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To measure intraspecific and interspecific interaction coefficients among tree species is
the key to explore the underlying mechanisms for species coexistence and biodiversity
maintenance in forests. Through the response surface experimental design, we
established a long-term field experiment by planting 27,300 seedlings of four tree
species (Erythrophleum fordii, Pinus massoniana, Castanopsis fissa, and Castanopsis
carlesii) in 504 plots in different species combinations (six pairwise combinations of four
species), abundance proportions (five abundance proportions of two species, i.e. A: B =
1:0, 3:1, 1:1, 1:3, 0:1), and stand densities (25, 36, 64, and 100 seedlings per plot). In this
initial report, we aimed to quantify the relative importance of biotic and abiotic factors on
seedling survival at the early stage of growth, which is a critical period for seedling
establishment. We found that plot-level seedling survival rate was determined by species
combination and their abundance proportion rather than stand density. At the individual
level, individual survival probability was mainly explained by species identity, initial seedling
size, and soil conditions rather than neighborhood competition. Our study highlights that
the seedling intrinsic properties may be the key factors in determining seedling survival
rate, while neighborhood effects were not yet prominent at the seedling life stage.

Keywords: abundance proportion, density, initial seedling size, negative density dependence, response surface
design, seedling survival, soil properties, species combination
INTRODUCTION

Forests are one of the most important ecosystems in maintaining global biodiversity and
consequently determine ecosystem functioning and services (Lang et al., 2012; Wang et al.,
2012). The tree seedling stage is the period when survival and growth of individuals are most
vulnerable to the change of surrounding biotic and abiotic factors. Exploring seedling survival and
regeneration is crucial for understanding species coexistence and community dynamics (Kelly and
Bowler, 2002; Lutz and Halpern, 2006), and management of forests (Muller-Landau et al., 2008; Liu
S. et al., 2016).
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The tree seedling survival is known to be affected by its own
intrinsic properties (e.g. its species identity and size, Wang et al.,
2012) and its local conditions including biotic (e.g. neighbors,
Comita and Hubbell, 2009) and abiotic factors (e.g. soil
properties, Bai et al., 2012; Pu et al., 2017). A large body of
research has demonstrated that seedling survival in natural
communities was significantly influenced by species identity
and initial size (Muller-Landau et al., 2008; Wang et al., 2012;
Kabrick et al., 2015). For instance, Wang et al. (2012) found that
seedling survival increased with its initial size. The larger
seedlings can acquire reserves to withstand environmental
stress and have an advantage over smaller seedlings in
competition for light (Uriarte et al., 2004; Thorpe et al., 2010).
Furthermore, different species compositions may result in
different results, which indicates that the species identity of
both target and neighboring saplings could influence sapling
growth and survival (Lang et al., 2012; Yang et al., 2017). Besides
the intrinsic properties of tree species, many studies have found
that focal seedling survival was also strongly influenced by
neighborhood individuals, including the number, diversity,
size, and identity of neighbors (Comita and Hubbell, 2009;
Chen et al., 2010; Zhu et al., 2015). Specifically, seedling
survival was lower surrounded by neighbors of more
conspecifics than heterospecifics (He and Duncan, 2000;
Comita and Hubbell, 2009; Castagneri et al., 2010; Pu et al.,
2017), because of stronger intraspecific competition than
interspecific competition for resources (Adler et al., 2018). In
addition, tree seedling survival was affected by soil nutrients as
well (Chen et al., 2010; Record et al., 2016). For example,
seedlings were expected to survive better in soils with higher
concentrations of total phosphorus and total nitrogen (Wang
et al., 2012). Other soil properties including soil organic carbon
and soil moisture also had a significant positive effect on seedling
survival (Pu et al., 2017), while topographic variables (e.g.
elevation, slope, and aspect) did not (Wang et al., 2012).

