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INTRODUCTION

In the process of growth and development, plants are exposed to various abiotic stresses such as
salinity, drought, low temperature, which limit crop yield and quality. During evolution, plants
acquire series of resistances to these environmental stresses and survive through physiological,
biochemical, and molecular responses. These responses are usually originated by regulating the
expression of relevant genes. bZIP (basic leucine zipper) transcription factors, as one of the largest
transcription factor regulatory families, play very important roles in responses to these abiotic
stresses. bZIP TFs could be activated by drought, high salt and chilling damages. By binding
specifically to cis-elements in the promoter region of stress related genes, they can regulate the
transcriptional expressions of target genes, thereby regulating stress resistance of plants. This article
comprehensively reviews the structural characteristics of bZIPs and their regulation mechanisms on
target genes under various abiotic stresses.
DISTRIBUTION AND CLASSIFICATION OF BZIP TRANSCRIPTION
FACTORS

Currently, there are at least 64 families of transcription factors have been found in plants (Pérez-
Rodriguez et al., 2010). According to their differences in DNA-binding domains, transcription
factors can be defined as different families, such as bZIP, NAC, MYB, EREBP/AP2, Zinc-finger, etc.
To date, a large number of bZIP transcription factors have been identified in almost all eukaryotes.
There are 57, 77, 62, 96, 85, 87, 89, 262, 92, 89, 178, 103, 65, 69, 125, 64, 55, 114 bZIP transcription
factors been found in Ananas comosus, Arabidopsis thaliana, Citrullus lanatus, Fagopyum
talaricum, Gossypium raimondii, Gossypium arboreum, Oryza sativa, Glycine max, Sorghum
bicolor, Hordeum vulgare L, Panicum virgatum L, Olea europaea L, Solanum tuberosum L.,
Solanum lycopersicum, Zea mays, Cucumis sativus, Vitis vinifera and Malus domestica,
respectively (Corrêa et al., 2008; Nijhawan et al., 2008; Wang et al., 2011; Wei et al., 2012;
Baloglu et al., 2014; Liu J. Y. et al., 2014; Li et al., 2015; Pourabed et al., 2015; Li et al., 2016; Zhang
et al., 2018; Liu M. et al., 2019; Yang W. et al., 2019; Azeem et al., 2020; Liu et al., 2020; Rong et al.,
2020; Wang et al., 2020; Zhao et al., 2020). Only 25, 21, and 21 bZIP transcription factors were
found in yeast, nematode, and fruit fly, respectively (Riechmann et al., 2000). Compared to other
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eukaryotes, plants seem to have more bZIP homologous proteins
and more conserved amino acid sequences in these homologies
(Ali et al., 2016). Studies have shown that the structures of bZIP
protein are closely related to its biological function. Jakoby et al.
(2002) used MEME (multiple em for motif elicitation) to analyze
a large number of bZIP transcription factors in Arabidopsis
thaliana. Based on the characteristics of both the bZIP and
other conserved motifs, the 75 bZIPs in Arabidopsis thaliana
were classified into 10 subfamilies (A, B, C, D, E, F, G, H, I, and
S). With similar method, the bZIP transcription factor family
genes in other plants have also been categorized. The 131 bZIP
transcription factors isolated from the soybean genome were also
divided into abovementioned 10 subfamilies A~S (Liao et al.,
2008). Though the 89 members of the bZIP transcription factor
family in rice were also divided into 10 subfamilies, the subfamily
S was replaced with J (Nijhawan et al., 2008). It seems that most
of these subfamilies of bZIPs are conserved among different
plants. Corrêa et al. (2008) identified the possible non-redundant
complete sets of 92 bZIPs in rice and 89 bZIPs in black
cottonwood. Based on the similarities of both bZIP and other
conserved motifs, these collections of bZIPs together with the 77
bZIPs from Arabidopsis were categorized into 13 subfamilies,
including A, B, C, D, E, F, G, H, I, J, K, L, and S. In which, three
subgroups including J, K, and L were added.

With the advancement of bioinformatics, more and more
conversed motifs, except bZIP, were identified for categorizing
bZIP subfamilies. Hence, the classification of bZIP transcription
factors has become more and more sophisticated. Due to the
advancement of bioinformatics, there are increasing researches
provide preliminary analyses on globally identifying bZIP
members from the fresh released genomic database of many
plants, such as potato, switchgrass, olive, pineapple, cotton,
watermelon, and tartaty buckwheat, laying the foundation for
subsequent research (Yang W. et al., 2019; Liu M. et al., 2019;
Azeem et al., 2020; Liu et al., 2020; Rong et al., 2020; Wang et al.,
2020; Zhao et al., 2020). Recent years, there are increasing reports
on regulation mechanism of various bZIPs on different stress
responses (Liu et al., 2012; Ji et al., 2013; Hwang et al., 2014; van
Leene et al., 2016; Tsugama et al., 2016; Zhang C. Y. et al., 2017;
Zhang L. N. et al., 2017; Wang et al., 2019). Specific roles of bZIPs
in different subgroups might also be categorized into
corresponding biological pathways, considering plenty of
functional annotated bZIPs been classified into the known
subfamilies with those sophisticated bioinformatics.
ARCHITECTURE CHARACTERISTICS OF
BZIP TRANSCRIPTION FACTORS

Transcription factor, also known as trans-acting factor, is a
category of proteins that can specifically bind to cis-acting
elements in the promoter region of eukaryotic genes, thereby
activating or silencing the expression of related genes with
temporal and spatial specificity. The structure of plant
transcription factors generally includes at least four functional
domains, including the DNA binding domain, the
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transcriptional regulatory domain, the nuclear localization
signal peptide, and the oligomerization site (Du et al., 2012).
They work together to regulate various biological processes.

Although the classification of bZIPs varies depending on the
researcher’s choice of criterions, there is currently a consensus on
this family that their protein sequence contains a conserved bZIP
domain with 60~80 amino acids length. This domain is consisted
of at least two specific structures. Firstly, the N-terminus is a
basic region composed of about 20 basic amino acids, containing
a nuclear localization signal (NLS) and a N-x7-R/K structural
unit that specifically binds to a DNA sequence. This region is
involved in nuclear localization and DNA binding (Lee S. C.
et al., 2006). Secondly, the C-terminus, which is a leucine zipper
region, a heptad repeat of leucine or other bulky hydrophobic
amino acids (Ile, Val, Phe, or Met), creates an amphipathic helix.
This region is involved in the dimerization of the bZIP protein
before it binds to DNA (Landschulz et al., 1988; Hurst, 1994;
Jakoby et al., 2002). In addition to the bZIP domain, the bZIPs
also contain other conserved domains with transcriptional
activation functions, such as the R/KxxS/T and S/TxxD
domains, which are phosphorylation sites of Ca2+ independent
protein kinase and casein kinase II (Furihata et al., 2006).
Besides, there are also some regions rich in acidic amino acids,
which can activate the transcriptional expression of downstream
target genes (Liao et al., 2008).
MECHANISMS OF BZIP ON
TRANSCRIPTIONAL REGULATION OF
TARGET GENES

Through dimerization, phosphorylation, or interaction with
other nuclear proteins, the specificity and affinity of bZIP
binding to DNA will change, which will affect the activation of
other genes, as well as its own stability and subcellular
localization (Schütze et al., 2008). By forming homo- or
heterodimers and binding specific promoters in its basic
region, the bZIP transcription factor inhibits or activates the
expression of target genes.

