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In perennial ryegrass (Lolium perenne L), annual and seasonal dry matter yield (DMY) and
nutritive quality of herbage are high-priority traits targeted for improvement through
selective breeding. Genomic prediction (GP) has proven to be a valuable tool for
improving complex traits and may be further enhanced through the use of multi-trait
(MT) prediction models. In this study, we evaluated the relative performance of MT
prediction models to improve predictive ability for DMY and key nutritive quality traits,
using two different training populations (TP1, n = 463 and TP2, n = 517) phenotyped at
multiple locations. MT models outperformed single-trait (ST) models by 24% to 59% for
DMY and 67% to 105% for nutritive quality traits, such as low, high, and total WSC, when
a correlated secondary trait was included in both the training and test set (MT-CV2) or in
the test set alone (MT-CV3) (trait-assisted genomic selection). However, when a
secondary trait was included in training set and not the test set (MT-CV1), the
predictive ability was not statistically significant (p > 0.05) compared to the ST model.
We evaluated the impact of training set size when using a MT-CV2 model. Using a highly
correlated trait (rg = 0.88) as the secondary trait in the MT-CV2 model, there was no loss in
predictive ability for DMY even when the training set was reduced to 50% of its original
size. In contrast, using a weakly correlated secondary trait (rg = 0.56) in the MT-CV2
model, predictive ability began to decline when the training set size was reduced by only
11% from its original size. Using a ST model, genomic predictive ability in a population
unrelated to the training set was poor (rp = −0.06). However, when using an MT-CV2
model, the predictive ability was positive and high (rp = 0.76) for the same population. Our
results demonstrate the first assessment of MT models in forage species and illustrate the
prospects of using MT genomic selection in forages, and other outcrossing plant species,
to accelerate genetic gains for complex agronomical traits, such as DMY and nutritive
quality characteristics.
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INTRODUCTION

Perennial ryegrass is one of the most valued forage species in
temperate regions of the world, characterized by relatively high
nutritional value, and optimum seasonal and annual dry
matter yield (DMY) from herbage, providing a cost effective
source of nutrition, for ruminant livestock (Wilkins and
Humphreys, 2003; Baert and Muylle, 2016). The historic rate of
genetic improvement for seasonal and annual DMY and nutritive
quality traits is moderate, between 4% and 7% per decade (Easton
et al., 2002; Wilkins and Humphreys, 2003; Sampoux et al., 2011).
One reason for the moderate rate genetic improvement is the
complex nature of these traits, which makes it challenging to
accurately measure. Genomic prediction is considered a valuable
tool for improving quantitative traits in both animal and plant
breeding (Meuwissen et al., 2001; Habier et al., 2007; Heslot et al.,
2015). In genomic prediction, a statistical model is built using
genotypic and phenotypic data from a training population and
genomic estimated breeding values (GEBVs) are predicted for the
non-phenotyped selection candidates using information from
genome-wide molecular markers alone (Meuwissen et al., 2001).
Compared to traditional breeding approaches, genomic prediction
provides opportunities to increase the rate of genetic gain, by
reducing the time needed to complete a breeding cycle, increasing
the selection intensity and by utilizing within-family variation that
can be captured using molecular markers (Heslot et al., 2015;
Faville et al., 2018). Indirect selection based on molecular
markers (marker assisted selection; MAS) was initially based on
quantitative trait loci (QTL) identified in a biparental population
or as a subset of significant markers from genome wide association
studies (GWAS). MAS has proven to be particularly effective for
qualitative traits (Jiang, 2013; Das et al., 2017; Samayoa L et al.,
2019), which are controlled by few genes with large effects,
whereas, quantitative traits are controlled by many genes with
small effects. For quantitative traits, indirect selection based on
genomic prediction is considered a more appropriate and
practical breeding tool over MAS (Jannink et al., 2010; Heslot
et al., 2015). Improvements in next-generation sequencing
technology, coupled with the development of reduced
representation sequencing approaches such as genotyping-by-
sequencing (GBS) (Elshire et al., 2011) for single nucleotide
polymorphism (SNP) DNA markers, has made genomic
prediction adaptable to forages and other species which lack
significant genomics resources such as SNP arrays.

In the context of a genomic selection breeding strategy, higher
genetic gains will be achieved for a trait when the prediction
model has high predictive ability. Predictive ability is dependent
upon trait heritability, training population size, relatedness
between training and selection population, statistical model
used, marker density, and the extent of linkage disequilibrium
(LD) (Daetwyler et al., 2013; De Los Campos et al., 2013). While
trait heritability and the extent of LD cannot be easily
manipulated, previous studies in perennial ryegrass have
developed new knowledge on the effect of relatedness between
training and selection population, marker density, and training
population size on predictive ability (Fè et al., 2015; Fè et al.,
Frontiers in Plant Science | www.frontiersin.org 2
2016; Grinberg et al., 2016; Byrne et al., 2017; Arojju et al., 2018;
Faville et al., 2018; Arojju et al., 2020). In perennial ryegrass,
genomic prediction models have been developed and validated
for many quantitative traits, including DMY (Arojju, 2017;
Faville et al., 2018; Guo et al., 2018; Pembleton et al., 2018),
nutritive quality traits (Grinberg et al., 2016; Arojju et al., 2020),
heading date (Fè et al., 2015; Byrne et al., 2017; Faville et al., 2018;
Guo et al., 2018) and crown rust resistance (Fè et al., 2016; Arojju
et al., 2018; Guo et al., 2018). In addition, different statistical
methods for prediction, with different assumptions regarding the
trait inheritance pattern, have been assessed for genomic
prediction in this species but little difference in predictive
ability was observed (Grinberg et al., 2016; Byrne et al., 2017;
Faville et al., 2018).

All of the prediction approaches assessed to date in perennial
ryegrass can be categorized as single trait (ST) genomic
prediction models, with the majority of them implementing a
univariate linear mixed model for predicting GEBVs. In recent
years, multi-trait (MT) genomic prediction approaches have
been identified as a means of improving predictive ability for a
primary trait. In MT genomic prediction, a secondary trait that is
genetically correlated with the primary trait is incorporated in
the prediction model, to predict the primary trait with higher
accuracy (Jia and Jannink, 2012). Multi-trait genomic prediction
has been extensively studied in wheat breeding, for example, to
improve predictive ability for grain yield using correlated traits,
such as canopy temperature (CT) and normalized difference
vegetation index (NDVI), measured using high throughput
phenotyping (HTP) platforms. Rutkoski et al. (2016) and Sun
et al. (2017) reported an improvement of 70% in predictive
ability for grain yield when using CT and NDVI as correlated
traits in the prediction model. In another study, Sun et al. (2019)
reported that a ST genomic prediction model failed to predict
grain yield across selection cycles, however, using MT models in
which correlated traits CT and NDVI were phenotyped in both
the training (cycle 1) and test (cycle 2) sets, the predictive ability
for grain yield improved by 146% in the test set. In addition to
grain yield, MT models have been validated for improving
predictive ability for grain end-use quality traits in wheat.
Hayes et al. (2017) used quality trait data acquired from near-
infrared spectroscopy (NIRS) and nuclear magnetic resonance
(NMR) as correlated traits, to improve end-use quality traits that
had been measured using wet-lab assays. Predictive ability was
assessed in an independent test set and compared to a ST
genomic prediction model. The highest improvement in
predictive ability was 21% for loaf volume of bread using NMR
predictions as secondary trait in the model.