To date, numerous tree seedling control experiments have been
established worldwide with the original objective to test
relationships between biodiversity and ecosystem functioning
(Bruelheide et al., 2014; Van de Peer et al., 2016; Verheyen et al.,
2016; Grossman et al., 2018). Some studies reported that species
richness had no effects on individual seedling survival (Healy et al.,
2008; Yang et al., 2013; Yang et al., 2017). These experiments have
attempted to explore the survival of seedlings of various tree species
and forest types and to test the effects of overall biodiversity on
seedling performance. However, they failed to measure the relative
importance of species composition, neighbor identity, and stand
density on seedling survival due to the methodology limitation.
Experimental studies that explicitly examined the relative
importance of seedling intrinsic properties, its biotic and abiotic
surroundings to individual seedling survival are necessary. Teasing
apart the individual effects of those factors would substantially help
us identify the key drivers of seedling survival.

The response surface experimental design, where both the
density and proportion of the studied species are varying, allows
predictions of the long-term ecological outcome of competition
(Inouye, 2001; Damgaard, 2008). Therefore, it offers a unique
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opportunity to compare effects of species intrinsic properties,
neighbor identity, individual density, and abiotic factors on focal
plants (Inouye, 2001). Most previous studies have used this
method to quantify the competitive interactions of plants in
grasslands (Weigelt et al., 2007; Damgaard and Kjær, 2009;
Damgaard and Fayolle, 2010) and of animals in terrestrial and
aquatic ecosystems (e.g., invertebrates, Northfield et al., 2011;
fishes, Forrester et al., 2006, and amphibians, Anderson and
Whiteman, 2015). To date, few experiments have manipulated
tree species, reflecting the logistical difficulties of conducting
such complex experiments (Hart et al., 2012).

In this study, we grew four subtropical tree species in different
species combinations and tested intra- and interspecific
competition by manipulating abundance proportions and stand
densities using the response surface experimental design. The
overall aim of this experiment is to quantify the niche differences
and average fitness differences (two key components of the
modern coexistence theory) by measuring intraspecific and
interspecific interaction coefficients among tree species, and to
further explore the underlyingmechanisms for species coexistence
and biodiversity-ecosystem functioning relationships in forests
(Chesson, 2000; Carroll et al., 2011; Chesson, 2018). In this initial
report, we attempted to: (1) at the plot level, test the effects of
species combination, abundance proportion, and stand density on
the seedling survival rate, and (2) at the individual level, quantify
the relative importance of seedling intrinsic properties (species
identity and size), biotic (neighbors’ size and density), and abiotic
factors (soil properties) on seedling survival probability.
MATERIALS AND METHODS

Study Site
The experiment was established in January 2018 in the Heerkou,
Fengkai County, Guangdong Province, China (111°49′E, 23°30′N).
This region has a subtropical humid monsoon climate, with the
mean annual precipitation of 1744 mm. About 79% of the annual
rain falls between April and September, with a pronounced dry
season from October to March. The mean maximum temperature
is 19.6°C, and monthly average temperature ranges from 10.6°C in
January to 28.4°C in July (He et al., 2018; Wang et al., 2019).

