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Bisphenol A (BPA), an intermediate chemical used for synthesizing polycarbonate plastics,
has now become a wide spread organic pollutant. It percolates from a variety of sources,
and plants are among the first organisms to encounter, absorb, and metabolize it, while its
toxic effects are not yet fully known. Therefore, we experimentally studied the effects of
aqueous BPA solutions (50 and 100 mg L−1, for 6, 12, and 24 h) on photosystem II (PSII)
functionality and evaluated the role of reactive oxygen species (ROS) on detached leaves
of the model plant Arabidopsis thaliana. Chlorophyll fluorescence imaging analysis
revealed a spatiotemporal heterogeneity in the quantum yields of light energy
partitioning at PSII in Arabidopsis leaves exposed to BPA. Under low light PSII function
was negatively influenced only at the spot-affected BPA zone in a dose- and time-
dependent manner, while at the whole leaf only the maximum photochemical efficiency
(Fv/Fm) was negatively affected. However, under high light all PSII photosynthetic
parameters measured were negatively affected by BPA application, in a time-
dependent manner. The affected leaf areas by the spot-like mode of BPA action
showed reduced chlorophyll autofluorescence and increased accumulation of hydrogen
peroxide (H2O2). When H2O2 was scavenged via N-acetylcysteine under BPA exposure,
PSII functionality was suspended, while H2O2 scavenging under non-stress had more
detrimental effects on PSII function than BPA alone. It can be concluded that the necrotic
death-like spots under BPA exposure could be due to ROS accumulation, but also H2O2

generation seems to play a role in the leaf response against BPA-related stress conditions.

Keywords: bisphenol A, chlorophyll fluorescence imaging, plastoquinone pool, signaling molecule, H2O2

scavenger, photosystem II functionality, necrotic death-like spot, reactive oxygen species
INTRODUCTION

Plants are sessile organisms, specially affected by changes in their environment and therefore
unavoidably prone to many stress-factors. So, plants have evolved an extensive range of mechanisms
for acclimation and adaptation (van Loon, 2016). Numerous studies have confirmed that some of
these mechanisms include reactive oxygen species (ROS) formation (Garg and Manchanda, 2009;
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Foyer, 2018; Huang et al., 2019). These molecules were
traditionally related to wide-range damaging of cellular
macromolecules (i.e., nucleic acids, lipids, proteins, etc.), which
probably could result in cell death and even whole organism
collapse (Potters et al., 2010). Nonetheless, decades of thorough
research gathered substantial evidence to support that ROS-
mediated responses are orchestrated and regulated under a
tight genetic control. Hence, in plants, ROS roles in early
signaling events initiated by various environmental stimuli
have been established (Noctor et al., 2018; Huang et al., 2019).
These stimuli could include extreme temperatures (Awasthi
et al., 2015), drought (Laxa et al., 2019), heavy metals
(Eleftheriou et al., 2015), nanoparticles (Sperdouli et al., 2019),
and organic pollutants (Christou et al., 2018).

One such organic pollutant is bisphenol A (2,2-bis(4-
hydroxyphenyl)propane; BPA), a chemical stabilizer widely
applied in the industrial manufacture of plastic materials (Lin
et al., 2017). As plastic commodities deteriorate, BPA can escape
and pollute the environment (Xu et al., 2011). This pollution
seems to be harmful, since, BPA belongs to the xenoestrogen
substance family and by acting as an endocrine disruptor can
cause several human health issues (Jalal et al., 2018; Abraham
and Chakraborty, 2019). While extensive research has been
conducted about BPA effects on humans/animals, scientific
data regarding the toxic effects of BPA on plants have been
accumulating only in recent years (Xiao et al., 2020). Although
plants can absorb and metabolize BPA, at the same time BPA
could deteriorate their cellular/physiological status (Zhang et al.,
2017). It has been shown that experimentally applied
concentrations of BPA (mg/L) negatively affected the growth of
many important crops, e.g., soybean (Qui et al., 2013; Zhang
et al., 2016; Jiao et al., 2017; Li X. et al., 2018; Zhang et al., 2018;
Xiao et al., 2019), pea (Adamakis et al., 2013), wheat (Adamakis
et al., 2019), maize (Stavropoulou et al., 2018), rice (Ali et al.,
2016), cucumber (Li Y. T. et al., 2018) and onion (Adamakis
et al., 2019); also of non-cultivated plants such as the
Cephalonian fir (Adamakis et al., 2016) and the model plant
Arabidopsis thaliana (Pan et al., 2013; Tian et al., 2014; Frejd
et al., 2016; Ali et al., 2017; Rapala et al., 2017; Bahmani et al.,
2020). Growth reduction effects have interestingly been found to
occur also after environmentally relevant concentrations (mg/L)
applied on cultivated crops, e.g., cabbage and tomato (Staples
et al., 2010), native plants such as oat (Staples et al., 2010) and
seagrasses (Adamakis et al., 2018; Malea et al., 2020).