Training population size can be a limiting factor for
implementing genomic prediction for complex traits (Heffner
et al., 2009). The optimum training size depends upon the
effective population size and the available genetic diversity
within the population. For complex traits, such as DMY and
nutritive quality, phenotyping a large training population is
expensive, which limits the size of training population. Multi-
trait models can be used as an approach to increase training
population size, by implementing a prediction model wherein
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the expensive primary trait is phenotyped in a portion of the
population, and the less expensive secondary trait is phenotyped
in the entire training population. For example, Hayes et al.
(2017) predicted end-use quality traits by assembling a large
training population, which was partially phenotyped for quality
traits measured by wet-lab assay, and completely phenotyped for
secondary traits measured using NIR and NMR. In another
study, Lado et al. (2018) showed that when a correlated trait was
phenotyped in both the training and test set, phenotyping for the
primary trait could be reduced to 30% of its original training size,
whilst maintaining predictive ability. In MT models, multiple
secondary traits may be included for the prediction of a single
primary trait. However, there are numerous examples in which
inclusion of a single, highly correlated secondary trait in the MT
model has proved to be optimal for predicting the primary trait,
including biomass in sorghum (Fernandes et al., 2018) and
baking quality traits in wheat (Lado et al., 2018). Determining
the optimum timing for secondary trait measurement, as well as
the number of measurements required, may also increase the
impact of MT genomic prediction. For example, in wheat, Sun
et al. (2019) reported that predictive ability for grain yield was
maximized by scoring the secondary traits (CT and NDVI)
approximately 100 to 120 days after planting when in optimal
and drought environments but 70 days after planting in
hot environments.

For plant species, Jia and Jannink (2012) proposed three
statistical models for MT genomic prediction (GBLUP, BayesA
and BayesCp), which have different assumptions regarding the
trait inheritance pattern. Based on simulation results, the
BayesCp model performed better for qualitative traits (trait
with 20 QTLs), and GBLUP model was more appropriate for
quantitative traits (trait with 200 QTLs). Similar results were
previously observed for ST genomic prediction models
(Daetwyler et al., 2010) suggesting that for both ST and MT
genomic prediction, a linear mixed model with additive variance-
covariance matrix would be useful for predicting quantitative
traits such as DMY and nutritive traits.

In perennial ryegrass, nutritive quality traits measurements
using wet-lab assays are preferred, compared to NIR predictions.
In this context the MT approach proposed by Hayes et al. (2017),
with wet lab measurement of the primary trait and NIRS
providing secondary trait data, may be extended to nutritive
quality traits in perennial ryegrass, making it feasible to
implement genomic prediction for nutritive quality traits in
larger training populations. Similarly, visual growth scores are
routinely collected in forage breeding programs for biomass
estimation. If sufficient genetic correlation exists between visual
growth score and DMY, MT genomic prediction approaches
may be extended to DMY traits. The objective of the current
study was to (i) compare and contrast the relative performance of
ST and MT genomic prediction model for DMY and nutritive
traits in two different training populations, (ii) evaluate the
opportunity to reduce the training population size and predict
in an independent population using MT genomic prediction, and
(iii) determine the optimum period to phenotype visual growth
scores to improve DMY predictive ability.
Frontiers in Plant Science | www.frontiersin.org 3
MATERIALS AND METHODS

Training Population and Experimental
Design
Perennial ryegrass training populations, derived from two
different breeding programs (Barenbrug Agriseeds Ltd. and
Grasslands Innovation Ltd.), were used in this study and
designated as TP1 and TP2. Each TP consisted of half-sibling
(half-sib) families and maternal parents from five discrete
breeding populations (TP1: Pop B1–Pop B5; TP2: Pop I–Pop V).

TP1 was from the Barenbrug Agriseeds Ltd breeding program
and was used in the study to investigate MT prediction for DMY.
One hundred randomly sampled individuals from each of five F1
generation half-sib families provided by Barenbrug Agriseeds
were polycrossed within-family, in separate isolation houses at
AgResearch, Palmerston North during spring 2015. F2
generation half-sib seed was harvested from the maternal
parents and cleaned prior to sowing field trials during April
2016 at two locations: Ruakura (Waikato region, northern New
Zealand, 37.78°S, 175.32°E; Te Rapa peaty silt loam) and Darfield
(Canterbury regions, southern New Zealand, 43.45°S, 172.19°E,
Hatfield moderately deep silt loam). A total of 463 half-sib
families (Pop B1, n = 98; Pop B2, n = 86; Pop B3, n = 98; Pop
B4, n = 93; Pop B5, n = 88) were sown at two locations, in a row-
column design with three replicates and measured over a period
of 3 years. Populations were blocked within each trial, and two
repeated checks (n = 103 each) were allocated evenly within and
across populations and replicates. The remaining 37 half-sib
families yielded insufficient seed for inclusion in the field trials.
The unit for evaluation of half-sib families in the trials was a 1-m
sown row (plot) of plants (0.3 g seed per plot). Plots were sown
with 30 cm spacing between plots. When plants reached two to
three leaf growth stages, both trials were defoliated by sheep
grazing and if needed, subsequent to grazing, mechanical
mowing was applied to residual height of 5 cm. Nitrogen was
applied at each defoliation (15 kg N/ha) and superphosphate
fertilizer (8.8 kg P/ha) was applied annually in late autumn.

TP2 is the same training population described previously by
Faville et al. (2018) and Arojju et al. (2020). This was used in the
current study to investigate MT genomic prediction for nutritive
traits. Briefly, TP2 was developed by polycrossing 102 to 117
plants from each of five populations in isolation, avoiding
admixing between populations, during spring 2012 at
AgResearch, Palmerston North, New Zealand. F2 generation
half-sib seed from the maternal plants were harvested, cleaned,
and subsequently evaluated, a total of 517 families under field
conditions. Trials were established in a row-column design with
three replicates, during autumn of 2013. Multiple repeated
checks were allocated randomly within and across replicates.
Within each trial, populations were blocked and within each
replicate, families were randomized. For the current experiment,
trials at two locations were used to collect data on 18 nutritive
quality traits: Trial 1 was located at Lincoln (Canterbury region,
southern New Zealand, 43.38°S 172.62°E; Wakanui silt loam)
and Trial 2 at Aorangi (Manawatu region, central New Zealand,
40.34°S 175.46°E; Kairanga sandy loam). The unit for evaluation
August 2020 | Volume 11 | Article 1197
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of half-sib families in the trials was a 1-m sown row (plot) of
plants (0.2 g seed per plot).

Phenotypic Data Collection
Dry Matter Yield and Growth Score Measurement in
TP1
TP1 was phenotyped seasonally for dry matter yield (DMY) and
visual growth score (GS) over three years across multiple seasons.
The schedule of measurements was as shown in Supplementary
Table 1, with 10 DMY measurements made at both locations
between spring 2016 and summer 2019, and between 18
(Darfield) and 30 (Ruakura) visual GS measurements made
during the same period. To assess DMY potential, plots were
harvested to a height of 5 cm, and the sample foliage was dried
(80°C for 48 h) and weighed to obtain g DM per plot. Harvests
were completed when plots were at the two to three leaf growth
stage, typically 3 to 4 weeks regrowth following the previous
defoliation. The GS measurements were conducted by a single
operator at each site on a scale of 0 to 9, with 0 representing no
measurable biomass. Where possible, GS data were collected
prior to each defoliation event.