Experimental Design
Our experiment included four tree species: Erythrophleum fordii
(ERFO), Pinus massoniana (PIMA), Castanopsis fissa (CAFI), and
Castanopsis carlesii (CACA), which co-occur naturally in the
Dinghushan 20-ha forest dynamics plot, located in a nature
reserve near to our experimental site (http://www.efloras.org/
flora_page.aspx?flora_id=620; Zhang et al., 2016). Two criteria
were set initially in choosing the species: 1) species light strategies,
with P. massoniana as the light-demanding species, and shade-
tolerant species of E. fordii, C. fissa, and C. carlesii; 2) mycorrhizal
associations, with arbuscular mycorrhizal species of E. fordii, and
ectomycorrhizal species of P. massoniana, C. fissa, and C. carlesii.
Through these species settings, we plan to quantify the competitive
coefficients among species with contrasting light strategies and
August 2020 | Volume 11 | Article 1212
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explore the complementary effects due to mycorrhizal associations
on the tree biodiversity-ecosystem functioning relationships. Six
pairwise combinations of these four species emerged. Following
the response surface experimental design, for each species
combination (i.e. A and B), five abundance proportions of two
species (A: B = 1:0, 3:1, 1:1, 1:3, 0:1) were set at four different
densities (25, 36, 64, and 100 seedlings per plot; Figure 1A). This
would give us a total number of 120 plots (6 species
combinations × 5 abundance proportions × 4 stand densities).
However, we did not plant a single species (A: B = 1:0 or 0:1) at the
density of 100 seedlings per plot due to the limitation of the site
size, which resulted in 108 plots. In addition, 24 more plots with
only one species (A: B = 1:0 or 0:1) were redundant across the
species combinations involving this species. Ultimately, 84 plots
were planted in various combinations of species, abundance
proportion and density. We set up six replications (blocks), with
Frontiers in Plant Science | www.frontiersin.org 3
each block (48 m × 28 m) consisting of 84 plots with the size of
4 m × 4m (Figure 1B). Overall, we planted 504 (84 × 6) plots with
27,300 seedlings. The tree seedlings were planted at the equal
planting distance of 0.8, 0.67, 0.5, and 0.4 m in the densities of 25,
36, 64, and 100 seedlings per plot, respectively. The assignment of
plots to treatments was completely randomized, as were the
positions of individual tree seedlings within plots.

Seedlings Planting and Management
The experiment was conducted in an abandoned old field and
fenced to exclude large mammalian herbivores in April 2018.
Prior to the planting, vegetation in the field was completely
removed with a rotary cultivator. Seedlings of the four species
were bought from a commercial nursery, which were 1–2 years
old ranging from 20 cm to 30 cm height. The seedlings were
placed in a nearby temporary shade house to reduce the
A Response surface design

B Layout of the experiment following the response surface design

FIGURE 1 | Design of the experiment. (A) For each species combination (A and B for the aim of presentation), 18 treatment combinations of abundance proportion
and stand density were considered. (B) Each of the six blocks (48 m ×28 m) contains 84 randomly distributed plots (4 m ×4 m). Each plot represents a treatment of
species combination, abundance proportion and stand density. The tree seedlings were planted at the equal distance of 0.8, 0.67, 0.5, and 0.4 m, corresponding to
the density of 25, 36, 64, and 100 seedlings per plot, respectively.
August 2020 | Volume 11 | Article 1212
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transpiration. Each seedling was planted in a hole (30 cm ×
30 cm × 20 cm), and was watered every day for a week after
planting to improve its survival probability. All seedlings were
planted according to above planting scheme during April and
May in 2018. Drainage channels were set around the blocks to
prevent the seedlings from being drowned because of the
intensive precipitation in summer. In October 2018, all dead
seedlings during the 5 months were replanted. Each seedling was
tagged with a unique number specifying its identity. The
herbaceous vegetation was cleaned twice a year to reduce their
effects on planted seedlings. All the cleanings were manual
without using any herbicides.

Survival Monitoring
In December 2018, 27,029 seedlings were alive during the first
survey of survival rate. For each seedling individual, the stem
diameter at 5 cm above ground (hereafter ground diameter) were
measured as the seedling initial size. Ground diameter was
measured with a caliper to the nearest millimeter, and the
position of the diameter measurement was permanently
marked on the stem with white paint. The survival status of all
seedlings was investigated in December 2019, living seedlings
were coded as ‘‘1’’ and dead ones as ‘‘0”. In total, 4,130 individual
trees were dead during our second survival survey.

Soil Properties
In December 2018, five soil cores at a depth of 0–10 cm were
sampled and mixed for each 4 m × 4 m plot to estimate its
average soil conditions. The soil samples were sent to the
Institute of Botany of the Chinese Academy of Sciences for
chemical analyses, including pH, organic carbon (C), total
nitrogen (TN), available nitrogen (AN), total phosphorus (TP),
and available phosphorus (AP), which were analyzed according
to Lu (1999). We measured the bulk density (BD) and field
capacity (FC) of each plot through the ring knife method (Sun Y.
et al., 2017). To reduce collinearity of soil factors, principal
components analyses (PCA) were conducted on these soil
variables. The first two components (PC1 and PC2) accounted
for 66.7% of the total variance in soil variables and were used in
the subsequent analyses. The first principal component (PC1)
was mainly associated with low C, TN, AN, TP, and C/N ratio,
and the second principal component (PC2) characterized by low
FC, high BD, and pH (Table S1).

