.0. Furthermore, the subcellular location of identified proteins was
firstly predicted based on SignalP 5.0 (Almagro Armenteros et al.,
2019) andDeepLoc (Almagro Armenteros et al., 2017). Proteins with
positive extracellular hits were secondly considered for targeting
domains prediction TMHMM2 and GPI (Fankhauser and Mäser,
2005). Carbohydrate-Active enZymes (CAZymes3) and peptidases
were identified using dbCAN2 (Yin et al., 2012; Zhang et al., 2018)
and the MEROPS4 database respectively.
RESULTS

Characterization of Several M. laxa
Isolates Virulence on Nectarines
Virulence of M. laxa isolates 5L, 8L, and 33L (see Materials and
Methods) were compared. Significantly virulence differences
were observed among three M. laxa isolates. Brown rot
severity caused by M. laxa 8L isolate at 3 and 7 days after
inoculation on nectarine fruit, and its brown rot incidence at the
end of assays were always higher than those recovered with 5L
isolate (Figure 1). However, the virulence levels of 33L isolate
were in an intermediate position between the most aggressive
isolate (8L) and the weak aggressive isolate (5L). Brown rot
severity caused by the weak pathogenic isolate (5L) at 7 days of
incubation was similar to that caused by the most pathogenic
August 2020 | Volume 11 | Article 1286
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isolate (8L) after only 3 days of incubation (Figure 1). The first
sign of sporulation in nectarines inoculated by 8L and 33L was
recorded after 6 days. However, no sporulation was observed on
nectarines inoculated by 5L at the end of the assay.
Characterization of Exoproteomes From
Virulent and Weak Virulent Isolates
We used an nLC-MS/MS approach to analyze the extracellular
proteins produced by M. laxa isolates with different virulence
when growing in liquid media containing 1% freeze-dried peach.
Due to the strong colonization differences between the weak
isolate 5L and the more virulent isolates 8L and 33L we decided
to investigate equivalent times of infection among isolates, 3 days
for 8L and 33L and 7 days for 5L. Extracellular protein samples
were taken after 3 days for strains 8L and 33L, and 7 days for strain
5L and a total of 181 proteins were identified from 8L exoproteome
and 289 proteins from 33L at 3 dpi, and 206 proteins were identified
in 5L exoproteome at 7 dpi. Details of the whole identified proteins
and peptides are listed in Supplementary Table 1.

The detected proteins of each sample were categorized into
main functional categories using the OG classification (clusters
of Orthologous Group). The identified proteins were classified
into 18 functional OG categories within 4 groups, among which
the most represented group with similar proportion for all the
isolates was the “metabolism” group (Figure 2A). Within the
group of metabolism, we found differences in some functional
categories, “carbohydrate transport and metabolism” was higher
in 5L, and “energy production and conversion”most represented
in 8L and 33L. Concerning “information storage and processing,”
8L and 33L at 3 dpi present a higher proportion than 5L at 7 dpi,
due to differences in “translation, ribosomal structure and
biogenesis.” It is noteworthy the fraction of proteins classified as
“function unknown” in all isolates (Figure 2A). Similarly, the
three isolates had a relatively high number of enzymes that belong
to hydrolase, followed by oxidoreductase and transferase protein
families (Figure 2B).
Identification of Potential Secreted
Enzymatic Activities Among Virulent
Isolates at 3 dpi and Weak Isolate at 7 dpi
All the proteins identified in exoproteome, either 7 dpi or 3 dpi,
were further analyzed using the SignalP tool for the presence of
an N-terminal signal peptide (Figure 3A, box). Also, their possible
cellular/extracellular locations were predicted by DeepLoc tool
(Supplementary Table 2). Focusing our attention only on those
proteins that carried a signal peptide (SP), 157 different proteins
carrying an SP were found among theM. laxa isolates. In total, 74
SP-proteins were identified in 33L and 100 SP-proteins for 8L
both after 3 days, while 122 SP-proteins were found in 5L at 7 dpi
(Figure 3A box). All the possible combinations of the SP positive
proteins found in the selected exoproteomes were drawn by an
UpSet plot (Figure 3A). Fifty-six proteins were present across the
three isolates, besides 14 proteins shared between at least one of
virulent isolates with the weak virulent isolate (Figure 3A,
Supplementary Table 3). Apart from that, 35 SP-proteins
Frontiers in Plant Science | www.frontiersin.org 4
were explicitly identified in 8L or 33L and both (Figure 3A,
Supplementary Table 4). It is worth noting the detection of 52
SP-proteins only present in 5L at 7 dpi (Figure 3A, Supplementary
Table 5). Classification of identified SP-proteins, based on GO
analysis for molecular function, revealed a similar proportion in
almost all categories (Figure 3B). The largest proportion of SP-
proteins was involved in hydrolase activity and catalytic activity
acting on a protein. Compared with 5L, 8L and 33L presented
transferase activity, and only in 8L the small-molecule-binding GO
function was present (Figure 3B).
FIGURE 1 | (A) Disease assessment of unwounded nectarine fruit cv. `Big
Top´; in order 8L, 33L and 5L M. laxa isolate. (B) Brown rot severity (mm)
caused by M. laxa isolates at 3 and 7 days after inoculation on nectarine fruit
cv. Big Top´. (C) Brown rot incidence (%) by M. laxa isolates 12 days after
inoculation. Data represent the mean of three experiments with three
inoculations per fruit, and five fruit per isolate and experiment. Data were
analyzed by analysis of variance, means values with the same letter are not
significantly different (P ≤ 0.05) according Student–Newman–Keuls multiple
range test.
August 2020 | Volume 11 | Article 1286
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Cazymes
Out of the 157 proteins that carry an N-terminal possibly secretory
signal peptide, 66 proteins were identified as carbohydrate-active
enzymes or CAZymes by at least two prediction tools through the
dbCAN meta server (Supplementary Tables 3–5). Among the
identified CAZymes, by far the most abundant class was glycoside
hydrolases (GHs), followed by auxiliary activities (AAs),
carbohydrate esterases (CEs), and polysaccharide lyases (PL). Many
of these classes include well-known protein families that were related
Frontiers in Plant Science | www.frontiersin.org 5
to plant cell-wall disassembly, such as cellulases, hemicellulases, and
pectinases. Thus, the identified CAZymes in M. laxa exoproteomes
were classified regarding their possible plant cell targets and those
involved in remodeling fungal cell wall (Figure 4).