The binding specificity of bZIP factors in plants is mainly
determined by three bases flanking the four core nucleotides.
Generally, bZIP factors preferentially select ACGT core
palindromes or pseudo-palindromic cis-acting elements to
bind, such as G-box (CACGTG), C-box (GACGTC), A-box
(TACGTA), ABRE (ACGTGGC) (Izawa et al., 1993; Kim et al.,
2004). Most of them are located in the ABA hormone-induced
promoter region. When the bZIP protein interacts with these cis-
acting elements, the N-terminus of its basic domain is inserted
into the large groove of the DNA double-strand, and the C-
terminus of the leucine zipper is dimerized to form a
superimposed curl helix (Landschulz et al., 1988; Ellenberger
et al., 1992).

G-box is one of the most common targets of bZIP
transcription factors. de Vetten and Ferl (1995) firstly found
that corn GBF1 is a basic region leucine zipper protein and could
activate Adhl expression by binding to its G-box. After that,
August 2020 | Volume 11 | Article 1258
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series of stress related genes were found to be bound at their G-
box and regulated by various bZIPs. Kaminaka et al. (2006)
found that Arabidopsis thaliana AtbZIP10 can combine with G-
box to negatively regulate plant resistance to pathogenic bacteria
and other stresses. Zou et al. (2008) demonstrated that the rice
OsbZIP10/OsABI5 could bind to the G-box element for trans-
activating stress resistance genes, thereby inhibiting seed
germination and seedling growth. Liu et al. (2012) also found
that OsbZIP52/RISBZ5 can recognize the G-box on target genes
to enhance the low temperature sensitivity of rice. The
Arabidopsis thaliana AtbZIP56/HY5 binds directly to the
promoters of light responsible element containing the G-box
and thus regulates their transcriptional activity (Yoon et al.,
2006). Induced by salt, the Tamarix hispida bZIP1 bound to G-
box of the stress response genes and regulated their expression (Ji
et al., 2013). Using chromatin immunoprecipitation, Lee et al.
(2006a) demonstrated that CabZIP1 bound to the G-box
elements in native promoter of the hot pepper pathogenesis-
related protein 1 (CaPR-1) gene in vivo. Shaikhali et al. (2012)
identified the AtbZIP16 as a component binding to the G-box-
containing promoter fragment of light-harvesting chlorophyll a/
b-binding protein2.4 (LHCB2.4) from nuclear extracts of high
light-treated Arabidopsis plants.

The ABRE element is also a favorite target of bZIP
transcription factors. Sun et al. (2011) found that AtbZIP1
binds to ABRE active elements and regulates the plant’s
response to low temperature stress through ABA-dependent
signaling pathways. Yoshida et al. (2015) demonstrated that
the Arabidopsis thaliana bZIP transcription factors ABF1,
ABF2, ABF3, and ABF4 combined with ABRE and regulated
the expression of downstream genes related to salt and drought
tolerance. In maize, ZmbZIP17 functions as an ER stress
transducer, interacting with ABREs (Yang et al., 2013). Rice
OsbZIP46/OsABF2 (Hossain et al., 2010; Tang N. et al., 2012;
Chang et al., 2017), OsbZIP52/RISBZ5 (Liu et al., 2012),
OsbZIP10/OsABI5 (Zou et al., 2007; Zou et al., 2008; Chang
et al., 2019), OsbZIP05/OSBZ8 (Nakagawa et al., 1996;
Mukherjee et al., 2006) could all regulate the expression of
plant ABA-responsive genes by binding to their ABRE
element. Zhang et al. (2017b) proved that wheat TabZIP14-B
showed transcriptional activation ability through the
transactivation assay and was capable of binding the ABRE in
yeast. Zhang et al. (2020) found that, TabZIP8, 9, 13 could
combine to the ABREs of TaNCED2 gene to promote ABA
biosynthesis in wheat roots in response to salt stress. Wang et al.
(2019) isolated the sweet potato bZIP transcription factor
IbABF4 gene, and found its cis-acting activity on ABRE in
vitro. Liu et al. (2019b) found that the Cassava MeABL5 was
able to specifically interact with the ABRE cis-element in the
promoter of the major cell wall invertase gene MeCWINV3.

In addition, bZIP transcription factors could target on genes
by C-Box and A-box. The C-box of pathogenic responsive genes
could bound and negatively regulated by AtbZIP10 in
Arabidopsis thaliana (Kaminaka et al., 2006). Induced by ABA
and drought, the Tamarix hispida bZIP1 bound to C-box and A-
box cis-elements of the stress response gene (Ji et al., 2013).
Frontiers in Plant Science | www.frontiersin.org 3
In summary, bZIP transcription factors regulate the
transcriptional expression by interacting with specific cis-
regulatory sequences in the promoter region of response genes
to regulate plant stress tolerance (Sornaraj et al., 2016). To
understand the actual relationship between bZIP subfamilies
and their binding cis-regulator motifs (Table 1 and Figure 1),
all the functional annotated bZIPs were categorized into 13
known subgroups based on the method described by Corrêa
et al. (2008). It seems that the G-Box and ABRE attracts most
scientists’ interests and are two most understood cis-elements of
bZIP transcription factors (Table 1). The bZIPs that bind to G-
Box are most categorized into subfamilies A, C, G, H, K, and S;
while those recognize ABRE usually belong to the subgroups A,
B, C, G, and S (Table 1). Besides, there are also several reports on
mechanisms about how bZIP transcription factors regulate other
two cis-elements, C-box and A-box (Table 1). Interestingly,
bZIPs that bind to C-box are usually belong to subfamilies C
and S; the functional annotated bZIP bind to A-box is classified
into subfamily S. Though the number of functional annotated
bZIP is limit, their binding activities of different subfamilies to
specific cis-elements could also provide directional suggestions
for further research on de novo bZIPs and potential targets.
However, more evidences are still needed to fulfill the relevance
between bZIP subfamilies and corresponding cis-elements.
REGULATION MECHANISM OF PLANT
BZIPS TO VARIOUS STRESSES

Previous studies have found that bZIPs play important roles in
response to a variety of plant stresses, such as salinity, drought,
and cold damages (Table 2). Their regulation mechanism varies
depending on species of plant and types of stresses.
BZIP TFS INVOLVED IN SALT STRESS
RESPONSE

Under salt stress, plant cell should successively face challenges of
osmotic stress, ion toxicity and oxidative stress (Munns, 2005;
Rozema and Flowers, 2008). In these responses, bZIP
transcription factors play key roles in various physiological
processes in Arabidopsis thaliana, tomato, tobacco, rice, and
soybeans, etc.