Statistical Analyses
We first conducted ANOVAs to explore the effects of species
combination, abundance proportion, stand density, and their
interactions on survival rates of seedlings at the plot level.

To further explore what factors determined individual
survival of these seedlings, we modeled individual survival
using a logit link function with a generalized liner mixed
model (GLMM) of the general form (a FULL model):

logit (seedling survival) ∼  seedling size  +  PC1  +  PC2  +  Scon 

+  Shet  +  (1 species)  +  (1j jplot)
Frontiers in Plant Science | www.frontiersin.org 4
In this FULL model, seedling size is the initial ground
diameter of seedlings. Scon and Shet are the sum of ground
diameter of conspecific and heterospecific seedlings within 1 m
radius of the focal seedling, respectively. PC1 and PC2 are the
first two components of the total variance in soil variables.
Species and plot were modeled as random effects. The variables
used in the models were summarized in Table S2. All continuous
explanatory variables were standardized to have zero mean and
unit standard deviation prior to the statistical analyses (Bai
et al., 2012).

To test the relative importance of seedling initial size, biotic,
and abiotic variables, four candidate models were constructed:
(1) a NULL model, including seedling ground diameter as only
fixed effect; (2) a BIOTIC model, in which the fixed effects of
seedling neighbors were added to the NULL model; (3) an
ABIOTIC model, in which the fixed effects of soil properties
were added to the NULL model; and (4) a FULL model, as
described in the above equation, in which all fixed effects of
variables were included in the NULL model. Models were
compared using the Akaike’s information criterion (AIC) to
identify the best fit models, and ones with an AIC value < 2
were considered to be equally valid (Burnham and Anderson,
2002). The variance explained by fixed factors was included in
marginal R2 (R2

mar) and that by both fixed and random factors
was in conditional R2 (R2con) of the models (Nakagawa and
Schielzeth, 2013).

To measure the partial effect of each variable on the odds of
survival, we calculated odds ratios for each coefficient (the
exponential of the estimate of each coefficient). Odds ratio >1
indicates a positive effect on survival, while ratio <1 indicates a
negative effect. All data analyses were carried out with the
software R version 3.5.3 (http://www.R-project.org).
RESULTS

Plot-Level Survival
A total of 27,029 seedlings were alive after the second planting in
December 2018 and 22,899 seedlings survived to December
2019. The mean plot survival rate across species was 84.7%,
and the mean species survival rates were 98.7%, 98.9%, 48.0%,
and 94.4% for E. fordii, P. massoniana, C. fissa, and C. carlesii,
respectively (Figure 2). The plot-level survival rates were
significantly affected by species combination and abundance
proportion as well as their interactions, but not affected by
stand density or its interaction with species combination and
abundance proportion (Table 1). Specifically, plots of species
combination with higher proportion of C. fissa had lower
survival rates (Figure 3).

Individual-Level Survival
The individual-level survival including all the four species was
best modeled (lowest AIC) by the FULL model considering both
biotic and abiotic factors. The fixed factors (seedling ground
diameter, biotic neighbors, and soil properties) explained 9.4% of
the variance (Table 2). Seedling size and heterospecific neighbors
August 2020 | Volume 11 | Article 1212
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had significantly positive effects, while PC1 of soils had negative
effects on survival probability of focal seedlings indicated by the
odds ratios (Figure 4A).