Nutritive Trait Phenotyping in TP2
From the original set of 18 nutritive quality traits originally
assessed in the trial (Arojju et al., 2020) a subset of seven traits
(Supplementary Table 4) measured from half-sib families were
selected for the current study to test the potential of MT genomic
prediction approaches. As described in detail by Arojju et al.
(2020) half-sib families were harvested on 14th April 2014 at
Lincoln and 29th April 2014 at Aorangi. To reduce the influence
of diurnal variation on the measured components, harvests were
undertaken at each site over three consecutive days, between
10:30 AM and 3:00 PM each day. Plots were harvested 5 cm above
the pseudostem to collect leaf lamina only and the tissue samples
were snap frozen in liquid nitrogen. The collected samples were
freeze-dried, milled and split into samples for analysis by
AgResearch (Palmerston North, New Zealand) for water-
soluble carbohydrate (WSC) using the anthrone reagent assay,
and for near-infrared spectroscopy (NIRS) and mineral analysis
by Hill Laboratories (Hamilton, New Zealand).

Genotyping
Genotyping-by-sequencing (GBS) was used to genotype the
maternal parents of half-sib families in TP1 and TP2. GBS library
preparation, DNA sequencing, data quality assessment, genotype
calling and GRM (genetic relationship matrix) estimates largely
followed the procedures previously described for TP2 (Faville et al.,
2018 and Arojju et al. (2020). The GBS results for TP2 are also
detailed in these two publications. Briefly for TP1, we used the same
TASSEL-GBS pipeline (Glaubitz et al., 2014) as described for TP2
and obtained 886,597 biallelic SNPs, after removing SNPs with
minor allele frequency < 5% and > 50% missing data across all the
samples. The 886,597 biallelic SNPs remaining after these filters
were exported to KGD software (Dodds et al., 2015). Further
filtering based on read depth (> 2) and Hardy-Weinberg
disequilibrium (HWdiseq > −0.05) was applied, reducing total
SNP number to 547,568. KGD is an approach for GRM
Frontiers in Plant Science | www.frontiersin.org 4
estimation which accounts for the (low) read depth of the GBS
data and does not require imputation. The KGD generated GRM
was used for genomic predictive modelling.

The population structure of TP1 was assessed using multi-
dimensional scaling based on the GRM, whilst the population
structure used for TP2 was previously reported in Faville
et al. (2018).

Phenotypic Analysis, Heritability, and
Correlation
Best linear unbiased predictors (BLUPs) were obtained for the
traits measured by analyzing data from across the five breeding
populations, for individual locations and across the two
locations. In TP1, analysis was performed by fitting a linear
mixed model in Genstat (Payne et al., 2002), considering family,
family-by-measure, family-by-location interactions, row,
column, and replicates as random effects and location,
measure, population, and repeated checks as fixed effects in the
model. The measure represents the harvest period of DMY and
scoring of growth scores in TP1 (Supplementary Table 1).
Because of similar experimental design, TP2 was analyzed in a
manner similar to TP1, but without family-by-measure and
measure components in the model. The linear mixed model
used to analyze TP2 data was described in detail by Arojju
et al. (2020).

For each trait, BLUPs were predicted separately, pooling all
five populations across the two locations. The linear mixed
model used for generating BLUPs is expressed as:

yijklmno = m + gi + sm + (gs)im + (gm)in + po + bonml + ronmlj

+ conmlk + eijklmno (1)

yijklmno is the vector of phenotypic values measured on half-
sib family i in row j and column k of replicate l nested in location
m of measure n within population o, and i = 1,…, ng, j = 1,…, nr,
k = 1,…, nc, l = 1,…, nb, m = 1,…, ns, n = 1,…,nm, o = 1,…,np,
where g,r,c,b,s,m, and p are the half-sib families, rows, columns,
replicates, locations, measures, and populations, respectively. In
the equation, m is the overall mean; gi is the random effect of half-
sib family i,  N(0, Is 2

g );  sm is the fixed effect of location m; (gs)im
is the random effect of interaction between half-sib family i and
location m,  N(0, Is2

gs);  ðgm)in is the random effect of interaction
between half-sib family i and measure n,  N(0, Is 2

gm);  po is the
fixed effect of population o; bonml is the random effect of replicate
l within locationm of measure n in population o,N(0, Is 2

b ); ronmlj

is the random effect of row j within replicate l in location m of
measure n in population o,  N(0, Is 2

r );  conmlk is the random effect
of column k within replicate l in location m of measure n in
population o,  N(0, Is 2

c );  eijklmno is the residual effect of half-sib
family i in row r and column c of replicate b in location m of
measure n in population o,  N(0, Is 2

e ). For individual locations,
BLUPs were estimated using a mixed model equivalent to Eq. 1,
without (gs)im and sm component in the model.

Genomic heritability (h2g) was estimated using Eq. 1, fitting
variance-covariance structure among genotypes as follows, g ∼
N(0,Gs 2

g ), where G is the KGD genomic relationship matrix.
The mixed model was fitted using ASReml-R (Butler et al., 2009)
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to estimate variance components. The additive genetic variance
was estimated as the proportion of variance explained by
regressing markers on phenotypes (De Los Campos et al.,
2015) and h2g was calculated as follows:

h2g =
s 2
g

s2
g +

s 2
gs

s +
s 2
gm

m + s 2
e

smb

(2)

where, h2g is the genomic heritability, s 2
g is the additive genetic

variation among half-sib families, s2
gs is the variance associated

with family-by-location interaction, s 2
gm is the variance

associated with family-by-measure interaction and s 2
e is the

residual variance.
The Pearson correlation coefficient between primary trait and

secondary trait was estimated using BLUPs generated from Eq. 1
in R statistical programming language (R Core Team, 2017) as
follows:

rg(x,y) =
Covg(x,y)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s 2(x),s 2(y)

p (3)

where, rg(x,y) is the correlation between secondary and primary
trait, Covg(x,y) is the covariance between trait x and y; s2(x) is the
variance associated with trait x, and s2(y) is the variance
associated with trait y.

Genomic Prediction Model and Cross-
Validations
Genomic estimated breeding values (GEBVs) were predicted
using BLUPs from Eq. 1 as the dependent variable in the linear
mixed model. The Reproducing Kernel Hilbert Space (RKHS)
was used as a single trait (ST) genomic prediction model, which
is equivalent to the Genomic BLUP (GBLUP) model when kernel
is linear (Cuevas et al., 2017). The RKHS was implemented using
a Bayesian framework by considering the reproducing kernel
(RK) as a marker derived additive relationship matrix (RK =
KGD matrix) (Pérez and De Los Campos, 2014).

For both TP1 and TP2, a linear mixed model was fitted as
follows:

y = b + Za + e (4)

where y is the BLUP values of the trait from the mixed model, b
is the vector of grand mean, Z is the design matrix associated
with randommarker effects a, RKHS assumes that marker effects
are distributed as a ∼ N(0,  Ks 2

m), where K is an (n x n) additive
genetic relationship matrix, and random residual errors as e ∼
N(0, Is 2

e ), in which I is the identity matrix. The additive
relationship matrix was calculated using KGD method (Dodds
et al., 2015). A single kernel model was implemented with 3,000
iterations and 1,500 burn-in using BGLR package in R (Pérez
and De Los Campos, 2014).

For multi-trait (MT) genomic prediction, a bivariate linear
mixed model was fitted using two correlated traits as follows:

y1

y2

" #
=

b1
b2

" #
+

Z1 0

0 Z2

" #
a1

a2

" #
+

e1
e2

" #
(5)
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where y1 and y2 are the vector of BLUP values for trait 1 and trait
2, b1 and b2 are the vector grand means, Z1 and Z2 are the
design matrices associated with random effects a1 and a2, in
which (a1

a2
) ∼ N(0,G⊗K), whereK is themarker-basedrelationship

matrix (KGDmatrix) andG is the genetic variance-covariancematrix
for all traits, e1 and e2 are the random residuals frombivariatemodels,
with (e1e2 ) ∼ N(0, I⊗R), where I is the identity matrix, and R is the
residual variance-covariance matrix between two traits. The model
was implemented assuming K as unstructured matrix and R as
diagonal matrix (Lado et al., 2018), with 3,000 iterations and 1,500
burn-in using the MTM R package (De Los Campos and
Grüneberg, 2016).