BPA-derived growth defects have been linked to either
cytoskeletal derangement (Adamakis et al., 2013; Adamakis
et al., 2016; Adamakis et al., 2018; Stavropoulou et al., 2018;
Adamakis et al., 2019), hormonal imbalance (Frejd et al., 2016; Li
X. et al., 2018; Bahmani et al., 2020), deterioration of the
photosynthetic machinery (Jiao et al., 2017; Kim et al., 2018; Li
Y. T. et al., 2018) or ROS production (Wang et al., 2015; Ali et al.,
2016; Zhang et al., 2018; Xiao et al., 2019). It could therefore be
concluded that BPA effects in plants are pleiotropic (Xiao et al.,
2020). However, the increased demand for BPA and focus on
BPA research over the past years (Shafei et al., 2018), has
gathered significant amount of evidence indicating that the
Frontiers in Plant Science | www.frontiersin.org 2
induction of ROS is the start of a cascade of BPA-induced
cellular effects. As such, ROS contribute significantly to BPA
toxic and carcinogenic potential (Moura et al., 2010). Specifically
for plants, BPA effects on photosynthesis have been linked to
ROS production (Li Y. T. et al., 2018), but fascinatingly a
protective role for ROS in the plant response against BPA has
been also proposed (Zhang et al., 2018), a phenomenon also
observed in animal models (Guo et al., 2017; Durovcova et al.,
2018) under BPA exposure.

It is evident that any change or imbalance in the function of
the chloroplast will affect directly or/and indirectly the other
cellular functions of the plant cell (Bobik and Burch-Smith,
2015). Earlier studies have suggested that the redox state of the
plastoquinone (PQ) pool initiates plant acclimation and is of
unique significance for antioxidant defense and signaling (Hüner
et al., 2012). Consequently, it can be hypothesized that BPA
stress in plants, like in animals (Moura et al., 2010), could be
initially sensed via ROS-production; then the associated changes
in the chloroplast oxidoreduction homeostasis synergistically
with other signaling pathways could induce physiological or/
and molecular adaptive responses. In order to test this hypothesis
and provide novel insights into mechanisms of BPA effects to
plant physiological functions such as photosynthesis, we
experimentally studied the effects of BPA aqueous solutions on
several parameters of photosystem II (PSII) functionality in
detached leaves of the model plant Arabidopsis thaliana. In
particular, we investigated whether the BPA-induced hydrogen
peroxide (H2O2) in combination with the H2O2 scavenger, N-
acetylcysteine, has a positive or negative action on the selected
photosynthetic parameters.
MATERIALS AND METHODS

Plant Material and Growth Conditions
Arabidopsis thaliana (L.) Heynh. (Col-0) seeds, obtained from
Nottingham Arabidopsis Stock Centre (NASC), were bleach
surface sterilized and after being imbibed at 4°C for 24 h were
sown directly on soil. Emerged seedlings were left to grow at a
22 ± 1°C temperature and a 16-h/8-h light/dark cycle at 120
µmol photons m−2 s−1 light intensity and 60 ± 5% day/night
humidity for 4 weeks. Rosette leaves 8 from 4-week-old plants
were cut and further on processed.

BPA and NAC Treatments
Detached leaves of A. thaliana maintained in Petri dishes on
filter paper soaked with distilled water were considered as
controls. Four to five leaves per experiment were treated with
aqueous 50 and 100 mg L−1 (0.2 and 0.4 mM) BPA solutions,
prepared from a stock solution of 200 mg L−1 at 21.5°C, pH 7.0
(Staples et al., 1998; Adamakis et al., 2013; Adamakis et al., 2019),
soaked on filter paper in Petri dishes, for 6, 12 and 24 h. Each
treatment has been done in triplicate.