In Arabidopsis thaliana, AtbZIP17 was proven as a positive
regulator in the processes salt stress responses, it activates both the
expression of salt stress response gene ATHB-7 and SES1 (Liu
et al., 2007; Liu et al., 2008); while the AtbZIP24 was revealed as a
negative regulator in plant tolerance to salinity (Yang et al., 2009).
Tang W. et al. (2012) found that heterologously expressing
Arabidopsis thaliana AtbZIP60 could increase salt resistance and
superoxide dismutase activity of tobacco, rice, and Pinus elliottii.
Recently, Rolly et al. (2020) found that AtbZIP62 negatively
regulated the transcriptional SOS signaling pathway genes and
thus negatively regulates the salt tolerance of Arabidopsis. In
August 2020 | Volume 11 | Article 1258
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Glycine max, overexpression of the GmbZIP1 enhances salt
tolerance in transgenic plants (Gao et al., 2011). The
overexpression of GmbZIP2 in soybean hairy roots could
enhance the expression of the stress responsive genes
GmMYB48, GmWD40, GmDHN15, GmGST1, and GmLEA,
thereby improving plant resistance to drought and salt stresses
(Yang et al., 2020). Besides, heterologously expressing GmbZIP44,
GmbZIP62, and GmbZIP78 could significantly increase salt
resistance of transgenic Arabidopsis thaliana plants (Wang et al.,
2015). In maize, the ABP9was found as a salinity responsible bZIP
gene by Zhang et al. (2011a). Then, Wang et al. (2017a)
heterologously expressed it to improve the salt tolerance of
transgenic cotton. In Oryza sativa, the OsbZIP05/OSBZ8 firstly
found with a higher transcriptional level in salt tolerant cultivar
than in salt sensitive cultivar, indicate that OsbZIP05/OSBZ8
might play as a positive role in this stress responses (Mukherjee
Frontiers in Plant Science | www.frontiersin.org 4
et al., 2006). After that, OsbZIP12/OsABF1, OsbZIP23, OsbZIP46/
OsABF2, OsBZIP71, and OsbZIP72 were successively proven to
act as positive regulators in the process of salt tolerance (Xiang
et al., 2008; Lu et al., 2009; Amir Hossain et al., 2010; Hossain et al.,
2010; Tang N. et al., 2012; Liu C. T. et al., 2014; Chang et al., 2017;
Zhang C. Y. et al., 2017). OsbZIP71 can form both homodimers
and heterodimers with Group Cmembers of the bZIP gene family,
and overexpression of OsbZIP71 can significantly enhance the salt
tolerance of transgenic rice (Liu C. T. et al., 2014). On the contrary,
the plants overexpressing OsbZIP10/OsABI5 showed more
obvious chlorosis than wild type under high salt concentration,
indicating that OsbZIP10/OsABI5 participates in the salt stress
tolerance response of rice as a negative regulator (Zou et al., 2008).

Recent years, bZIPs in other plants have also been revealed to
participate salinity responsive processes. Cheng et al. (2013)
isolated a salt responsive transcriptional factor LrbZIP in lotus
TABLE 1 | Mechanism of bZIP on transcriptional regulation of target genes.

cis-acting
element

Plant
species

Nomenclature Subfamily Effect Reference

G-box Zea
mays

GBF1 G Activate Adhl expression de Vetten and Ferl, 1995

G-box Oryza
sativa

OsbZIP52 C Negatively regulated cold tolerance Liu et al., 2012

G-box Oryza
sativa

OsbZIP10/
OSABI5

A Inhibiting seed germination and seedling growth;
Negatively regulated salt tolerance

Zou et al., 2007; Zou
et al., 2008

G-box,
ABRE

Oryza
sativa

OsbZIP62 A Positively regulates the rice drought and oxidative
stress responses.

Yang S. et al., 2019

G-box, C-box Arabidopsis
thaliana

AtbZIP10 C Negatively regulate plant resistance to pathogenic
bacteria and other stresses

Kaminaka et al., 2006

G-box Arabidopsis
thaliana

AtbZIP56/
HY5

H Interact with the COP1 protein for proteasome-
mediated degradation in the nucleus.

Yoon et al., 2006

G-box Arabidopsis
thaliana

AtbZIP16 G Involved in the light- and/or redox-triggered regulation
of LHCB2.4 expression

Shaikhali et al., 2012

C-box, G-box,
A-box

Tamarix
hispida

ThbZIP1 S Improve salt tolerance of plant Ji et al., 2013

G-box Capsicum
annuum

CabZIP1 K Enhanced resistance to pathogen infection and
environmental stresses

Lee B. J. et al., 2006

ABRE Arabidopsis
thaliana

AtbZIP35/AtABF1, AtbZIP36/AtABF2/
AREB1,
AtbZIP37/AtABF3, AtbZIP38/AtABF4/
AREB2

A Involved in ABA response and stress response Choi et al., 2000

ABRE Arabidopsis
thaliana

AtbZIP39/
AtABI5

A Responds to ABA, drought, and salt stress Nakashima et al., 2009

ABRE Arabidopsis
thaliana

AtbZIP1 S Regulates the plant’s response to low temperature
stress

Sun et al., 2011

ABRE Zea
mays

ZmbZIP17 B ER stress transducer Yang et al., 2013

ABRE Oryza
sativa

OsbZIP46/OsABF2, OsbZIP52/RISBZ5,
OsbZIP05/OSBZ8

A, C, G Involved in ABA response and stress response Hossain et al., 2010;
Chang et al., 2017;
Mukherjee et al., 2006;
Liu et al., 2012;
Zou et al., 2007; Tang N.
et al., 2012;
Zou et al., 2008;

ABRE Triticum
aestivum

TabZIP14-B C Involved in stress response Zhang L. N. et al., 2017

ABRE Triticum
aestivum

TabZIP8, TabZIP9, TabZIP13 A Involved in ABA response and stress response Zhang et al., 2020

ABRE Ipomoea
batatas

IbABF4 A Involved in stress response Wang et al., 2019

ABRE Tartary
Buckwheat

FtbZIP5 A Enhance salt and drought tolerance Li et al., 2020
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root and found that transgenic lotus with LrbZIP overexpression
could grow with normal root biomass, chlorophyll content, and
electrolyte exudation rate under NaCl treatment. Zhao et al.
(2016) revealed that Brassica napus bZIP transcription factor
BnaABF2 enhanced salt tolerance of plants through the ABA
pathway. Gai et al. (2020) demonstrated that overexpression of
the pepper CabZIP25 enhanced the germination rate, fresh
weight, chlorophyll content, and root lengths under salt stress.