Among eight groups of CAZymes, many differences were
observed between proteins present in virulent isolates at 3 dpi
and weak virulent isolate at 7 dpi (Figure 4). The highest differences
observed between virulent and weak virulent isolates was cellulose
group (89% of different proteins), followed by pectin group (73% of
A

B

FIGURE 2 | Comparative analysis of the identified proteins in exoproteome of M. laxa isolates for 3 days post-inoculation (dpi) in 8L and 33L virulent isolates, and 7
dpi in 5L weak virulent. (A) Category abundance of identified proteins in exoproteome grouped into 18 functional categories using OG classification for 5L, 8L and
33L M. laxa isolates. (B) Enzyme distribution of identified proteins for M. laxa isolates represented as total number of proteins identified in each EC class.
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different proteins), hemicellulose (67% of different proteins), fungal
cell wall group (65% of different proteins), and another group (71%
of different proteins). Specially, four related with cellulose
degradation (GH5, GH7, GH12, and GH45), the MlPG1 (GH28),
MlPME3 (CE8), and GH53 associated with pectin disassembly, as
well as one laccase (AA7), GH10, and four involved in fungal cell
wall remodeling (some of GH16, GH17, GH72, and GH128) were
only recovered from the most virulent isolates (Figure 4). Only one
cutinase (MlCUT1) was recovered from exoproteome of three
isolates. Moreover, AAs group showed a 64% similarity between
virulent and weak virulent isolates. Concerning cellulose
Frontiers in Plant Science | www.frontiersin.org 6
degradation, ten proteins belonging to six CAZyme families were
found associated with cellulose, with only cellobiose dehydrogenase
(CDH) being detected in all isolates. Regarding the hemicellulose
plant target, 6 proteins belonging each one to a different family were
identified, a member of CE1 and another of GH79 group were
present in the three exoproteomes. Notably, three members of the
GH72 family were found in common in the three M. laxa isolates
together with two of GH17 and one in GH16 families (Figure 4).