N-acetylcysteine (NAC) is a ROS scavenger capable of
interacting with H2O2 (Aruoma et al., 1989; Zafarullah et al.,
2003; Ezeriņa et al., 2018). We applied NAC on detached A.
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thaliana leaves to evaluate the result of H2O2 scavenging in
combination with BPA action. Leaves were treated with either
500 µM NAC (Muranaka et al., 2013; Livanos et al., 2016; Colak
et al., 2019) or with 50 mg L−1 (0.2 mM) BPA plus 500 µM NAC
or with 50 mg L−1 BPA alone for 24 h. All treatments were
performed with three independent biological replicates.

Hydrogen Peroxide Imaging Detection
H2O2 detection in A. thaliana leaves was implemented as
described earlier (Moustaka et al., 2015). Briefly, leaves were
incubated for 30 min with 25 µM 2′, 7′-dichlorofluorescein
diacetate (H2DCF-DA, Sigma) in 10 mM Tris-HCl (pH 7.4) in
dark. The leaves were observed under a Zeiss AxioImager.Z2
fluorescence microscope at excitation and emission wavelengths
of 480 and 530 nm, respectively (Moustaka et al., 2015). An
AxioCamMRc 5 camera attached to the microscope captured the
images. Autofluorescence signal interference was also checked
(Moustaka et al., 2018). All treatments were performed with
three independent biological replicates.

Chlorophyll Fluorescence Imaging
Analysis
Amodulated chlorophyll fluorescence system (Imaging PAMM-
Series system, Heinz Walz Instruments, Effeltrich, Germany) was
used to evaluate the spatiotemporal effects of BPA on PSII
photochemistry. Chlorophyll fluorescence in dark-adapted (for
20 min) detached A. thaliana leaves was measured at room
temperature as described previously (Moustaka et al., 2015). Two
light intensities were used for chlorophyll fluorescence
measurements, a low light intensity (140 mmol photons m−2

s−1) that was similar to the growth light and a high light intensity
(1000 mmol photons m−2 s−1). Color-coded images are presented
of dark adapted leaves of (a) the maximum photochemical
efficiency (Fv/Fm), and after 5 min of illumination, (b) the
effective quantum yield of PSII photochemistry (FPSII) that
estimates the efficiency by which light absorbed by PSII is used
for photochemistry, (c) the quantum yield of regulated non-
photochemical energy loss in PSII (FNPQ), (d) the quantum yield
of non-regulated energy loss in PSII (FNO), and (e) the
photochemical quenching (qp), a measure of the fraction of
open PSII reaction centers, that is the redox state of the
plastoquinone (PQ) pool. Nine to fourteen areas of interest
(AOIs) were selected in each leaf so as to have representative
areas of the whole leaf.

Statistical Analyses
Statistically significant differences were evaluated for the
chlorophyll fluorescence parameters of Control Whole Leaves
(CWL), BPA treated Whole Leaves (BWL), Spot BPA zone
(SPB), Spot Surrounding Area (SSA) and the Rest of the Leaf
(RL), that is the leaf area that remains if the Spot BPA zone (SPB)
and the Spot Surrounding Area (SSA) are subtracted from the
BPA-treated Whole Leaves (BWL). The measured chlorophyll
fluorescence parameters were analyzed by t-test at a level of P <
0.05 (StatView computer package, Abacus Concepts, Inc
Berkley, CA, USA). Data are presented as means from three
independent experiments.
Frontiers in Plant Science | www.frontiersin.org 3
RESULTS

We evaluated the effects of 50 and 100 mg L−1 BPA treatments
for 6, 12 and 24 h on the chlorophyll fluorescence parameters Fv/
Fm,FPSII,FNPQ,FNO, and qp in order to evaluate BPA effects on
PSII functionality. Color-coded images after 20 min dark
adaptation of Fv/Fm, and after 5 min illumination (140 mmol
photons m−2 s−1) for FPSII, FNPQ, FNO, and qp, of either control
(leaves maintained in Petri dishes on soaked filter paper with
distilled water) or of BPA treated leaves (maintained in Petri
dishes on soaked filter paper with 50 and 100 mg L−1 aqueous
BPA solution) for 6 h are presented in Figure 1. We observed a
spot-like mode of action of BPA after 6 h treatment with 100 mg
L−1 that could not be observed after 6 h treatment with 50 mg L−1

(Figure 1). However, the spot-like mode of BPA action was
visible after 12 and 24 h treatment with 50 mg L−1 under both
low light (Figure 2) and high light (Figure 3) intensities.