To sum up, many bZIP genes have been excavated in different
plants and confirmed that they can significantly enhance the salt
tolerance of plants, making the bZIP gene family a gene treasure
house for improving the salt tolerance of crops. Therefore, the
use of bZIP transcription factors to improve the salt tolerance of
crops and breed new salt-tolerant varieties is of great significance
for improving agricultural productivity and improving
saline soils.
Frontiers in Plant Science | www.frontiersin.org 5
BZIP TFS INVOLVED IN DROUGHT
STRESS RESPONSE

Drought is an adverse environmental factor that threatens plant
growth and development. Many plant bZIP family members are
involved in response to drought stress. Series of studies have
shown that several rice bZIP transcription factors are involved in
drought resistance. Liu J. Y. et al. (2014) found that rice
OsbZIP71 directly binds to the promoters of OsNHX1 and
COR413-TM1 and activates their transcription so as to
enhance drought resistance of transgenic rice. Yang et al.
(2019a) showed that overexpression of OsbZIP62 enhanced the
drought tolerance and oxidative stress tolerance of transgenic
rice. Except rice, some drought-related bZIP transcription factor
genes cloned in other plants also significantly enhanced the
drought resistance of transgenic crops. Overexpression of
FIGURE 1 | Phylogenetic relationships of bZIP family members. Concatenated sequence of all conserved motifs were used for multiple sequence alignments with
the clustalX software. The phylogenetic tree was constructed using MEGA7.0 with the neighbor-joining method and 1000 bootstrap replicates (Saitou and Nei, 1987;
Kumar et al., 2016). Then the trees were visualized using iTOL (https://itol.embl.de/). Group names were marked outside the circle. The bZIP protein sequences were
downloaded from the JGI (http://www.jgi.doe.gov/) and NCBI (https://www.ncbi.nlm.nih.gov) databases. The Gene and Protein IDs of all these bZIPs are list in
Supplemental Tables S1–S3. In this phylogenetic tree, the nomenclature of the Oryza sativa bZIPs is consistent with Corrêa et al., 2008 if there is any conflict with
that in other publications (Supplemental Table S1). And the bZIP members that have been functional annotated are labeled with a star marker.
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TABLE 2 | bZIP transcription factors involved in plant abiotic stress response.

Original Plant Stress response Nomenclature Subfamily Target gene Regulation type Function Reference

Arabidopsis thaliana Salt AtbZIP17 B ATHB-7 Positive regulation Improve salt tolerance of
plant

Liu et al., 2007;
Liu et al., 2008

Arabidopsis thaliana Salt AtbZIP24 F Unknown Negative regulation Participate in salt stress
response

Yang et al., 2009

Arabidopsis thaliana Drought AtbZIP37/
AtABF3

A ABI 5 Positive regulation Enhance drought
tolerance

Wang Z. et al.,
2016
Chang et al.,
2019

Arabidopsis thaliana Salt AtbZIP60 K Unknown Positive regulation Enhance salt tolerance Tang W. et al.,
2012

Arabidopsis thaliana Salt AtbZIP62 J GLS 1,
SOS1,
SOS2,
SOS3,

Negative regulation Participate in salt stress
response

Rolly et al., 2020

Arabidopsis thaliana Osmotic stress AtbZIP63 C Unknown Positive regulation Enhance osmotic
tolerance

Veerabagu et al.,
2014

Arabidopsis thaliana Osmotic stress AtbZIP51/
VIP1, AtbZIP29

I CYP707A1,
CYP707A3

Unknown Participate in osmotic
stress response

Hwang et al.,
2014; Van Leene
et al., 2016;
Tsugama et al.,
2016

Arabidopsis thaliana Cold AtbZIP1 S Unknown Negative regulation Participate in cold stress
response

Sun et al., 2011

Arabidopsis thaliana mechanical stress VIP 1 I Unknown Negative regulation suppresses mechanical
stress-induced root
waving

Tsugama et al.,
2019

Boehmeria nivea Salt
Drought

BnbZIP2 D Unknown Positive
Regulation
(salt)
Negative regulation
(drought)

Participate in salt and
drought stress response

Huang et al.,
2016

Brassica napus Salt BnaABF2 A Unknown Positive regulation Enhance salt tolerance Zhao et al., 2016
Brassica rapa Cold Bra000256 I Unknown Unknown Participate in cold stress

response
Hwang et al.,
2014

Camellia sinensis Cold CsbZIP6 C Unknown Negative regulation Participate in cold stress
response

Wang L. et al.,
2017

Camellia sinensis Salt/
Drought/
Cold

CsbZIP18 K AAO3,
CYP707A3,
UGT71B6, ABCG
22

Negative regulation Participate in cold stress
response

Yao et al., 2020

Capsicum annuum Drought CaDILZ1 D Unknown Negative regulation Participate in drought
stress response

Lim et al., 2018

Capsicum annuum Salt/
Drought

CAbZIP1 K Unknown Positive regulation Enhance salt and drought
tolerance

Lee S. C. et al.,
2006

Capsicum annuum Salt CabZIP 25 A Unknown Positive regulation Enhance salt tolerance Gai et al., 2020
Glycine max Salt/Cold GmbZIP44,

GmbZIP62,
GmbZIP78

S,C,G ABI1, ABI2 Positive regulation Enhance salt resistance Wang et al., 2015

Glycine max Salt/
Drought/Cold

GmbZIP1 A Unknown Positive regulation Enhance salt, drought
cold resistance

Gao et al., 2011

Glycine max Drought GmbZIP102 G Unknown Positive regulation Participate in drought
response

Zhang et al.,
2018

Glycine max Salt/
Drought/
Cold/
ABA

GmbZIP2 G GmMYB48,
GmWD40,
GmDHN15,
GmGST1
GmLEA

Positive regulation Enhance salt, drought
resistance.

Yang et al., 2020

Nymphaea nelumbo Salt LrbZIP D Unknown Positive regulation Enhance salt tolerance Cheng et al.,
2013

Malus pumila Cold MdHY5 H MdCBF1, CORs Positive regulation Enhance cold tolerance An et al., 2017b
Manihot esculenta
Crantz

Drought/
ABA

MeABL 5 A MeCWINV 3 Positive regulation Participate in abiotic
stresses.

Liu J. et al., 2019
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TABLE 2 | Continued

Original Plant Stress response Nomenclature Subfamily Target gene Regulation type Function Reference

Oryza sativa Salt OsbZIP05/
OSBZ8

G Unknown Positive regulation Rapidly induced by
abscisic acid; salt
tolerance

Nakagawa et al.,
1996; Mukherjee
et al., 2006

Oryza sativa Salt/
Drought

OsbZIP71 S OsNHX1, COR413-
TM1

Positive regulation Enhance salt and drought
tolerance

Liu C. T. et al.,
2014

Oryza sativa Salt OsHBP1b D Unknown Positive regulation Enhance salt tolerance Lakra et al., 2015
Oryza sativa Salt/

Drought/ABA
OsbZIP16 S Unknown Positive regulation Participate in salt and

drought stress response
Chen et al., 2012;
Pandey et al.,
2018

Oryza sativa Cold OsbZIP38/
OsLIP19

S Unknown Positive regulation involved in cold signaling;
a fos-like molecular switch
in the cold signaling

Aguan et al.,
1991; Aguan
et al., 1993;
Shimizu et al.,
2005

Oryza sativa Cold OsbZIP87/
OsOBF1

S Unknown Negative regulation interact with lip19 and
involved in cold signaling

Shimizu et al.,
2005

Oryza sativa Cold/
Drought

OsbZIP52/
RISBZ5

C Unknown Negative regulation Participate in cold and
drought stress response

Liu et al., 2012

Oryza sativa Cold OsbZIP68/
ROS-bZIP1

I Unknown Positive regulation induced by low
temperature and
hydrogen peroxide in
seedlings of chilling-
tolerant japonica rice

Cheng et al., 2007

Oryza sativa Drought OsbZIP72 A Unknown Positive regulation Positive regulator of ABA
response and drought
tolerance in rice

Lu et al., 2009

Oryza sativa Cold OsbZIP73/
OsTFX1

S Unknown Positive regulation Enhance cold resistance Liu et al., 2018;
Liu C. T. et al.,
2019