The predictive ability of ST and MT genomic prediction
models was assessed using a Monte-Carlo cross-validation
(CV) approach. For MT models, three different CV strategies
were performed, CV1 CV2 and CV3 (Figure 1).

The CV1 approach was applied to both ST and MT models
(ST-CV1 and MT-CV1, respectively). A random 70% of the TP
genotypic and phenotypic data set (primary + secondary traits
for MT-CV1) was used as a training set to train the genomic
prediction model and the remaining 30% set aside as the test set.
GEBVs were predicted for the test set individuals, and this
process was iterated 100 times. The predictive ability of the
model was the mean Pearson correlation coefficient between
GEBVs and the observed phenotypes in the test set.

The CV2 and CV3 cross-validation approaches were assessed
for the MT model only (MT-CV2, MT-CV3, respectively). For
MT-CV2, the methodology was consistent with previous studies
(Jia and Jannink (2012); Sun et al. (2017); Fernandes et al. (2018);
Sun et al. (2019). A random 70% of genotypic and primary trait
phenotypic data (training set) were assigned to train the model,
along with 100% of the phenotypic data from the secondary
(correlated) trait. In other words, in contrast to MT-CV1, in the
MT-CV2 scenario the 30% of individuals comprising the test set
also had phenotypic data for a secondary trait. The GEBVs for the
primary trait were predicted for the individuals in the test set. This
process was iterated 100 times, and the predictive ability of the
model was the mean Pearson correlation coefficient between
GEBVs and the observed phenotypes. The MT-CV3 approach
was implemented similarly to MT-CV2, with the exception that in
this scenario phenotypes for the secondary trait were present only
in the test set and were excluded from the training set (Figure 1).

Predicting in an Independent Population
Training populations TP1 and TP2 were both composites of five
breeding populations each. To test the feasibility of genomic
prediction in a population that is genetically independent of the
training set, genomic prediction models were trained using four
breeding populations and used to predict GEBVs in the fifth.
Predictive ability was assessed for the trait DMY All Cuts in TP1
and for the trait Total WSC in TP2, using the ST-CV1 and MT-
CV2 approaches. A further evaluation was applied with the MT-
CV2 approach, by testing using a single secondary trait with
either low or high correlation to the primary trait. This
procedure was repeated five times, with a different breeding
population used as the test set each time.
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Optimizing Training Population Size
A random set of half-sib families, ranging from 10% to 90% of
the full training population (TP1, n = 36 to 329 and TP2, n = 41
to 369), were selected as a training set to evaluate the impact of
training set size on predictive ability. In both TP1 and TP2, the
predictive ability for a trait for each of the different-sized training
sets was assessed in a test set made up of 20% of training
population individuals, using both ST-CV1 and MT-CV2
approaches. As mentioned above, the MT-CV2 approach was
further investigated by using a single secondary trait in the
prediction model, either low or high correlation to the primary
trait, for both TP1 and TP2.
RESULTS

Genomic Heritability, Correlation, and
Population Structure
The observed family variance components for all DMY and GS
traits measured in TP1 were significant (P < 0.05) (Table 1).
Family-by-location and family-by-measure interactions were
also significant (P < 0.05), expect for DMY Late Spring and GS
Late Spring (Table 1). For DMY traits, the family variance
components were large compared to variance components
Frontiers in Plant Science | www.frontiersin.org 6
associated with family-by-location. However, for GS traits,
variance components for family-by-location interactions
exceeded family variance (Table 1). For both DMY and GS
traits, family-by-measure interaction variance components were
comparatively small (Table 1). The family variance components
measured in the Ruakura trial were larger than Darfield, and this
was reflected in the genomic heritability for DMY and GS traits,
which were consistently higher at Ruakura (Supplementary
Tables 2 and 3). The genomic heritability for DMY traits
phenotyped in TP1 were medium to high, from 0.35 to 0.65,
based on mean performance across the two locations, Ruakura
and Darfield (Table 1). The highest genomic heritability was 0.65
for DMY All Cuts (average DM across all measures) and the
lowest genomic heritability was 0.35 for DMY Spring. For GS
traits, the genomic heritability was low compared to DMY traits,
ranging from 0.21 to 0.46 (Table 1). The GS Summer was highly
heritable (0.46) and the lowest genomic heritability was observed
for GS Spring (0.21). The correlations between DMY and GS
traits were highly positive (Table 2). DMY All Cuts was
positively correlated with all GS traits, the highest correlation
being rg = 0.88 with GS All (average GS across all measures) and
the lowest correlation was with GS Spring (rg = 0.56). Among
seasonal DMY traits, DMY Autumn was the most highly
correlated with all GS traits (mean rg = 0.70), followed by
FIGURE 1 | Cross-validation schemes employed for single-trait (ST) and multi-trait (MT) genomic prediction models. Data were divided into training and test sets.
Gray boxes indicate phenotypes were present in the model and white boxes indicate the absence of phenotypes. Hatched boxes indicate the primary trait was
predicted in the test set using either ST or MT models.
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DMY summer (mean rg = 0.66), DMY Spring (mean rg = 0.63)
and DMY Late Spring (mean rg = 0.62) (Table 2).

Genomic heritability and variance components for nutritive
traits phenotyped in TP2 were previously reported by Arojju
et al. (2020). Genomic heritability for the seven nutritive traits
included in the current study were low to high (0.21 to 0.48) and
the family variance was significant for all the seven traits
(Supplementary Table 4). Family-by-location interactions
were significantly higher for WSC traits compared to ADF,
NDF, and DOMD. Strong positive correlations were observed
between DOMD and WSC traits and a strong negative
correlation occurred between NDF and WSC traits (Arojju
et al., 2020).

Population structure in the TP1 training set was estimated
using multi-dimensional scaling (MDS) based on the GRM.
MDS analysis revealed clustering of individuals into five
groups, corresponding to the five breeding populations making
up the training set (Figure 2). Two populations (B4 and B5)
shared common individuals, and the grouping was closer
compared to other populations due to shared lineage.

Single-Trait Genomic Prediction
Based on BLUPs estimated across the two locations, the
predictive ability for DMY All Cuts and GS All in TP1, was
0.50 for both, with an unbiased estimate (Figure 3 and
Supplementary Figure 1). The predictive ability for across-
location seasonal DMY and GS traits were from 0.26 to 0.51
(bias ~ 1; slope of regression) (Figure 3 and Supplementary
Figure 1). The predictive abilities for Spring, Summer and
Autumn DMY were higher compared to the equivalent
Frontiers in Plant Science | www.frontiersin.org 7
seasonal GS traits. The seasonal trend for predictive ability was
similar when comparing DMY and GS traits with the exception
of the late spring values (Figure 3). Among 11 traits assessed for
predictive ability, the highest was observed for DMY Summer
(rp = 0.51) and low predictive ability was observed for GS winter
(rp = 0.26). Based on BLUPs estimated only from Ruakura, the
predictive ability for DMY and GS traits ranged from 0.25 to 0.62
(Supplementary Table 2). By contrast, using BLUPs from
Darfield only the predictive ability was relatively low for DMY
and GS traits (rp = 0.20 to 0.40) (Supplementary Table 3). In
Ruakura, the predictive ability for GS All was 0.62 and the
predictive ability for DMY All Cuts was 0.46 (Supplementary
Table 2) overall, predictive ability was higher for GS
traits compared to DMY traits (Supplementary Table 2).
In Darfield, the predictive ability was similar for DMY and GS
traits and was low compared to Ruakura (Supplementary
Table 3).