On the other hand, only the weak isolate showed the presence
of an activity related to starch metabolism (Figure 4), and
recovered MlPG6 (GH28), MlPNL3 (PL1), MlaRHA5, GH54,
A

B

FIGURE 3 | Exoproteome of M. laxa isolates. (A, box) Proportion of identified M. laxa proteins with potential signal peptides detected in exoproteome for an early
and late time point (3 and 7 dpi, respectively) in 8L and 33L virulent isolates, and late time point (7 dpi) in 5L weak virulent isolate. (A) UpSet plot of intersecting sets
of SignalP positive proteins found in exoproteomes. Total identifications for each sample (left bar chart), were 74 proteins for 33L and 100 proteins for 8L at 3 dpi,
and 122 for 5L at 7 dpi. The connected dots among protein sets shown in the lower panel and numbers indicated in the top bar chart represent the group of
proteins shared between exoproteome samples. (B) Classification of SignalP positive proteins based on GO molecular function. Shown is the percentage (%) of
proteins in exoproteome samples attributed to each GO group at level 3.
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and GH93 associated with pectin disassembly, as well as one
laccase (AA3), GH3, GH47, GH95, and four involved in fungal cell
wall remodeling (GH55, GH81, and some of GH72, and GH128).

Peptidases
The second most represented class in the exoproteome was that of
peptidases, with 18.5% (29 proteases) among the three isolates
(Figure 5). Of proteases, the largest group identified was the serine-
peptidases that contain tripeptidyl peptidases and carboxypeptidases,
which were detected in the cultures of 8L and 33L at 3 dpi, as well
as in 5L at 7 dpi (Supplementary Tables 3–5). Also, one G1
glutamic (formerly A4) and six aspartic peptidases were detected
in the tree exoproteomes. However, metallopeptidases were
only found in 5L at 7 dpi (Figure 5), among which two zinc
carboxypeptidases were identified. In contrast to the significant
Frontiers in Plant Science | www.frontiersin.org 7
number of specific proteases found in 5L (8), only two were found
in 8L and none in 33L.
DISCUSSION

M. laxa isolates 5L, 8L, and 33L were classified by their virulence
factors and characterized their protein patterns, comparing their
protein profiles showed a core proteome and differences that
could be associated with their respective virulence levels. The fact
that exoproteomes from 8L and 33L at 3 dpi and 5L at 7 dpi
showed a similar pattern was in agreement with the reduced
growth rate of the weak virulence isolate (5L). Differences among
protein profiles had already been associated with the pathogenicity
of necrotrophic fungi in different special forms of Fusarium
FIGURE 4 | CAZymes identified from exoproteomes of virulent M. laxa isolates 8L and 33L at 3 dpi, and weak virulent 5L at 7 dpi. Each group depicts a plant cell
wall target, including auxiliary activities (AAs), CAZymes related to the fungal cell wall and a miscellaneous group indicated as others. Positive identification of a
protein in each isolate proteome is presented as a blue square. On the right is indicated the corresponding protein unique identification number.
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oxysporum (Fang and Barbetti, 2014; Li et al., 2015; Manikandan
et al., 2018), Verticillium dahlie (El-Bebany et al., 2010), and B.
cinerea (Fernández-Acero et al., 2007). We hypothesize that brown
rot infection and colonization process by weak isolate 5L might
be delayed.

Exoproteomes from 8L and 33L at 3 dpi showed high content
in lytic enzymes, as described for 5L at 7 dpi. These proteins
harbor a signal peptide suggesting they were actively secreted.
Secreted protein enrichment had been reported when studying
exoproteomes in other fungal phytopathogens (Yajima and Kav,
2006; Cobos et al., 2010; González-Fernández et al., 2014). The
analysis of the 157 SP positive proteins revealed a core exoproteome
of 56 proteins shared among M. laxa isolates, which could imply a
common strategy among them. Similar strategies have been
described studying secretomes in B. cinerea (González-Fernández
et al., 2014) and Pyrenophora teres f. teres (Ismail and Able, 2016).
An increase of secreted proteins has been reported in B. cinerea
when growing in nutritionally rich media compared to more simple
media (Shah et al., 2009a; Espino et al., 2010) or with complex
carbon sources like pectin as has been described in M. laxa (Shah
et al., 2009b; Rodrıǵuez-Pires et al., 2020). The higher percentage of
secreted proteins, as well as their possible target function in proteins
and structural carbohydrates, supports a specialization of M. laxa
exoproteome towards peach degradation. The production of
extracellular enzymes by necrotrophic fungi has an essential role
in plant infection in part due to the efficient degradation of plant
tissues as a source of carbon and nitrogen (Kim et al., 2007; Blanco-
Ulate et al., 2014). Accordingly, multiple proteins with a putative
role in carbohydrate or protein degradation had been identified in
Frontiers in Plant Science | www.frontiersin.org 8
exoproteomes of 8L and 33L at 3 dpi, and the weak aggressive 5L at
7 dpi.