After 6 h treatment with 50 mg L−1 BPA FPSII values of
the mid vein AOIs (arrows) increased compared to their
corresponding controls, while FNO values of the mid vein
AOIs decreased compared to their corresponding controls
(Figure 1). In addition, the fraction of open PSII reaction
centers (qp) of the mid vein AOIs (arrows) increased,
compared to their corresponding controls (Figure 1). After
6 h treatment with 100 mg L−1 BPA, the same pattern as 50 mg
L−1 BPA treatment was observed for FPSII and FNO values but
only for the lower mid vein AOI, while qp values increased for
both the mid vein AOIs (arrows) (Figure 1). This treatment
(100 mg L−1 BPA, 6 h) decreased significantly Fv/Fm value of
the whole leaf and mid vein AOIs (arrows) compared to the
control values (Figure 1).

Under 12 and 24 h treatments with 50 mg L−1 BPA the
fraction of open PSII reaction centers (qp) of the whole leaf
increased (with the exception of the spot like affected AOI)
compared to control (Figure 2). Exposure to high light (1000
mmol photons m−2 s−1) of Arabidopsis leaves resulted in
increased leaf heterogeneity under non-stressed conditions of
the chlorophyll fluorescence parameters FPSII, FNPQ, and qp as
was evidenced from the whole leaf color-coded images and the
increased standard deviation (Figure 3). After 12 h treatment
with 50 mg L−1 BPA, whole leaf FPSII value under high light
decreased significantly, with the spot like affected AOI to have
FPSII value 0, and all the reaction centers (qp) closed (Figure 3).

The effects of BPA treatment on the allocation of the absorbed
light energy in A. thaliana leaves are presented in Figure 4. We
estimated the fraction of the absorbed light energy that is used
for photochemistry (FPSII) (Figures 4A–C), the fraction that is
lost by regulated heat dissipation (FNPQ) (Figures 4D–F), and
the fraction of non-regulated energy loss (FNO) (Figures 4G–I).
These three quantum yields (FPSII, FNPQ, and FNO) add up to
unity. After 6 h treatment with 50 mg L−1, FPSII values of BPA-
treated whole leaves (BWL) increased 6% compared to control
(CWL), without any significant difference at the BPA zone (SPB)
and the surrounding area (SSA) compared to CWL, but with a
significant increased (7%) value at the rest of the leaf (RL)
(Figure 4A). After 12 and 24 h treatment, FPSII values at the
spot BPA zone (SPB) decreased (64% and 86% respectively),
August 2020 | Volume 11 | Article 1196
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while at the rest of the leaf (RL) increased (7% and 5%
respectively) compared to CWL (Figures 4B, C, respectively).
FNPQ values did not change after 6 h treatment with 50 mg L−1

BPA at all evaluated zones (Figure 4D), but increased
significantly (114%) at the SPB after 12 h treatment (Figure
4E), while decreased significantly (21%) at the same zone after
24 h treatment compared to CWL (Figure 4F). FNO values did
not change after 6 h treatment with 50 mg L−1 at the spot BPA
zone (SPB) compared to CWL (Figure 4G), but after 12 and 24 h
treatment increased significantly (66% and 173% respectively) at
the same zone compared to CWL (Figures 4H, I, respectively).
At the rest of the leaf (RL) after 12 h treatment FNO decreased
(8%) (Figure 4H), while after 24 h treatment remained
unchanged (Figure 4I) compared to CWL.
Frontiers in Plant Science | www.frontiersin.org 4
The maximum photochemical efficiency (Fv/Fm) was the
only chlorophyll fluorescence parameter that was negatively
affected in a dose- and time-dependent manner in the BPA-
treated whole leaves (BWL) and not only at the spot BPA zone
(SPB) (Figures 5A–C), as was observed at the other measured
parameters (Figure 4). The redox state of the plastoquinone
(PQ) pool (qp), a measure of the fraction of open PSII reaction
centers, increased after 6, 12 and 24 h treatment in BPA-treated
whole leaves (BWL) and the rest of the leaf (RL) (Figures 5D–F).