For each individual species, the best-fit model for E. fordii was
the BIOTIC model, explaining 30.0% of the total variance by
fixed factors (seedling ground diameter and biotic neighbors).
The best-fit model for P. massoniana was the ABIOTIC model
explaining 43.8% of the total variance by the fixed factors (soil
properties). In contrast, the best-fit models for C. fissa and C.
carlesii were the FULL models, with the fixed factors (seedling
ground diameter, biotic neighbors, and soil properties)
explaining 3.2% and 24.2% of the total variances (Table 2).

The effects of seedling size and abiotic and biotic factors on
seedling survival varied among species. Seedling size had the
most consistent effects on survival across all species: tree size had
the strongest positive effect on survival of seedlings (odds ratio >
1.00, P < 0.001; Figures 4A–E). There were no significant effects
of neighbors on the survival of E. fordii seedlings. However, there
was a significant positive effect of heterospecific neighboring
seedlings on the survival of C. fissa (odds ratio = 1.23, P < 0.001;
Figure 4D). Odds ratios for the parameters of the most likely
model for seedlings also showed a significantly positive effect of
neighboring conspecific seedlings on the survival of C. carlesii
(odds ratio = 1.21, P = 0.033; Figure 4E). Soil PC1 showed a
marginally negative effect on the survival of C. fissa and C. carlesii
seedlings (odds ratio = 0.86, P = 0.002 for C. fissa; odds ratio =
0.78, P < 0.001 for C. carlesii; Figures 4D, E). Furthermore, soil
Frontiers in Plant Science | www.frontiersin.org 5
PC2 had a significantly negative effect on the seedling survival for
P. massoniana and C. carlesii (odds ratio = 0.76, P = 0.011 for P.
massoniana; odds ratio = 0.81, P = 0.004 for C. carlesii; Figures
4B, E).
DISCUSSION

Effects of Species Combination,
Abundance Proportion, and Stand Density
on Seedlings Survival at the Plot Level
At the plot level, we found that species combination and
abundance proportion played an important role in seedling
survival in our experiment (Table 1). Previous studies showed
that species composition affected the growth patterns and crown
architecture of tree seedlings (Lang et al., 2012). This indicates
that the neighbor tree identity is an important determinant of
tree growth (von Oheimb et al., 2011). In our site, when growing
together with E. fordii and P. massoniana, the survival rate of
species pair combinations was usually high (Figure 3).
Conversely, the plots with higher proportion of C. fissa
generally had a lower survival rate (Figure 3). However, the
density effects on seedling survival were weak in our study (Table 1),
in contrast to previous findings (Johnson et al., 2014; Charles
et al., 2018). One explanation might be that tree seedlings were
too small and distant at the moment to detect significant
interactions between them (Plath et al., 2011; von Oheimb
et al., 2011). At this stage, these seedlings did not overlap in
canopy competing for light and may not have developed extensive
root systems competing for soil nutrients (Craine and Dybzinski,
2013; Yang et al., 2017).

Species Identity and Initial Size Were
Drivers of Seedlings Survival at the
Individual Level
Consistent with the plot-level survival rate, species identity had a
significant impact on individual seedling survival probability
(Figure 4), which was in line with previous studies in the
biodiversity and ecosystem function (BEF) experiments with
woody species (Nadrowski et al., 2010; Haase et al., 2015; Peng
et al., 2017; Yang et al., 2017). Functional traits play a crucial role
in tree seedling survival and growth (Kröber et al., 2015; Li et al.,
2017). For instance, plant light-harvesting was significantly
affected by branching frequency, leaf distribution, and leaf
biomass (Niinemets, 2010; Li et al., 2017). Additionally, energy
gain by increased light harvesting may be converted to plant
growth and survival, and thus seedling survival and growth were
related to species-specific traits (Poorter and Bongers, 2006;
Kröber et al., 2015; Li et al., 2017). Wright et al. (2004) reported
that the leaf economics spectrum (LES) reflected a mixture of
direct and indirect causal relationships between traits. Leaf area
plays a central role in leaf trait relationships and can predict tree
growth (Osnas et al., 2013). Particularly in young plantations,
large-leaved species need more nutrients to quickly increase a
stand’s leaf area index, but face greater mortality risk and are more
vulnerable. In contrast, species with smaller leaves follow a more
TABLE 1 | ANOVA results for the survival rates at the plot level.