The predictive ability for nutritive traits estimated in TP2
were previously reported by Arojju et al. (2020) using GBLUP,
KGD-GBLUP, and BayesCp genomic prediction models. In the
current study, predictive ability was estimated using RKHS,
wherein the statistical assumptions were equivalent to the
GBLUP and KGD-GBLUP models (Cuevas et al., 2017).
Predictive ability for the seven traits using RKHS was within
the range of previously reported values (see Figure 1, Arojju et al.
(2020)) expect for ADF which decreased by 20% in predictive
ability using the RKHS model (Figure 4). For all seven nutritive
traits, predictive ability estimated using RKHS model was
moderate, from 0.20 to 0.35, with an unbiased estimate
(Figure 4 and Supplementary Figure 2). The highest
TABLE 1 | Training population (TP) 1 was measured for seasonal and mean dry matter yield (DMY) and visual growth scores (GS) across two locations and 3 years.

Trait description Trait s2
g ± SE s2gs ± SE s2

gm ± SE h2
g

Dry matter yield DMY All Cuts 10.09 ± 1.412 6.74 ± 0.691 1.18 ± 0.295 0.65
DMY Spring 4.89 ± 1.048 5.12 ± 1.016 1.44 ± 0.519 0.35
DMY Late Spring 11.66 ± 2.050 4.60 ± 1.391 1.23 ± 0.938† 0.50
DMY Summer 15.06 ± 2.254 8.41 ± 1.153 2.15 ± 0.793 0.61
DMY Autumn 11.41 ± 1.836 2.05 ± 0.989 0.00 ± 0.000 0.52

Growth score GS All 0.08 ± 0.014 0.29 ± 0.015 0.07 ± 0.004 0.35
GS Spring 0.03 ± 0.009 0.16 ± 0.013 0.05 ± 0.010 0.21
GS Late Spring 0.09 ± 0.018 0.16 ± 0.018 0.02 ± 0.012† 0.34
GS Summer 0.14 ± 0.022 0.27 ± 0.017 0.04 ± 0.007 0.46
GS Autumn 0.14 ± 0.026 0.49 ± 0.030 0.01 ± 0.004 0.34
GS Winter 0.09 ± 0.018 0.20 ± 0.017 0.09 ± 0.013 0.38
Augu
st 2020 | Volume 11 | Article
†non-significant at P > 0.05.
Shown are family genetic variance (s2g), family-by-site interactions (s2gs), family-by-measure interactions (s2gm), and associated standard errors (SE), and genomic heritability (h2g) among
perennial ryegrass half-sib families across the two locations.
TABLE 2 | Pearson correlation coefficient between dry matter yield (DMY) traits and visual growth score (GS) traits, measured among perennial ryegrass half-sib families
in training population TP1, at two locations.

Trait GS Spring GS Late Spring GS Summer GS Autumn GS Winter GS All

DMY All Cuts 0.56 0.61 0.81 0.86 0.71 0.88
DMY Spring 0.65 0.56 0.57 0.60 0.72 0.67
DMY Late Spring 0.55 0.62 0.62 0.64 0.60 0.68
DMY Summer 0.44 0.52 0.77 0.83 0.60 0.8
DMY Autumn 0.46 0.56 0.80 0.85 0.67 0.83
DMY All Cuts, mean across all DMY harvests; GS All, mean GS across all seasonal GS.
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predictive ability among seven nutritive traits was observed for
NDF (rp = 0.35) and the lowest predictive ability was for ADF
(rp = 0.20). When the model was based on BLUPs estimated from
Aorangi, the predictive ability was higher for all seven nutritive
traits in comparison to Lincoln (Supplementary Table 4). The
predictive ability using BLUPs from Lincoln, was consistently
low (NDF, CP, HMW WSC, and Total WSC) and in some cases
negative (ADF, DOMD, and LMW WSC) (Supplementary
Table 4).

Multi-Trait Genomic Prediction
Using the MT-CV1 genomic prediction scheme (individuals in
the training set phenotyped for primary and secondary trait;
individuals in test set with no phenotypic information), the
predictive ability for DMY All Cuts in TP1 and for WSC traits
in TP2 was similar to that of the ST genomic prediction models
(ST-CV1) (Figures 5 and 6). However, under MT-CV2, wherein
individuals in the test set had phenotypic information for a
secondary (correlated) trait, predictive ability for DMY All Cuts
(TP1) and WSC traits (TP2) was significantly improved (Figures
5 and 6). Under the MT-CV3 scheme, wherein individuals in the
training set had phenotypic information for the primary trait
only but those in the test set were phenotyped for a secondary
trait (Figure 1, MT-CV3), there was an improvement in
predictive ability for both DMY All Cuts and WSC traits,
Frontiers in Plant Science | www.frontiersin.org 8
compared to ST-CV1 (Figures 5 and 6). However, for both
DMY All Cuts (TP1) and WSC traits (TP2), the MT-CV2 model
always generated the highest predictive abilities compared to the
ST-CV1 and MT-CV3 approaches (Figures 5 and 6).

In TP1, the use of GS traits as secondary traits in the MT-CV2
model improved the predictive ability for DMY All Cuts by 24%
to 59% compared to ST-CV1 (Figure 5). Enhancement of
predictive ability under MT-CV2 was dependent upon the size
of the correlation between secondary and primary traits. Using
GS All as the secondary trait, which had the highest correlation
with DMY All cuts (rg = 0.88) the predictive ability increased by
59%. The lowest correlation was observed between GS Spring
and DMY All cuts (rg = 0.56) and the improvement in predictive
ability in this model was the smallest (25%). For GS Summer and
GS Autumn, the improvement in predictive ability was similar
(51%), although the correlation with DMY All Cuts was slightly
higher for GS Autumn (rg = 0.86), compared to GS Summer (rg =
0.81). In the MT-CV3 model, using GS All as a secondary trait,
improved predictive ability for DMY All Cuts by 34% compared
to ST-CV1 (Figure 5). Using seasonal GS traits to predict
DMY All Cuts, the improvement in predictive ability ranged
from 8% to 36% under the MT-CV3 approach (Figure 5 and
Supplementary Figure 3).

In TP2, the highest improvement in predictive ability was
observed when including secondary traits DOMD or NDF in
FIGURE 2 | Multidimensional scaling plot of individuals in training population TP1 based on data from 547,568 GBS SNP markers. TP1 is composed of individuals
from five discrete populations, Pop B1, Pop B5.
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FIGURE 3 | Box plot of predictive abilities for seasonal and combined (All Cuts) dry matter yield (DMY) traits and seasonal and combined (All Cuts) growth scores
(GS) in training population TP1, assessed using a single trait genomic prediction model (ST-CV1 approach) based on across-location best linear un-biased predictors
(BLUPs).
FIGURE 4 | Box plot of predictive abilities estimated for nutritive traits measured in training population TP2 (Arojju et al., 2020) using a single trait (ST-CV1) genomic
prediction model.
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the MT-CV2 model for the prediction of LMW, HMW or Total
WSC as the primary traits (predictive ability improved by 67%
to 105% compared to ST-CV1 model) (Figure 6). For
Total WSC, the highest improvement in predictive ability
was 105%, when using NDF as a secondary trait, and the
lowest improvement was 16% with CP as the secondary trait.
There was a decrease in predictive ability for MT-CV2,
compared to ST-CV1, by 5% for LMW WSC, when CP was
used as a secondary trait. This was due to the absence of
correlation between the two traits (rg = −0.05; Arojju et al.
(2020)). Under the MT-CV3 scheme, similar to MT-CV2, using
DOMD and NDF as secondary trait gave the highest
improvements in predictive ability for LMW, HMW, and Total
WSC traits (39% to 59% improvement in predictive ability
compared to ST-CV1) (Figure 6 and Supplementary Figure 4).