Oryza sativa Salt OsbZIP12/
OsABF1

A COR413-TM1 Positive regulation Inhibit rice flowering;
enhance salt resistance

Amir Hossain
et al., 2010;
Zhang C. Y. et al.,
2017

Oryza sativa Drought OsbZIP20 C Unknown Unknown Participate in drought
stress response

Izawa et al., 1993

Oryza sativa Drought/
Salt

OsbZIP23 A OsPP2C49 etc. Positive regulation Enhance salt and cold
tolerance

Xiang et al., 2008;
Dey et al., 2016;
Zong et al., 2016

Oryza sativa Drought OsbZIP46/
OsABF2/
ABL1

A Unknown Positive regulation Co-overexpression with
SAPK6 to enhance
drought tolerance

Hossain et al.,
2010; Tang N.
et al., 2012;
Chang et al.,
2017

Oryza sativa Drought OsbZIP42 E Unknown Positive regulation Enhance drought
tolerance

Joo J. S. et al.,
2019

Oryza sativa Salt/
Drought/ABA

OsbZIP10/
OsABI5

A Unknown Negative regulation Participate in salt and
drought stress response

Zou et al., 2007;
Zou et al., 2008

Oryza sativa Salt OsbZIP62 A DSM 2,
OsNAC 10,
OsGL 1

Positive regulation Enhanced drought
tolerance

Yang S. et al.,
2019

Poncirus trifoliata Drought PtrABF A Unknown Positive regulation Enhance drought
resistance

Huang et al.,
2010

Solanum lycopersicum Salt/
Drought

SlAREB1 A Unknown Positive regulation Participate in salt and
drought stress response

Hsieh et al., 2010

Solanum lycopersicum Salt/
drought

SlbZIP38 D Unknown Negative regulation Participate in salt and
drought stress response

Pan et al., 2017

Solanum lycopersicum Cold LebZIP1 S Unknown Unknown Participate in cold stress
response

Stanković et al.,
2000

Ipomoea batatas Drought IbABF4 A Unknown Positive regulation Enhance stress tolerance Wang et al., 2019
Ipomoea batatas Drought/

Salt
IbbZIP 1 E NCED, ABA2,

P5CS, SOD,
GPX, CAT,
APX, DHAR

Positive regulation Enhance salt, drought
resistance

Kang et al., 2019
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maize ABP9 confers excellent drought tolerance to transgenic
Arabidopsis thaliana plant (Wang C. et al., 2017). Under drought
stress, the transgenic Arabidopsis plants of IbbZIP1 showed
significant upregulation of the genes involved in ABA and
proline biosynthesis and reactive oxygen species scavenging
system, so as to significantly decrease of H2O2 content (Kang
et al., 2019). During seed germination and plant development,
transgenic ramie plants overexpressing BnbZIP2 were more
sensitive to drought stress than wild-type (Huang et al., 2016).
In addition, overexpression of transcription factors such as
Arabidopsis thaliana ABF3 (Wang Z. et al., 2016) and wheat
TabZIP60 (Zhang L. N. et al., 2015) in plants can significantly
improve the drought resistance of transgenic plants. On the
contrary, Lim et al. (2018) found that the pepper bZIP
transcription factor CaDILZ1 plays a negative regulatory role
in response to drought stress.
BZIP TFS INVOLVED IN COLD STRESS
RESPONSE

Low temperature stimulation will disturb the normal physiological
and metabolic activities and further affect the plant growth and
development. The plant mainly responds to low temperature stress
through the ICE-CBF-COR pathway. Low temperature induces
Frontiers in Plant Science | www.frontiersin.org 8
CBFs (C-repeat-binding Factors) expression by ICE (inducer of
CBF expression), which recognizes CRT/DRE (C-repeat/
dehydration responsive cis element) located on the promoter of
COR (cold regulated) genes (Shi et al., 2018). bZIP transcription
factors also play indispensable roles in regulating plant cold
stress responses.

The first rice bZIP-like transcription factor identified and
reported was OsbZIP38/LIP19 of the H subfamily. As a Fos-like
molecular switch, it is involved in the plant’s response to cold signal
pathways (Aguan et al., 1991; Aguan et al., 1993; Shimizu et al.,
2005). OsbZIP38/LIP19 and OsbZIP87/OsOBF1 are more likely to
form heterodimers to participate in the plant’s response to cold
signaling (Shimizu et al., 2005). In addition, the rice OsbZIP52/
RISBZ5, OsbZIP68/ROS-bZIP1, and OsbZIP73/OsTFX1 were also
involved in cold resistance. As a member in the G subfamily,
OsbZIP52/RISBZ5 is not induced by drought, salt, PEG, and
ABA, but by low temperature. It can form homodimers and
specifically bind G-box. However, the survival rate of rice plants
over-expressed OsbZIP52/RISBZ5 were significantly lower than
those of wild type, indicating that OsbZIP52/RISBZ5 negatively
regulates the rice cold tolerance (Liu et al., 2012). Cheng et al. (2007)
found that OsbZIP68/ROS-bZIP1 could be induced and responded
quickly within 24 h when rice was treated at 10°C. Liu et al. (2018,
2019a) identified eight low temperature resistant bZIP genes in rice,
including OsbZIP08, OsbZIP35, OsbZIP38, OsbZIP46, OsbZIP63,
OsbZIP72, OsbZIP73, and OsbZIP76.
TABLE 2 | Continued

Original Plant Stress response Nomenclature Subfamily Target gene Regulation type Function Reference

Tamarix hispida Salt/
Drought

ThbZIP1 S Unknown Positive regulation Enhance salt and drought
tolerance

Wang et al.,
2010; Ji et al.,
2013

Triticum aestivum Salt TabZIP8,
TabZIP9,
TabZIP13

A TaNCED2 Positive regulation Enhance salt tolerance Zhang et al.,
2020

Triticum aestivum Drought/Cold TabZIP60 A Unknown Positive regulation Enhance drought and
cold tolerance

Zhang L. N. et al.,
2015

Triticum aestivum Cold TabZIP6 C CORs Negative regulation Participate in cold stress
response

Cai et al., 2018

Triticum aestivum Cold TabZIP14-B C Unknown Positive regulation Enhance cold tolerance Zhang L. N. et al.,
2017

Triticum aestivum Cold/
Drought

TaAREB3/
TaABI5L2

A RD29A, RD29B,
COR15A, COR47

Positive regulation Enhance cold and
drought tolerance

Wang J. et al.,
2016

Triticum aestivum Cold TaABL1
(ABI-like)

A Unknown Positive regulation Enhance cold tolerance Xu et al., 2014;
Banerjee et al.,
2017

Tartary Buckwheat Salt/
Drought

FtbZIP5 A RD29A,
RD29B, RAB18,
RD26,
RD20, COR15

Positive regulation Enhance salt and drought
tolerance

Li et al., 2020

Tartary Buckwheat Salt/
Drought

FtbZIP 83 A AtRD29A,
AtRD29B, AtRD20,
AtAIL, AtRAB18,
AtKIN2, AtABI1,
AtABI2

Positive regulation Enhance salt and drought
tolerance

Li et al., 2019

Vitis vinifera Osmotic stress VvABF2 A Unknown Positive regulation Enhance osmotic
tolerance