Variable Name df F P

Combination 5 134.068 <0.001
Abundance proportion 4 13.424 <0.001
Stand density 1 0.020 0.889
Combination × abundance proportion 20 27.108 <0.001
Combination × stand density 5 0.549 0.739
Abundance proportion × stand density 4 1.758 0.136
Combination × abundance proportion × stand density 20 0.594 0.918
Significant values are highlighted in bold.
FIGURE 2 | Means and standard errors of seedling survival at the plot level for
E. fordii (ERFO), P. massoniana (PIMA), C. fissa (CAFI), and C. carlesii (CACA).
August 2020 | Volume 11 | Article 1212
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invariable investment strategy (Reich, 2014; Kröber et al., 2015). In
our site, the survival rates of E. fordii, P. massoniana, and
C. carlesii were above 90%, while the survival rate of C. fissa was
less than 50% (Figure 2). This may be due to different growth
strategies adopted by species. Specifically, the large leaves of
C. fissa need more nutrients to achieve higher growth rates, but
the root system did not get enough nutrients to support seedling
survival. Another explanation for this might be that water would
be a limited factor influencing tree survival at the early stage.
Frontiers in Plant Science | www.frontiersin.org 6
C. fissa has larger leaves, which may lead to a greater transpiration
rate. In addition, C. fissa is a shade-tolerant species. Previous
studies have shown that very shade-tolerant species lack
alternative mechanisms to cope with excess light energy and are
more likely to incur photoinhibitory damage to their
photosynthetic apparatus (Rodrıǵuez-Calcerrada et al., 2006).
Therefore, C. fissa seedlings had a distinct photoinhibition
which reduced carbon assimilation and growth under high
radiation in open sites (Yang et al., 2010; Sun Z. et al., 2017).
FIGURE 3 | Survival rates of the different treatments. E. fordii (ERFO), P. massoniana (PIMA), C. fissa (CAFI), and C. carlesii (CACA).
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In agreement with the previous studies (Uriarte et al., 2004;
Wang et al., 2012; Pu et al., 2017), we found a significantly positive
relationship between initial size and seedling survival (Figures 4A–E).
The possible reason is that the larger seedlings tend to maintain
size advantage over time compared to smaller seedlings (Rose and
Scott Ketchum, 2003) partly due to the ability to outgrow competing
vegetation (South et al., 2005). In addition, large seedlings are usually
in better positions in competition for light (Comita and Hubbell,
2009). However, previous studies also demonstrated that above-
ground growth of seedlings did not always indicate the future
performance. For instance, the root/shoot ratio has been reported
to be directly related to seedling survival in several studies (Lloret
et al., 1999; Vaario et al., 2009). The following measurement of
root dynamics in our long-term experiment will help us identify the
role of below-ground competition on demographic rates of trees.
Frontiers in Plant Science | www.frontiersin.org 7
Effects of Soil Properties and Neighbors on
Seedlings Survival at the Individual Level
In our study, soil nutrients (soil organic carbon, soil total nitrogen,
soil total phosphorus, and soil available nitrogen) were all
positively associated with individual seedling survival of C. fissa
and C. carlesii (Figures 4D, E; Wang et al., 2012; Liu S. et al., 2016;
Pu et al., 2017; Yang et al., 2017). The root systems and stems of
seedlings could not store more chemical elements at the early
stage of the experiment for growth, resulting in more dependence
on the available elements in the soil. Therefore, relatively fertile
soil would be more beneficial to individual seedling survival of
C. fissa and C. carlesii (Lin et al., 2012; Liu S. et al., 2016). However,
the effects of soil nutrients on individual seedling survival rates
were not significant for P. massoniana and E. fordii (Figures 4B, C).
Previous studies reported that P. massoniana was effective at
A B D EC