Similarly, MlCUT1 (Monilinia_042800) was detected at 3 dpi
in 8L and 33L, and also identified in 5L at 7 dpi. The cuticle is the
first area of interaction between Monilinia and its host. Cutinase
(MfCUT1) of M. fructicola was an infection marker with early
expression since 5 h post-inoculation on petals (Lee et al., 2010)
and an essential virulence factor in the absence of wounds (Lee and
Bostock, 2006; Lee et al., 2010). Previous data and this work show
that theM. laxa orthologous protein MlCUT1 (Monilinia_042800)
was also early expressed during mycelial growth (6 hpi, in vitro
cultures (Rodrıǵuez-Pires et al., 2020)). Notably, MlCUT1 was
detected at 7 dpi on the weak virulent strain 5L, supporting the
conclusion that the delay in the development of virulence
symptoms by 5L isolate must be caused by an inadequate pattern
of exoproteins at 7 dpi.

The comparative biological status of 3 dpi in virulent isolates
and 7 dpi in weak virulent revealed a core-proteome with several
CAZys and peptidases. Some enzymes related to hemicellulose
breakdown were also found in all isolates such as acetyl xylan
esterase (CE1) and b-glucuronidase (GH79) (Glass et al., 2013).
Few differences were recorded among the content of AAs class
from the three M. laxa isolates. AAs class included redox
enzymes that act in conjunction with CAZymes as ligninolytic
or lytic polysaccharide oxygenases (CAZy database3). The most
abundant, AA1 family was functionally annotated as laccases,
that could oxidize a wide range of phenols and non-aromatic
compounds and are involved in melanin synthesis, delignification,
detoxify host antifungal compounds, and fungal virulence
FIGURE 5 | UpSet plot of intersecting sets of peptidase proteins found in exoproteomes. Total identifications for each sample (left bar chart), were 17 proteins for
33L and 21 proteins for 8L at 3 dpi, and 26 for 5L at 7 dpi. The connected dots among protein sets shown in the lower panel and numbers indicated in the top bar
chart represent the group of proteins shared between exoproteome samples. The intersecting set (top bar chart) also classified the different peptidases according to
the chemical mechanism as aspartic (green), glutamic (yellow), serine (pink), and metallo (purple) catalytic type.
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(Quidde et al., 1998; Mayer and Staples, 2002; Schouten et al.,
2002; Coman et al., 2013). De Miccolis Angelini et al. (2018)
described a laccase2 (Monilinia_025960 ortholog) one of the most
differently expressed genes in M. laxa, although their possible
plant-pathogen role had not been studied in Monilinia spp. its
possible biotechnological applications had been considered (Bao
et al., 2012; Demkiv et al., 2020). Proteins involved in the
modification of fungal cell walls played an essential role in
growth, survival, and also plant-fungi interaction in phytopathogens
(Free, 2013; Geoghegan et al., 2017; Patel and Free, 2019). As reported
to S. sclerotiorum proteome (Liu and Free, 2016), we found in the
exoproteomes of the threeM. laxa isolates members of GH16, GH17,
and GH72 families. These families have been proved to be essential
for cell wall cross-linking in model organisms like Saccharomyces
cerevisiae andNeurospora crassa (Patel and Free, 2019). Highlight the
possible role in the pathogenesis of b‐1,3‐glucanosyltransferases or
Gels/Gas (GH17) described in Magnaporthe oryzae during
appressorium‐mediated plant infection (Samalova et al., 2016) or
the role of gas1 in Fusarium oxysporum on tomato infection
(Caracuel et al., 2005).

The presence of proteases in the three M. laxa exoproteomes
was also noteworthy being the second most abundant group with
29 proteins. A high percentage of peptidases were shared among
the three isolates. Peptidases could play a nutritional function, as
reported in the closelyM. fructigena that produced an unidentified
acid protease activity (Hislop et al., 1982). Although, they could be
involved in pathogenesis as well as a defense against antifungal
compounds produced by the hosts, such as secreted serine
protease in Fusarium oxysporum f. sp. lycopersici (Jashni et al.,
2015). The most represented protease family was serine peptidase
in M. laxa isolates, similar to proteomic early secretome in
B. cinerea (Espino et al., 2010). The glutamic family represented
with one protein (Monilinia_077490) and shared by the three
isolates was orthologous to an acid protease previously studied
Ssacp1 in S. sclerotiorum (Poussereau et al., 2001) and Bcacp1 in
B. cinerea (Rolland et al., 2009). Both secreted proteases, Ssacp1
and Bcacp1, were only expressed under acidic conditions during
infection despite the different possible strategies in sunflower
colonization (Poussereau et al., 2001; Billon-Grand et al., 2002;
Rolland et al., 2009).