Liu J. Y. et al.,
2019

Zea mays Salt/
Drought

ZmABP9 A Unknown Positive regulation Enhance salt and drought
tolerance

Zhang X. et al.,
2011; Wang C.
et al., 2017;
Zong et al., 2020
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Except for rice, carrot, soybean, wheat, tomato, and other
crops have also been successively excavated bZIP transcription
factors in response to low temperature stress. For example, Ito
et al. (1999) found that the expression of bZIP-like protein Lip
(Low temperature-Induced protein) in the roots of radish was
up-regulated under low temperature treatment, thereby
enhancing its cold resistance. Soybeans GmbZIP44, GmbZIP62
and GmbZIP78 can regulate and promote the synthesis of
proline (plant cold tolerance osmotic regulator) to enhance the
plant tolerance to cold stress by activating the expression of
downstream genes ERF5, KIN1, CORl5A, and COR78 (Liao et al.,
2008). Hwang et al. (2014) treated Brassica rapa with low
temperature stress and found that the expression of 27
BrbZIPs were significantly up-regulated, among which
Bra000256, Bra003320, Bra004689, Bra011648, Bra020735, and
Bra023540 may be the key genes involved in the response to this
stress. Compared with wild-type Arabidopsis thaliana,
heterologous expression of TabZIP6 in wheat under cold
treatment significantly reduced the expression of CBFs, key
CORs, and other genes in transgenic plants, making the
transgenic plants sensitive to low temperature (Cai et al.,
2018). However, the over-expressed wheat TabZIP14-B,
TaAREB3, and TabZIP60 in Arabidopsis thaliana can
significantly enhance the ability of plants to resist cold stress.
In addition, transgenic plants are more sensitive to ABA than
wild type, indicating that TabZIP14-B, TaAREB3, and TabZIP60
all enhance the cold resistance of plants through the ABA
pathway (Zhang L. N. et al., 2015; Wang J. et al., 2016; Zhang
L. N. et al., 2017). Xu et al. (2014) found that over-expression of
wheat bZIP transcription factor TaABL 1 (ABI-like) elevated
cold tolerance in wheat. Apple bZIP transcription factor MdHY5
can respond to low temperature stress at both the transcriptional
and protein levels. Overexpression of MdHY5 can significantly
enhance cold stress resistance in apple callus and transgenic
Arabidopsis thaliana. EMSA results indicate that MdHY5 can
bind to G-Box on the MdCBF1 promoter, thereby increasing its
transcription level COR genes independent of CBF (An et al.,
2017b). Wang et al. (2017b) found that transgenic Arabidopsis
thaliana plants showed reduced survival, increased electrical
conductivity, increased malondialdehyde content, and reduced
soluble sugar content when overexpressed Camellia sinensis
CsbZIP6 in it. Transcriptome analysis found that the
expression of low-temperature and drought-responsive genes
in over-expressed plants was significantly lower than that of
wild type, indicating that CsbZIP6 plays a negative regulatory
role in low-temperature stress response. Recently, Yao et al.
(2020) also discovered that CsbZIP18 is a negative regulator of
freezing tolerance via an ABA-dependent pathway.
BZIP TFS INVOLVED IN OSMOTIC
STRESS RESPONSE

Salinity and drought usually induce secondary damages, such as
osmotic stress. Hence, it’s not difficult to understand that plant
bZIPs also act as significant roles in response to osmotic stress.
Frontiers in Plant Science | www.frontiersin.org 9
The rice OsbZIP71 transcription factor recognizes and
combines with the promoter of the osmo-regulatory gene
OsNHX1, and further transports excess Na+ and K+ in the
cytoplasm to the vacuole, reducing salt concentration in the
cytoplasm to improve rice salt tolerance (Liu C. T. et al., 2014). In
Arabidopsis thaliana, the AtbZIP63 can regulate protein-protein
interactions to regulate the activity of proline dehydrogenase I,
thereby enhancing the ability of the plant to tolerate hypotonic
stress (Veerabagu et al., 2014); the VIP1 (AtbZIP51) rapidly
accumulates in the nucleus in response to hypotonic stress
(Hwang et al., 2014; Tsugama et al., 2016). Actually, VIP1/
AtbZIP51 and bZIP29 can form a heterodimer to enhance
their binding to the hypotonic response element (AGCTGK) in
the promoters of osmotic response genes CYP707A1 and
CYP707A3 (Van Leene et al., 2016). Furthermore, Tsugama
et a l . (2019) found that the VIP1/AtbZIP51 was
dephosphorylated by PP2A (protein phosphatase 2A), so as to
suppress mechanical stress-induced root waving.
BZIP TFS INVOLVED IN REGULATING ABA
SIGNALING PATHWAY

As a ‘emergency hormone’ in plants, ABA is an important
signaling molecule in plants. When plants encounter abiotic
stress such as salt, drought, or low temperature, they will activate
both ABA-dependent and ABA-independent signaling pathways
(Shinozaki and Yamaguchi-Shinozaki, 1996; Bray, 1997;
Thomashow, 1998; Verslues and Zhu, 2005). Genes involved in
the ABA-dependent pathway not only induce ABA biosynthesis,
but also regulate the expression of genes containing ABA
response element binding factors (AREBs) (Zhu, 2002;
Shinozaki and Yamaguchi-Shinozaki, 2007). The bZIP
transcription factor family can bind to ABRE elements (Choi
et al., 2000; Uno et al., 2000). So far, bZIP transcription factors
are proven to participate in ABA-dependent stress signaling in
various plants, including Arabidopsis thaliana, rice, soybean,
wheat (Casaretto and Ho, 2003; Fujita et al., 2005; Kobayashi
et al., 2008; Lu et al., 2009).

The A subfamily bZIP transcription factor in Arabidopsis
thaliana is a major regulator of ABA-dependent responses
(Satoh et al., 2004). AtbZIP1 regulates ABA signal transduction
by binding to the ABREs and alters the expressions of the ABA
responsive genes to tolerate the cold stress (Sun et al., 2011). In
rice, OsbZIP23 and OsbZIP46 can directly regulate the
expression of multiple stress genes through the ABA pathway,
thereby significantly improving drought- and salt-resistance of
rice (Xiang et al., 2008; Tang N. et al., 2012; Dey et al., 2016; Zong
et al., 2016). OsbZIP23/66/72 positively regulates ABA-
responsive genes through interacting with OsMFT2and
promotes seed germination (Song et al., 2020). In the
transgenic plants over-expressing OsbZIP42, it showed a rapid
rise of transcriptional expression of ABA responsive LEA3 and
Rab16 and increased tolerance to drought stress (Joo H. et al.,
2019). In soybeans, GmbZIP44, GmbZIP62, and GmbZIP78 can
positively regulate the expression of ABI1 and ABI2 genes and
August 2020 | Volume 11 | Article 1258
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further induce the expression of downstream genes such as ERF5,
KIN1, COR15A, and COR78 in response to ABA treatment (Liao
et al., 2008). In maize, the transcription factor NCP1 can interact
with the ABRE-binding bZIP transcription activator ABP9 and
inhibit its activity, then negatively regulating ABA signal and
weakening plant tolerance to multiple stresses (Zong et al., 2020).