Exposure of A. thaliana leaves to 50 mg L−1 BPA plus 500 µM
NAC for 24 h eliminated whole leaf FPSII and FNPQ having as a
consequence onlyFNO to occur, and all the reaction centers to be
closed (Figure 6). Exposure of leaves to 500 µM NAC alone for
24 h resulted in milder effects on chlorophyll fluorescence
FIGURE 1 | Color-coded images of the chlorophyll fluorescence parameters Fv/Fm acquired after dark adaptation, and of FPSII, FNPQ, FNO, and qP, acquired with
140 mmol photons m–2 s−1 light intensity, after exposure to 0 (control), 50 and 100 mg L−1 BPA for 6 h. The color code depicted at the bottom of the images ranges
from black (pixel values 0.0) to purple (1.0). Nine areas of interest (AOIs) are shown in each image together with the average value (± SD) of the whole leaf for each
photosynthetic parameter. Arrows in the images point at the mid vein AOIs that were not affected or affected (negatively or positively) by the BPA application.
Asterisks on the images note the AOIs that were negatively affected by the BPA application.
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parameters (Figure 6). However, a 68% reduction of the
maximum photochemical efficiency (Fv/Fm), a 78% reduction
in the absorbed PSII light that is used for photochemistry (FPSII)
and a 62% reduction in the photoprotective energy dissipation as
heat (FNPQ) occurred. As a result, a 2.8-fold increase in the
quantum yield of non-regulated energy loss in PSII (FNO)
occurred and a 64% reduction in the fraction of open PSII
reaction centers (qp) (Figure 6). Twenty-four h treatment with
50 mg L−1 BPA alone had milder effects on chlorophyll
fluorescence parameters from all the treatments (Figure 6).

Leaf spot BPA areas, negatively affected by BPA (asterisks in
Figure 1 and Figures 2, 3, 6), showed highly increased
chlorophyll fluorescence heterogeneity compared to the rest
leaf, with a reduced fraction of open PSII reaction centers (qp)
and an increased non–regulated energy loss (FNO). In those
Frontiers in Plant Science | www.frontiersin.org 5
areas chlorophyll autofluorescence loss coexisted with an
increased H2O2 production as was shown after H2DCFDA
staining (Figures 7D–I), a phenomenon not present in control
leaves stained with H2DCFDA (Figures 7A–C).
DISCUSSION

ROS production (especially H2O2) stimulated by BPA has been
linked with the PSII photoinhibition observed under BPA
treatments (Qui et al., 2013; Li Y. T. et al., 2018). BPA seems
to affect the electron transport between PSII and PSI (Qiu et al.,
2013), but it does not exert a direct PSII damage (Li Y. T. et al.,
2018), since the block of ETR by BPA under high light is
attributed to CO2 fixation inhibition (Li Y. T. et al., 2018).
FIGURE 2 | Color-coded images of the chlorophyll fluorescence parameters Fv/Fm acquired after dark adaptation and of FPSII, FNPQ, FNO, and qP, acquired with
140 mmol photons m−2 s−1 light intensity, after exposure to 0 (control) and 50 mg L−1 BPA for 12 and 24 h. The color code depicted at the bottom of the images
ranges from black (pixel values 0.0) to purple (1.0). Nine or ten AOIs are shown in each image together with the average value (± SD) of the whole leaf for each
photosynthetic parameter.
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Moreover, in soybean BPA-treated seedlings, the inhibition of
growth was related to the decrease in photosynthesis due to a
decrease in the content of chlorophyll, the net photosynthetic
rate and changes in the chlorophyll fluorescence parameters Fv/
Fm,FPSII, and ETR that were decreased, compared to the control
(Qiu et al., 2013). In the present study, under low light, PSII
function was negatively influenced only at the spot affected BPA
zone in a dose- and time-dependent manner, while at the whole
leaf only the maximum photochemical efficiency (Fv/Fm) was
negatively affected (Figures 4, 5). This BPA induced decrease in
Frontiers in Plant Science | www.frontiersin.org 6
Fv/Fm suggests photoinhibition of PSII caused by ROS through
inhibition of CO2 assimilation and over-reduction of ETR that
increased ROS (H2O2) generation inhibiting the repair of
photodamaged PSII (Li Y. T. et al., 2018). In our experiments,
under high light all PSII photosynthetic parameters (FPSII,FNPQ,
FNO, and qP) were negatively affected by BPA application, in a
time-dependent manner (Figure 3), also in detached leaves
directly exposed to BPA aqueous solutions. Increased BPA
concentration (100 mg L−1 BPA, 6 h exposure qP image, Figure
1) or high light exposure (50 mg L−1 BPA, 12 and 24 h exposure
FIGURE 3 | Color-coded images of the chlorophyll fluorescence parameters FPSII, FNPQ, FNO, and qP, acquired with 1000 mmol photons m−2 s−1 light intensity,
after exposure to 0 (control) and 50 mg L−1 BPA for 12 and 24 h. The color code depicted at the bottom of the images ranges from black (pixel values 0.0) to purple
(1.0). Nine or ten AOIs are shown in each image together with the average value (± SD) of the whole leaf for each photosynthetic parameter.
August 2020 | Volume 11 | Article 1196
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qP images, Figure 3) resulted to necrotic death-like spots in
leaves, probably caused by increased H2O2 accumulation visible
in a spot-like manner (Figure 7).