Differences were found in the content of proteomes of the
three M. laxa isolates, especially among CAZymes, the most
extensive protein group identified in M. laxa exoproteomes
(42%). Among lytic enzymes required for degradation of the major
components of the plant cell wall (i.e., cellulose, hemicellulose, and
pectin), several activities have been only detected from proteomes of
the most virulent isolates. In this way, four alternative proteins of b-
1,4-endoglucanases (GH5, GH12, GH45), and cellobiohydrolases
(GH7) related with cellulose degradation, MlPG1, MlPME3, and
endo-b-1,4-galactanase (GH53) associated with pectin disassembly,
as well as one laccase, an endo-1,4-beta-xylanase (GH10), and four
involved in fungal cell wall remodeling. Although previous studies
onM. laxa have not reported cellulase activity (Garcia-Benitez et al.,
2018) or differential expression of their genes (De Miccolis Angelini
et al., 2018), it was expected that the presence of these proteins were
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involved in their degradation. Xylanases, in addition to its activity
described in Monilinia spp (Garcia-Benitez et al., 2018), were also
present in the B. cinerea proteome (Shah et al., 2009a; Espino et al.,
2010; Fernández-Acero et al., 2010; Shah et al., 2012), which may
have a role beyond its degrading function as a necrosis inducer like
Xyn11A of B. cinerea (Noda et al., 2010). In agreement with the high
pectin content in peach fruit, 11 pectinase degrading enzymes were
identified. Interestingly, the virulent factor MlPG1 was detected in
the virulent ones but not in the weak virulent 5L, but this isolate
produced MlPG6 which has no defined function in pathogenesis.
Although in M. fructicola an over-expression of MfPG1 has been
associated with smaller lesions (Chou et al., 2015), upregulation of
M. laxa MlPG1 and protein identification had been reported with
pectin as carbon source (Rodrıǵuez-Pires et al., 2020). Likewise, PG1
was themost widely identified polygalacturonase in B. cinerea (Shah
et al., 2009a; Shah et al., 2009b; Espino et al., 2010; Shah et al., 2012;
González-Fernández et al., 2014). Among pectin lyases (PNLs),
MlPNL1 was not detected, MlPNL3 was only identified in 5L, while
the occurrence of MlPNL2 was in all of them. Pectin methyl
esterases played a role in de-esterification in pectin breakdown,
and particular MlPME2 had been described as a possible virulence
factor in fruit (Baró-Montel et al., 2019), and highly expressed
concerning otherMonilinia spp (De Miccolis Angelini et al., 2018).
The presence of some PME seems to be constitutive when M. laxa
grew in pectin or glucose culture (Rodrıǵuez-Pires et al., 2020), but
here MlPME3 was absent in the weak virulent 5L.

In this context, another possible virulence factor NEP-like
protein was only identified in the exoproteomes of most virulent
isolates. The putative necrosis and ethylene inducing peptide
(Monilinia_016550) were found in the 8L and 33L at 3 dpi.
Necrosis and ethylene-inducing peptides of B. cinerea and
S. sclerotiorum promote plant cell death during the early stages
of lesion expansion being indispensable SsNep2 in S. sclerotiorum
(Dallal Bashi et al., 2010). However, they did not seem to be
essential individually in B. cinerea (Cuesta Arenas et al., 2010).

In this study, we have characterized three M. laxa isolates
depending on their virulence degree. Isolate 5L is less aggressive
than the other two, 8L and 33L. Exoproteomes of these three M.
laxa isolates with different degrees of virulence have been
evaluated, and their analyses provided new insights into how
exoproteome could contribute to the necrotrophic infection.
Firstly, our data shows the existence of a core exoproteome of
56 common proteins. Many of these identified proteins are
hydrolytic enzymes highlighting the role of a common framework
towards peach degradation among isolates with different virulence
such as cutinase, laccases, and acid peptidase were identified as some
examples, which could constitute a broad disease control target. In
addition, a subset of secreted proteins were specifically identified in
exoproteomes of virulent isolates, MlPG1 MlPME3, NEP-like or
endoglucanase proteins, which we consider as possible markers of
differential virulence in more aggressive isolates. We suspect that 5L
isolate is delayed in its pathogenicity program. Further studies to
analyze and compare 5L strain with other highly virulent isolates
may assist in deciphering the genetic basis for regulating this time-
related process of M. laxa pathogenicity on stone fruit.
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