Recent years, bZIPs are also found with increasing contributions
in regulating ABA responses in other plants. Joo H. et al. (2019,
2020) showed that the stability of bZIP transcription factor
CaAIBZ1 and CaATBZ1 could be modulated by a RING-type E3
ligase, CaASRF1, so as to positively modulates abscisic acid (ABA)
signaling and ABA-mediated drought response in pepper. Liu et al.
(2019c) found that overexpression of the ABA-depended grapevine
VvABF2 gene could enhance osmotic stress tolerance in Arabidopsis
thaliana and thereby reduce the cell membrane damage.Wang et al.
(2019) found that sweet potato IbABF4 gene, encodes a bZIP
transcription factor, overexpression in Arabidopsis thaliana and
sweet potato could enhance their tolerance to multiple abiotic
stresses through the ABA signaling pathway. Li et al. (2019, 2020)
showed that the tartary buckwheat bZIP genes, FtbZIP83, FtbZIP5
were both positive regulators involved in drought or salt stress via
an ABA-dependent signaling pathway. In short, bZIP family
members play important roles in the abscisic acid signaling
pathway under various stresses. A large number of studies have
shown that bZIP transcription factors affect ABA biosynthesis
through the ABA-mediated signal transduction pathways and
thus improve plant stress resistances.
BZIP TFS INVOLVED IN ANTIOXIDANT
SYSTEM

Actually, the antioxidant system is an effective way for bZIP
transcription factors to respond to abiotic stresses in plants
(Miller et al., 2008; Choudhury et al., 2013). Superoxide
dismutase (SOD), peroxidase (POD) and catalase (CAT) are
three groups of key enzymes that removes active oxygen from
plants. Overexpressing the bZIP gene in plants can increase the
activity of peroxidase POD and SOD and increase the content of
soluble sugars and proteins; it can also increase the elimination of
active oxygen, promote the accumulation of soluble penetrants
(Choudhury et al., 2013). For example, over expression of pepper
CAbZIP1 gene in Arabidopsis thaliana can eliminate the active
oxygen by regulating the degradation enzyme POD and CAT, so
as to improve the drought resistance and salt resistance of
transgenic plants (Lee S. C. et al., 2006). Under stress
conditions, POD and SOD activities of transgenic tobacco
plants overexpressing Tamarix hispida ThbZIP1 were
significantly increased, accompanied by an increase in soluble
protein and sugar content. Studies have shown that the ThbZIP1
gene was significant upregulated under high-salt conditions, so
as to improve plant salt tolerance by effectively removing reactive
oxygen free radicals and accumulating soluble osmotic
substances (Ji et al., 2013). Compared with wild-type plants,
the transgenic tobacco with OsHBP1b under salt treatment
enhanced the SOD activity, which further improved the
Frontiers in Plant Science | www.frontiersin.org 10
stability of the vacuolar membrane and the K+/Na+ ratio, and
had a stronger anti-oxidative damage function (Lakra et al.,
2015). Further, Das et al. (2019) demonstrated that transgenic
rice plants over-expressing OsHBP1b exhibit better survival and
favorable osmotic parameters under salinity stress than the wild
type counterparts. Overexpressing Poncirus trifoliata PtrABF in
tobacco can stably promote the expression of nine stress-
responsive genes in tobacco, and significantly induce the
expression of three antioxidant enzyme genes under drought
stress, which can be better removals of active oxygen free radicals
and in turn enhances the resistance of transgenic plants to
drought (Huang et al., 2010).

To reveal the relevance between bZIP subfamilies and stress
types, the functional annotated bZIPs were also classified into 13
verified clades followed the approach used by Corrêa et al. (2008)
(Table 2 and Figure 1). There is yet not any functional report on
bZIPs in subfamilies H, J, and L on abiotic stresses. Among the
rest 10 subfamilies, there are 8, 7, 6, and 3 of which involved in
salinity, drought, cold and osmotic stress, respectively. The bZIPs
for regulating salinity tolerance are most frequently found in
subgroups A, D, G, and S; while for modulating resistances to
both drought and osmotic stress are most members in subgroup
A; and for controlling cold responses are most those from
subgroups A, C and S (Table 2).
REGULATION OF BZIPS ON METABOLISM
OF FLAVONOIDS INVOLVED IN STRESS
RESPONSES

Recently, a plenty of flavonoids show significant contributions to
plant tolerances to abiotic stresses (Yamasaki et al., 1997; Agati
et al., 2012; Yan et al., 2014; Pi et al., 2016; Pi et al., 2018; Pi et al.,
2019). Flavonoids are widely distributed in the plant kingdom
and are abundant in flowers, fruits, and leaves of many plants
(Du et al., 2010). Based on the different oxygen rings and
conformations of the basic molecular structure, flavonoids are
generally divided into six categories: flavone, flavonol, isoflavone,
flavanone, flavanol, and anthocyanidin (Rice-Evans and Miller,
2010). The starting substrate for plant flavonoid biosynthesis is
derived from coumaroyl-CoA of the phenylpropane metabolic
pathway and malonyl-CoA from acetyl-coenzymes. Under the
action of chalcone synthase (CHS), they first form chalcone
(Aoki et al., 2000), and then the naringenin is formed by the
catalytic action of chalcone isomerase (CHI) (McKhann and
Hirsch, 1994). Under the catalysis of cytochrome P450
monooxygenase (CPM) and other enzymes, naringen can be
used as a major intermediate metabolite to synthesize other
flavonoids (Akashi et al., 1999; Liu et al., 2003; Falcone Ferreyra
et al., 2012; Lam et al., 2014; Uchida et al., 2015).

More than 10,000 plant flavonoids have been discovered (Aoki
et al., 2000; Jiang et al., 2010). They play very important roles in
plant resistance to various stress (Yamasaki et al., 1997; Agati et al.,
2012; Yan et al., 2014). They could remove free radicals under
ultraviolet radiation (Li et al., 1993; Treutter, 2005), improve seed
storage capacity and prolong life (Debeaujon et al., 2000), change
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petal color (Mola et al., 1998), interfere with the polar distribution
of auxin (Buer and Muday, 2004), and affect the accumulation and
composition of fatty acids (Lian et al., 2017).