Predicting in an Independent Population
The efficacy of genomic prediction in an independent population
was assessed by using individuals from four of the breeding
populations in the overall training set (TP1 or TP2) to train a
model that was subsequently used to predict individuals in the
fifth population. In TP1, using the ST-CV1 approach the
predictive ability for DMY All Cuts was only positive when
predicting individuals in Pop B3 and Pop B5 (rp = 0.1 and 0.3,
respectively) whereas the predictive ability in Pop B1, B2, and B3
was negative (rp = −0.06 to −0.19) (Figure 7). Using the MT-CV2
approach, with a low correlated secondary trait (GS spring; rg =
Frontiers in Plant Science | www.frontiersin.org 10
0.56) in the model, the predictive ability for DMY All Cuts was
positive when predicting in all five populations, with values
ranging from 0.31 to 0.69 (Figure 7). Predictive ability for
DMY All Cuts in each population, when using a highly
correlated secondary trait (GS All; rg = 0.88) was highest,
ranging from 0.65 to 0.89 (Figure 7). Using a highly correlated
secondary trait (GS All) in the MT-CV2 model predictive ability
improved by 125% above the MT-CV2 models constrained to
using a low correlated secondary trait.

In TP2, similar results were observed as for TP1 (Figure 8).
Using the ST-CV1 approach, the genomic prediction model
failed to predict Total WSC in Pop III (rp = 0.0) and Pop V
(rp = −0.09) and the highest predictive ability was seen in Pop I
(rp = 0.27). Using a low correlated secondary trait (CP; rg =
−0.29) in the MT-CV2 model, predictive ability was positive for
all five populations but still relatively low (rp = 0.05 to 0.36).
Predictive ability was highest for all five populations when using
a highly correlated secondary trait (NDF; rg = −0.63) in MT-
CV2, with values ranging from 0.46 to 0.65 (Figure 8).

Minimum Training Set Size
The minimum training population size was determined in both
TP1 and TP2, comparing a highly correlated and a weakly
correlated secondary trait in the MT-CV2 model with the
predictive ability from a ST-CV1 model (Figure 9). In TP1,
using trait information for a highly correlated secondary trait
(GS All) in both training and test sets, the training set size could
FIGURE 5 | Box plot of predictive ability for mean dry matter yield from all seasonal harvests (DMY All Cuts) in TP1 using single-trait (ST-CV1) and multi-trait (MT-
CV1, MT-CV2, and MT-CV3) genomic prediction models. In ST-CV1 model, DMY All Cuts was used to train and predict without any secondary trait in the model. In
MT-CV1, DMY All Cuts and one of five correlated secondary traits (GS All, GS Spring, GS Late Spring, GS Summer and GS autumn) were used to train the model
and predict DMY All Cuts in the test set. Under the MT-CV2 scheme, phenotypic data of a secondary trait was used in both the training and test set to predict DMY
All Cuts. The MT-CV3 approach is similar to MT-CV2, except that phenotypes of the secondary trait were excluded from the training set, leaving secondary trait
phenotypes in the test set only, for prediction of the primary trait.
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be reduced by 50% (n = 183) from its original size, before
impacting predictive ability (Figure 9A). In the case, where a
weakly correlated trait was used as a secondary trait (GS Spring),
the training set size was reduced by only 11% from its original
size (n = 292) before predictive ability began to decline (Figure
9B). In both these situations, the predictive ability was higher in
MT-CV2 compared to the ST-CV1 model at the same training
set size. Similarly, in TP2, using a highly correlated secondary
trait (NDF; rg = −0.63) for prediction of Total WSC, the point at
which predictive ability began to decline was when the training
set size was reduced by 22% (n = 287) from its original size
(Figure 10A). Using a weakly correlated secondary trait (CP and
Total WSC; rg = −0.29), this reduction in predictive ability
occurred when the training set had declined by 11% (n = 328)
from its original size (Figure 10B).

Optimum GS Secondary Trait for DMY
Prediction
In TP1, GS traits were phenotyped in each of 3 years from Spring
to Winter, at both locations. The predictive ability of each of
Frontiers in Plant Science | www.frontiersin.org 11
these five seasonal secondary traits was assessed in an MT-CV2
model, for prediction of DMY All Cuts (which represents
average DMY performance across all seasons) as well as for
prediction of each of the seasonal DMY traits. For instance, GS
Summer was evaluated as a secondary trait to predict DMY All
Cuts, DMY Summer, and DMY Autumn (Supplementary
Figures 5 and 6). This enabled determination of the best
season in which to score the secondary trait to support the
most accurate prediction of DMYAll Cuts in anMT-CV2model.
Amongst the seasonal GS measures, GS Summer, and GS
Autumn had the highest potential to predict DMY All Cuts
(predictive ability improved by 51% compared to ST-CV1 for
both of these) compared to GS Spring (25%) and GS Late Spring
(33%) (Supplementary Figures 5 and 6). Whilst using GS All as
a secondary trait gave the highest improvement in predicting
DMY All Cuts (rp = 0.78) compared to ST-CV1 (Supplementary
Figure 5), using the best single seasonal measures, GS Summer
or GS Autumn, gave a predictive ability for DMY All Cuts (rp =
0.74) that was only marginally lower than this (Supplementary
Figures 5 and 6).
FIGURE 6 | Box plot of predictive ability for LMW WSC, HMW WSC, and Total WSC traits assessed in TP2 using single-trait (ST-CV1) and multi-trait (MT-CV1, MT-
CV2, and MT-CV3) genomic prediction models. In ST-CV1, the primary trait (LMW WSC, HMW WSC, and Total WSC) was used to train and predict without any
secondary trait in the model. In MT-CV1, primary and secondary trait data (one of ADF, NDF, DOMD, or CP) were used to train the model and predict the primary
trait in test set. Under the MT-CV2 scheme, phenotypic data of the secondary trait was used in both the training and test set to predict the primary trait. The MT-
CV3 approach is similar to MT-CV2, except that phenotypes of the secondary trait were excluded from the training set, leaving secondary trait phenotypes in the test
set only, for prediction of the primary trait.
August 2020 | Volume 11 | Article 1197

https://www.frontiersin.org/journals/plant-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


Arojju et al. Multi-Trait Genomic Prediction of Ryegrass
DISCUSSION

The potential of genomic selection for improving genetic gain in
forage plant species has been intensively assessed in recent years
(Annicchiarico et al., 2015; Fè et al., 2016; Grinberg et al., 2016;
Byrne et al., 2017; Arojju et al., 2018; Faville et al., 2018; Guo et al.,
2018; Pembleton et al., 2018; Arojju et al., 2020) but, as yet, multi-
trait approaches for genomic selection have not been investigated
in these species. Here, we have evaluated and demonstrated the
potential of multi-trait genomic selection approaches to improve
genomic prediction in perennial ryegrass, a major forage species
globally, for the traits dry matter yield (DMY) in one training
population (TP1) and water-soluble carbohydrate (WSC) in a
different training population (TP2).