Using the H2DCFDA staining we observed an increased H2O2

accumulation, in spots in the leaf periphery (Figure 7) under
BPA treatments. BPA-induced H2O2, could be a toxic ROS able
to cause damage to a variety of cellular structures but in parallel
can act as a potent signaling molecule involved in BPA stress
response, as it has been demonstrated in a plethora of
physiological functions (Foyer and Shigeoka, 2011; Petrov and
Breusegem, 2012; Foyer and Noctor, 2013; Moustaka et al., 2015;
Moustakas et al., 2016). H2O2 enters the cell through aquaporins
and regulates physiological and cellular processes (Foyer, 2020;
Wu et al., 2020). Still, H2O2 can diffuse through leaf veins to act
as a long-distance regulator molecule activating the antioxidant
defense during stress in plants (Wilson et al., 2006; Mittler et al.,
2011; Petrov and Breusegem, 2012; Moustaka et al., 2015;
Moustakas et al., 2017; Antonoglou et al., 2018; Sperdouli
et al., 2019). Since H2O2 travels through veins faster than from
cell to cell, it seems logic why at 6 h treatments with 50 and 100
Frontiers in Plant Science | www.frontiersin.org 7
mg L−1 BPA the fraction of open PSII reaction centers (qp) of the
mid veins AOIs (arrows) were those areas that increased first,
compared to their corresponding controls (Figure 1), while just
at longer treatments (12 and 24 h with 50 mg L−1 BPA) whole
leaf qp values increased (with the exception of the spot like
affected AOIs) compared to controls (Figure 2). However, the
exposure of A. thaliana leaves to high light and 50 mg L−1 BPA
(12 and 24 h treatment) (Figure 3) decreased the effective
quantum yield of PSII (FPSII) and over-reduced the redox state
of PQ pool closing a fraction of open PSII reaction centers (qp)
(Murabakshina et al., 2010; Foyer and Shigeoka, 2011; Mignolet-
Spuyt et al., 2016; Moustaka et al., 2018). In agreement to our
results, Li et al. (2018b) have noticed that, under high light the
BPA treatment changed similarly FPSII and qp, and concluded
that the decrease in FPSII was mainly due to the decline in qp
rather than to the decrease in the efficiency of open PSII centers
to utilize the absorbed light (Fv/Fm).

The spatiotemporal pattern of BPA effects on A. thaliana
treated leaves points out to the differential defense response of
each cell to BPA stress as it has been shown for other abiotic
A B