Early studies on the mechanism of flavonoids involved in stress
resistance mainly focused on their regulations on response to
ultraviolet radiation (Tattini et al., 2006; Mellway et al., 2009).
Later, flavonoids were found with strong antioxidant activity
(Treutter, 2006; Agati et al., 2007; Pourcel et al., 2007;
Hernández et al., 2009). Since various stresses can cause
excessive peroxide to accumulate in plants, the significant role of
flavonoids in plants’ stress resistance attracts increasing interests
(Qiu et al., 2008; Fasano et al., 2014; Watkins et al., 2014; Rai et al.,
2016). Tattini et al. (2004) reported that European privet flavonoids
as antioxidants respond to strong light and drought stresses. Li
et al. (2011) found a conserved trans-acting element (G-box,
CACGTG) in the promoter region of the chalcone synthase
family gene (AtCHS) in Arabidopsis thaliana, which regulates the
accumulation of H2O2 by responding to cGMP signals (Abu Zahra
et al., 2014). Yan et al. (2014) found that the cytochrome P450
monooxygenase GmFNSII/GmCPM in soybean was beneficial to
the accumulation of flavonoid aglycones in plants and the
reduction of H2O2 content. In previous studies, we found that
the content of flavonoids such as quercimeritrin in salt-tolerant
soybeans is relatively higher than that of salt-sensitive soybeans,
which is beneficial for soybeans to adapt to salt stress (Lu et al.,
2013). We further discovered that enzymes related to the flavonoid
metabolism pathway are important salt stress response factors, and
they can significantly regulate the salt tolerance of plants such as
Arabidopsis thaliana and soybean (Pi et al., 2016). We recently
found that the salt-triggered phosphorylation of GmMYB173,
subsequent elevates the transcription of GmCHS5 for enhancing
the accumulation of dihydroxy B-ring flavonoids (such as
cyaniding-3-arabinoside chloride) (Pi et al., 2018); while salt-
inhibited phosphorylation of GmMYB183 subsequently decreases
the transcription of GmCYP81E11 for reducing monohydroxy B-
ring flavonoids (such as ononin) (Pi et al., 2019). Actually,
both GmMYB173 phosphorylation and GmMYB183
dephosphorylation contribute to soybean salt tolerance.
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The abovementioned studies showed that flavonoids played
very important roles in plant responses to stress. Interestingly,
many bZIP transcription factors usually play key regulatory roles
in the process of flavonoid biosynthesis. They regulate the
expression of key enzyme genes in the synthetic pathway,
thereby regulating the metabolism and synthesis of flavonoids.

Matousek et al. (2010) found that both hop HlbZIP1 and
HlbZIP2 could activate the expression of chalcone synthase
chs_H1 and the O-methyl transferase 1 genes and further
regulate the accumulation of flavonoid glycosides and
anthocyanins. Akagi et al. (2012) found that ectopic DkbZIP5
overexpression in persimmon calluses could induced the up-
regulation of DkMyb4 and then affect the seasonal biosynthesis
of proanthocyanidins in persimmon fruit. Malacarne et al.
(2016) showed that VvibZIPC22, a member of clade C of the
grapevine bZIP family, was able to activate the transcriptional
expression of specific genes of the flavonoid pathway including
VviCHS3, VviCHI, VviFLS1, and VviANR, alone or together with
other factors to participate in the biosynthesis offlavonols during
flowering and UV light-mediated induction. Dash et al. (2017)
found that the poplar PatbZIP1 transcription factor regulated the
expression of two flavonol synthase genes PtaFLS2 and PtaFLS4
and thus promotes the lateral root formation. bZIP transcription
factor HY5 plays a multifaceted role in plant growth and
development. Apple MdHY5 gene, induced by light and
abscisic acid treatments, promoted anthocyanin accumulation
by regulating expression of theMdMYB10 gene and downstream
anthocyanin biosynthesis genes (An et al., 2017a). Zhang et al.
(2011b) found that two bZIP transcription factors AtbZIP56/
HY5 and AtbZIP64/HYH in Arabidopsis thaliana induced the
accumulation of anthocyanins under low temperature. In
addition, ABA can induce the expression of Artemisia annua
AabZIP1 to activate the expression of downstream gene ADS and
CYP71AV1, thereby regulating the biosynthesis of artemisinin
(Zhang F. Y. et al., 2015). Fan et al. (2019) showed that the
expression of RsbZIP011 and RsbZIP102 were significantly up-
regulated in radish tissue with higher anthocyanin content under
heat and salt stress.
TABLE 3 | Regulation of bZIP transcription factors on metabolism of flavonoids.

Species Nomenclature Subfamily Target gene Function Reference

Arabidopsis
thaliana

AtbZIP56/HY5,
AtbZIP64/HYH

H Unknown Induce the accumulation of anthocyanins Zhang Y. Q. et al., 2011

Artemisia
annua

AabZIP1 A ADS, CYP71AV1 Regulate the biosynthesis of artemisinin Zhang F. Y. et al., 2015

Diospyros
kaki

DkbZIP5 A DkMyb4 Affect the seasonal biosynthesis of proanthocyanidins in persimmon fruit Akagi et al., 2012

Humulus
lupulus

HlbZIP1, HlbZIP2 A Chs_H1, O-methyl
transferase 1

Regulate the accumulation of flavonoid glycosides and anthocyanins Matousek et al., 2010

Malus
pumila

MdHY5 H MdMYB10 Promote anthocyanin accumulation An et al., 2017a

Populus PatbZIP1 A PtaFLS2, PtaFLS4 Promote the synthesis of related flavonoids and thus promotes the
lateral root Formation and promotion of poplar biomass

Dash et al., 2017

Raphanus
sativns

RsbZIP011,
RsbZIP102

H Unknown Participant in the anthocyanin biosynthetic pathway Fan et al., 2019

Vitis vinifera VvibZIPC22 S VviCHS3, VviCHI,
VviFLS1, VviANR

Participate in the biosynthesis of flavonols Malacarne et al., 2016
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So far, the bZIPs that involve in flavonoid synthesis varies
from plant species and their target genes (coding for different
enzymes in flavonoid metabolism). To uncover the relationship
between bZIP subfamilies and flavonoid synthesis, all the
functional annotated bZIPs were also categorized into the 13
known subgroups according to Corrêa et al. (2008) (Table 3 and
Figure 1). It seems that only bZIPs in subfamilies A, H, and S
might regulate flavonoid metabolism.
CONCLUDING REMARKS

Due to their significant roles in plant tolerances to various
stresses , the bZIP transcript ion factors have been
comprehensively studied, including their categorization and
regulatory mechanisms of target genes. However, there is at
least one interesting issue worthy of further investigation:
whether bZIP transcription factor regulates plant stress
tolerance by modulating the synthesis of flavonoids.

To date, plenty of literatures show that bZIPs regulate plant
tolerances to various abiotic stresses, such as low temperature,
drought, high salt, nitrogen deficiency, zinc deficiency time (Lilay
et al., 2020; Ueda et al., 2020). Besides, there are many reports
reveal that flavonoids participate in various stress responses.
Moreover, a lot of researches have now confirmed that bZIP
transcription factors play an important role in the synthesis of
flavonoids. Specially, bZIPs in subfamily H could bind to G-box
in promoter of cold responsive genes (Tables 1 and 2); members
of this subfamily also could modulate the synthesis of some
flavonoids (Table 3). Since members in this group shares similar
conversed protein motifs (Supplemental Figures S1 and S2), it is
reasonable to hypothesize that plant bZIPs in subfamily H could
bind to G-box of cold-responsive genes to further regulate the
Frontiers in Plant Science | www.frontiersin.org 12
synthesis of flavonoids. Similarly, it also makes sense that bZIPs
in subfamily A could regulate the synthesis of flavonoids by
binding to G-box or ABRE cis-elements of target genes involved
in cold, salinity, drought and osmotic stresses; subfamily S could
regulate the synthesis of flavonoids by bind to G-box or C-box or
A-box or ABRE of genes involved in cold, salinity, and drought
stresses (Tables 1–3). However, these hypotheses are still needed
to be further verified.
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