In the current study, predictive abilities estimated by cross-
validation for DMY using single trait (ST) genomic prediction
models (range of rp = 0.31–0.50) were comparable to other
studies of perennial ryegrass (Grinberg et al., 2016; Arojju,
2017; Guo et al., 2018; Pembleton et al., 2018). Predictive
ability for DMY reported by Faville et al. (2018) for the TP2
were generally lower than the TP1 values in the current study.
The differences in predictive ability for DMY may have been
influenced by the phenotypes being collected under different
environments and management schemes, as well as contrasting
genetic properties of the training sets. Predictive ability for
nutritive quality traits using the ST-CV1 model were
Frontiers in Plant Science | www.frontiersin.org 12
previously discussed by Arojju et al. (2020). Although
prediction models used by Arojju et al. (2020) were different
(GBLUP, KGD-GBLUP, and BayesC) to the current study
(RKHS), the predictive ability was similar for the majority of
traits. Predictive abilities estimated for traits in these training sets
could also have been influenced by the genomic selection system
adopted, namely the phenotyping of half-sibling families to
generate an estimated breeding value for genotyped maternal
parents, rather than direct phenotyping the maternal parent
itself. In this scenario predictive ability might be affected by
genotypic imbalance in the half-sibling row plot used to generate
the phenotypic data. Use of family-pool genotyping methods,
similar to those described by Byrne et al. (2013) and
implemented by Fè et al. (2015) and Guo et al. (2018) may be
more reliable in this regard, if applied directly to field plots, but
to our knowledge the relative efficacy of the two approaches has
yet to be assessed empirically.
Multi-Trait Approaches to Improve
Predictive Ability
In our study, there was no improvement in predictive ability for
the primary trait, when a secondary trait was only included in the
training set (MT-CV1, Figure 1). Studies conducted in wheat, by
Sun et al. (2017) reported similar outcomes, when predicting
grain yield using secondary traits NDVI and CT. Predictive
FIGURE 7 | Predictive ability for DMY All Cuts in each population within TP1 was estimated for genomic prediction models using genotypic and phenotypic data
from four populations as a training set and the remaining fifth population as a test set. This was repeated five times with a different population as test set each time.
Predictive ability was estimated using single trait (ST-CV1) and multi-trait (MT-CV2) genomic prediction models, with the MT-CV2 model further assessed by
comparing use of a low correlated secondary trait (GS Spring) and a high correlated secondary trait (GS All Cuts).
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ability using MT-CV1 in the study mentioned above was
equivalent or slightly higher than ST-CV1 approach. Similarly,
in sorghum the genomic prediction of biomass using plant height
as a correlated secondary trait, found that the MT-CV1 approach
was equivalent in terms of predictive ability to ST-CV1
(Fernandes et al., 2018). Using simulations, Jia and Jannink
(2012) stated that the MT-CV1 approach can be expected to
improve predictive ability only when a correlated secondary trait
with high heritability is used to support prediction of a primary
trait with low heritability. In our study, in both TP1 and TP2,
the genomic heritability estimated for the primary traits were in
a similar range as those estimated for the secondary traits (ADF
h2g = 0.32 and Total WSC h2g = 0.31) or even higher for some
traits (DMY All Cuts h2g = 0.65 and GS All h2g = 0.35) (Table 1
for TP1; for TP2 refer Table 1 in Arojju et al. (2020)).
Furthermore, the training populations used were relatively
small (TP1 = 463 and TP2 = 517). These two factors may have
constrained the effectiveness of the MT-CV1 model to improve
predictive ability in our study.

In contrast to MT-CV1, the inclusion of a correlated
secondary trait in both the training and test set (MT-CV2,
Figure 1) substantially improved the predictive ability for
DMY in TP1 and for WSC traits in TP2, compared to the ST
genomic prediction models (Figures 4 and 5). This finding is in
agreement with previous studies in wheat (Rutkoski et al., 2016;
Sun et al., 2017; Crain et al., 2018; Sun et al., 2019) and
Frontiers in Plant Science | www.frontiersin.org 13
sorghum (Fernandes et al., 2018), which showed that
including secondary traits in both training and test sets can
improve genomic predictive ability for the primary trait. In
those studies the extent of improvement in predictive ability
was dependent upon the heritability and the level of correlation
between the primary and secondary traits (Rutkoski et al., 2016;
Sun et al., 2017; Fernandes et al., 2018). In TP1, we observed
moderate to high correlation between DMY and GS traits. In
particular, GS All, GS Summer, and GS Autumn were highly
correlated with DMY All Cuts (rg = 0.80 to 0.88). In TP2,
nutritive traits DOMD and NDF were highly correlated with
LMW, HMW, and Total WSC traits (rg = 0.36 to 0.57 for
DOMD and rg = −0.44 to −0.63 for NDF). Inclusion of these
highly correlated traits in the MT-CV2 model resulted in the
highest improvement in predictive ability. Among nutritive
traits, CP was poorly correlated with LMW (rg = −0.19), HMW
(rg = 0.11) and Total WSC traits (rg = −0.08). Inclusion of CP
as secondary trait in the MT-CV2 model resulted in low
or negative improvement in predictive ability. Genomic
heritability estimates for the secondary traits were lower than
for the primary traits, in both TP1 and TP2. This implies that,
in our study, it was the level of correlation between primary and
secondary traits, rather than trait heritability, that made a more
substantial contribution to improvement in predictive ability
for DMY in TP1 and WSC in TP2 when using the MT-
CV2 approach.
FIGURE 8 | Predictive ability for Total WSC in each population within TP2 was estimated for genomic prediction models using genotypic and phenotypic data from
four populations as a training set and the remaining fifth population as a test set. This was repeated five times with a different population as test set each time.
Predictive ability was estimated using single trait (ST-CV1) and multi-trait (MT-CV2) genomic prediction models, with the MT-CV2 model further assessed by
comparing use of a low correlated secondary trait (CP) and a high correlated secondary trait (NDF).
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We also assessed the predictive ability of a model that
includes secondary trait information only in the test set (MT-
CV3, Figure 1) and found an improvement in predictive ability
for DMY (TP1) and WSC traits (TP2), compared to the ST
genomic prediction models (Figures 5 and 6). The MT-CV3
model is therefore another potential approach for improving
predictive ability in a genomic selection scheme, but the variation
in predictive ability amongst iterations was higher than MT-CV2
(Figures 5 and 6). This was also reflected in the slope of
regression (bias), which was highly variable compared to the
MT-CV2 approach (Supplementary Figures 3 and 4). This
variability could be due to the limited amount of secondary
trait information used in the model (30% in MT-CV3 compared
to 100% in MT-CV2 model) (Figure 1). In situations with a
Frontiers in Plant Science | www.frontiersin.org 14
sufficiently large test set and a high correlation between primary
and secondary traits, the MT-CV3 model could be an attractive
approach for the prediction of complex traits with higher
accuracy. However, when MT genomic prediction models are to
be applied at the scale used in the current study, the MT-CV2
approach is likely to produce an equally high and more reliable
improvement in genomic predictive ability. A slight increase in
bias (bias > 1) was observed among MT-CV2 and MT-CV3
models compared to ST-CV1 model (Supplementary Figures 3
and 4). An increase in bias suggests that the predictions were
underestimated from the current model (Neves et al., 2012; Neves
et al., 2014; Tsuruta et al., 2019). Since the MT predictions models
are complex and have recently gained importance in plant and
animal breeding, there is no sufficient knowledge to determine the
A

B

FIGURE 9 | Predictive ability for mean dry matter yield across all seasonal harvests (DMY All Cuts) estimated in TP1 using different training sets, ranging from 36
individuals (10% of the full training set size) to 329 individuals (90%) from training population TP1. Predictive ability was estimated using single trait (ST-CV1) and
multi-trait (MT-CV2) genomic prediction models. (A) compares predictive ability using ST-CV1 and MT-CV2 models with a highly correlated secondary trait (GS All,
rg = 0.88). (B) compares ST-CV1 and MT-CV2 model using a low correlated trait (GS Spring, rg = 0.56) as a secondary trait.
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basis for the deflation of bias (bias > 1) specific to MTmodel. This
will be considered as an important issue to be addressed in
future studies.