FIGURE 4 | Odds ratios of variables on seedling survival by the best-fit models for (A) all species, (B) P. massoniana (PIMA), (C) E. fordii (ERFO), (D) C. fissa (CAFI),
and (E) C. carlesii (CACA). Circles show odds ratios for each parameter, with 95% confidence limits indicated by horizontal lines. Black solid circles indicated
significant effects (P < 0.05). Variable abbreviations: GD, ground diameter; Scon, sum of ground diameter for conspecific seedlings within 1 m radius; Shet, sum of
ground diameter for heterospecific seedlings within 1 m radius.
TABLE 2 | Effects of biotic and abiotic variables on survival rates of seedlings in December 2019.

Data subsets Candidate models

NULL model BIOTIC model ABIOTIC model FULL model

AIC R2
mar(%) R2

con(%) AIC R2
mar(%) R2

con(%) AIC R2
mar(%) R2

con(%) AIC R2
mar(%) R2

con(%)

Total 12,022.9 8.6 63.3 12,020.8 8.8 63.6 12,007.4 9.0 62.9 12,003.1 9.4 63.3
Species
Erythrophleum fordii 923.4 29.0 36.2 922.4 30.0 35.5 926.4 29.4 36.0 925.9 30.4 35.3
Pinus massoniana 743.5 41.9 56.0 745.6 42.2 57.0 739.9 43.8 55.5 742.5 43.9 56.4
Castanopsis fissa 7,649.0 1.4 38.2 7638.2 2.3 39.2 7,745.5 2.2 37.9 7,632.8 3.2 38.8
Castanopsis carlesii 2,500.5 19.4 44.2 2501.0 20.1 44.3 2,474.3 23.4 42.4 2,473.3 24.2 42.4
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adapting to nutrient-poor soils (Liu J. et al., 2016), which could
explain that soil nutrients did not have significant effects on P.
massoniana seedling survival. Simultaneously, E. fordii is a nitrogen
fixing tree species. Such characteristics could determine that this tree
species has a special ability to improve tree growth and nutrition
under nutrient limiting conditions and thus may not depend too
much on soil nutrients (Chaer et al., 2011; Mortimer et al., 2013).

Previous studies found that negative density dependence
(NDD) plays an important role in driving seedling survival
(Comita and Hubbell, 2009; Bai et al., 2012; Pu et al., 2017;
Charles et al., 2018). However, we found there was a weak
association between conspecific neighbors and focal individual
seedlings (Figures 4A, C, D). The reason was similar with that of
no significant density effects on the plot-level survival rate.
Conversely, we found that the focal seedling survival increased
as the heterospecific individual seedlings increased (Figures 4A, D),
indicating facilitative effects of heterospecific neighbors. Our
findings are in agreement with previous studies that demonstrated
the importance of heterospecific trees for survival of individual
seedlings (Peters, 2003; Comita and Hubbell, 2009; Bai et al., 2012;
Pu et al., 2017). These are consistent with the species herd
protection hypothesis: heterospecific neighbors could depress the
encounter probability of focal seedlings and its host-specific enemies
and therefore have more benefit to the survival of focal seedlings
(Wright, 2002; Peters, 2003; Comita and Hubbell, 2009). In
summary, the NDD effect is not very strong at both the plot- and
individual-level at the early stage of the experiment.
CONCLUSIONS

Our study presented comprehensive analyses on the relative
importance of abiotic and biotic effects on seedling survival,
and shed light on the driving factors for species coexistence and
community assembly during forest succession. At the plot level,
species combination and abundance proportion played an
important role in seedling survival rate, while stand density
showed little effect on seedling survival at the early stage of
seedling planting experiment. At the individual level, species
identity, seedling size, and soil properties were more important
for seedling survival probability than neighborhood interactions.
Although neighborhood interactions had a significant effect on
seedling survival (Figures 4A, D, E), the effect of NDDwas weak.
With increasing size of trees, we predict that, as the competition
between seedlings strengthens, the effect of the neighbors on the
focal tree seedlings would become more pronounced.
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