Optimizing MT-CV2 Multi-Trait Genomic
Selection
Application of the MT-CV2 genomic selection approach may
enable further efficiencies through the reduction of training
population size without compromising predictive ability. Using
the MT-CV2 approach, Lado et al. (2018) were able to reduce the
training population size to 30% of the original size without an
impact on predictive ability for baking quality traits in wheat. We
used MT-CV2 results in the current study as the basis for testing
the impact of training population size, comparing inclusion of a
Frontiers in Plant Science | www.frontiersin.org 15
highly correlated and a low correlated secondary trait in the MT-
CV2 model. We found that the training population size could be
reduced to 50% of its original size without an impact on
predictive ability but only when a highly correlated trait was
used as the secondary trait. When using a low correlated
secondary trait in the MT-CV2 model the size of the training
population size could only be reduced by 11% before predictive
ability was negatively affected.

The acquisition of GS measurements across multiple seasons
and years is expensive and determining a single, optimum
seasonal timepoint to score secondary traits would reduce
resource requirements and increase the viability of adopting
the MT-CV2 genomic prediction approach for DMY genomic
selection. The current dataset indicates that the optimum season
A

B

FIGURE 10 | Predictive ability for Total WSC in TP2 was estimated using different training sets, ranging from 41 individuals (10% of full training set size) to 369
individuals (90%) from training population TP2. Predictive ability was estimated using single trait (ST-CV1) and multi-trait (MT-CV2) genomic prediction models. (A)
compares predictive ability using ST-CV1 and MT-CV2 model with a highly correlated secondary trait (NDF, rg = −0.63). (B) compares ST-CV1 and MT-CV2 model
using a low correlated secondary trait (CP, rg = −0.29).
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for phenotyping visual GS as a secondary trait was during
summer and autumn, enabling a predictive ability for DMY
close to that of using GS measurements across multiple seasons
and years. In TP1 improvement in predictive ability for DMY All
Cuts using GS All Cuts as the secondary trait in the MT-CV2
model was 0.78. However, using visual GS measured across
multiple years in either summer (GS Summer) or autumn (GS
Autumn) alone as the secondary trait, gave a predictive ability of
0.74 (Figure 5).

Genomic Prediction in an Independent
Population
The multi-population nature of the training set used in this study
enabled investigation of the efficacy of predicting GEBVs in a
population unrelated to the training set. When a ST genomic
prediction model was trained using data from four populations
and GEBVs were predicted for the fifth population, predictive
ability was low or negative for most of the populations in both
TP1 and TP2 (Figures 7 and 8). The reasons for prediction
failure could be the lack of genetic relatedness between training
and test set, differences in LD between marker and QTL across
the different populations, QTL segregating in one population but
not be present in another population, and differences in minor
allelic frequencies between the populations (Hayes et al., 2009;
Zhong et al., 2009; Raymond et al., 2018). We further explored
this approach by using either a low or highly correlated
secondary trait in a MT-CV2 genomic prediction model and
demonstrated that, when applied to an independent population
the predictive ability can be positive and high (Figures 7 and 8)
(Supplementary Table 5 and 6). The practical implication of this
approach is immense, as it suggests that a MT prediction model
developed for complex and difficult to measure traits in breeding
program “A” might also be implemented in program “B,”
assuming populations in breeding program “B” have been
phenotyped for the secondary trait. Initial analysis suggests
that the reason for an improvement in predictive ability was
due to the correlation between the primary and secondary traits
in each population (Supplementary Tables 5 and 6). Further
investigation is needed to understand the results and its
practical implications.

Genomic Breeding Using Multi-Trait
Approaches
For traits such as DMY in forage breeding, which require a high
level of effort for multi-environment phenotyping (Conaghan
et al., 2008), data acquisition in large training sets (n > 2000)
remains a major limitation for implementing genomic selection.
This limitation may be overcome by completely phenotyping
large training sets for secondary traits (which are relatively
inexpensive and can be phenotyped at large scale) and only
partially for the primary target trait (difficult and/or expensive to
phenotype), followed by applying a MT prediction model to
predict the primary trait for selection. Because forage breeding
programs often include a single plant evaluation stage
(Conaghan and Casler, 2011), a genomic breeding strategy for
DMY based on MT-CV2 could be designed to leverage single
Frontiers in Plant Science | www.frontiersin.org 16
plant traits that are more easily phenotyped at scale and which
have some level of correlation to sward yield, for example leaf
length (Rhodes and Mee, 1980; Wilkins and Humphreys, 2003;
Barre et al., 2015), plant height (Wang et al., 2016) or, in specific
circumstances, single plant vigour (Lazenby and Rogers, 1964;
Burton, 1985; Casler et al., 1997). Based on our findings, we
expect evaluation of a yield-correlated, single plant trait in a large
population sample (e.g. n > 2000) and of the primary trait, DMY,
in half-sib families derived from a smaller subset (e.g. n = 400) of
that population, could enable enhanced genomic predictive
ability for DMY in the full population.

For nutritive quality traits, wet laboratory procedures are
generally expensive and time-consuming. Obtaining NIRS data
is regarded as a simpler, less expensive alternative but is still
sample-destructive and relatively laborious (sample harvest,
freeze-drying, milling, and scanning). Recent developments in
non-destructive NIR technology could be an option to explore,
but to obtain reliable data from non-destructive NIR, multiple
scans are needed which adds extra time and cost (Martıńez et al.,
1998). Recently, hyperspectral imaging (HSI) has attracted
interest, due to its ability to capture both spectral and spatial
information and its adaptability to work for in-field conditions
(Gutiérrez et al., 2018). There has been steady progress in the
development of HSI systems for predicting nutritive quality
traits in perennial ryegrass (Shorten et al., 2019) and
deployment of in-field high-throughput phenotyping system
using Light Detection and Ranging (LiDAR) sensor for yield
(Ghamkhar et al., 2019). Combining these two technologies and
associating spectral reflectance and absorbance with the primary
trait of interest (which would be partially phenotyped by wet-lab
analysis in the training set) could produce phenotypic
information for multiple traits within a single experimental
step. Phenotypes derived using HTP sensor systems can
be considered as secondary traits, suitable to be rapidly
phenotyped across a large training population and used in a
MT genomic prediction model to predict the primary trait of
interest in selection candidates.
CONCLUSION

In this study, we have shown that applying MT genomic prediction
can improve predictive ability for DMY orWSC when compared to
a ST model. Inclusion of a correlated secondary trait, either in both
training and test set (MT-CV2) or in the test set alone (MT-CV3),
was highly effectual for enhancing predictive ability. The
improvement in predictive ability was in line with the degree of
correlation between primary and secondary trait. In contrast, when
the secondary trait was included only in the training set (MT-CV1),
there was no improvement in predictive ability for either DMY or
WSC. The MT-CV2 approach opens up the possibility to assemble
larger training sets needed to implement genomic selection for
resource-intensive and complex traits in forage species, whereby the
full training set is phenotyped for an inexpensive secondary trait
and a smaller subset for the primary trait. Use of MT genomic
prediction models also appears to be a promising approach for
August 2020 | Volume 11 | Article 1197
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successfully implementing genomic prediction in populations
unrelated to the training set, if the independent population has
phenotypic data for the secondary trait. MT genomic prediction
approaches, coupled with HTP systems, has great potential to
accelerate the rate of genetic gain in forage species for key
economic traits such as DMY and nutritive quality.
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