D E F

G IH

C

FIGURE 4 | The effects of 50 mg L−1 BPA on the effective quantum yield of photochemical energy conversion in PSII (FPSII) after 6-h (A), 12-h (B), and 24-h
exposures (C); the quantum yield of regulated non-photochemical energy loss in PSII (FNPQ) after 6 h (D), 12 h (E) and 24 h exposure (F); and the quantum yield of
non-regulated energy loss in PSII (FNO) after 6-h (G), 12-h (H), and 24-h exposures (I), all measured at 140 mmol photons m−2 s−1 in Arabidopsis thaliana leaves.
Symbol explanation: Control Whole Leaves (CWL) maintained in Petri dishes on filter paper soaked with distilled water and considered as controls; BPA treated
whole leaves (BWL) maintained in Petri dishes on filter paper soaked with 50 mg L−1 BPA; spot BPA zone (SPB) the spot like zone that was affected by BPA; spot
surrounding area (SSA); Rest of the Leaf (RL), that is the leaf area that remains if the Spot BPA zone (SPB) and the spot surrounding area (SSA) are subtracted from
the BPA-treated Whole Leaves (BWL). Error bars on columns are standard deviations based on three independent biological replicates under all treatments.
Columns under the same time treatment with the same letter are statistically not different (P < 0.05).
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stress factors, e.g., drought (Sperdouli and Moustakas, 2012),
hypoxia (Stasolla et al., 2019), paraquat (Moustakas et al., 2016),
and heavy metals as Zn (Moustakas et al., 2019a), or Cd
(Moustakas et al., 2019b). This can be due to the fact that
plant cells have to defend themselves independently since they
lack specialized cells and effective plant defense strongly relies in
each single cell (Ruano and Scheuring, 2020).

In an earlier study, BPA residual concentrations had a
negative correlation with H2O2 levels, i.e., an increase in H2O2

seemed to reduce BPA levels inside the plant tissue (Zhang et al.,
2018). These results allowed to speculate that BPA could either be
a direct target of ROS, and therefore subjected to oxidation (Reis
et al., 2014) or ROS molecules could activate a cascade of
secondary metabolic reactions degrading BPA (Noureddin
et al., 2004) and finally the ROS-activated antioxidant enzymes
could destroy BPA (Kang and Kondo, 2006). So in soybean roots,
H2O2 initiated accumulation offered a protection against BPA
(Zhang et al., 2018). Likewise, in our experimental system if BPA-
induced H2O2 accumulation (Figure 7) is hindered, with
NAC application (Figure 6), leaf photosynthesis is utterly being
interrupted (FNO=1; Figure 6). Therefore, this H2O2 production
could be necessary for promoting signaling events that could
assist the plant to alleviate BPA-stress. NAC is a strong ROS
scavenger (Zafarullah et al., 2003) since the SH group of NAC is
able to donate an H-atom or an electron. Numerous researchers
have used it as a mean to reduce either the stress-induced or
naturally occurring H2O2 (Livanos et al., 2012; Muranaka et al.,
2013; Sun et al., 2014; Livanos et al., 2016; Adamakis and
Eleftheriou, 2019; Colak et al., 2019). Generally, NAC is being
considered not toxic for plants and the environment even when
Frontiers in Plant Science | www.frontiersin.org 8
applied in high concentrations for large periods of time (i.e., Sun
et al., 2014), able to alleviate oxidative stress induced by several
stressors, e.g., heavy metals (Sun et al., 2014; Colak et al., 2019).
However, when used to diminish naturally occurring ROS several
cellular defects have been noticed. For instance, when NAC was
applied in wheat or A. thaliana roots, microtubule organization
was affected (Livanos et al., 2012) while cytokinesis failed to be
accomplished (Livanos et al., 2016). The above indicated that
ROS is an important factor enrolled in the microtubule assembly
and cell division completion (Livanos et al., 2012; Livanos et al.,
2016). Expanding the beneficial role of both naturally occurring
and BPA-induced H2O2, we here noticed that ROS seem to have
also pivotal role in the light reactions of photosynthesis. This
comes as no surprise since the electron transport between PSII
and PSI is a major source of ROS, which are considered more as
signaling molecules rather than damaging ones (Hajiboland,
2014; Foyer et al., 2017). The role of chloroplast antioxidants,
that often have overlying or interrelating functions, is not to
totally eliminate O2

• –, H2O2 and
1O2, but rather to achieve an

appropriate balance between production and subtraction so that
to match with the operation of photosynthesis and permit an
efficient spread of signals to the nucleus (Foyer, 2018). When
NAC diminished these naturally occurring ROS (Figure 6), all of
the PSII photosynthetic parameters (FPSII, FNPQ, FNO, and qP)
were severely affected, indicating the importance of naturally
occurring ROS in PSII photochemistry. Now it is well established
that ROS are a necessary part of subcellular and intercellular
communication in plants and that some of their signaling
functions require ROS-metabolizing systems (Noctor
et al., 2018).
A B

D E F

C

FIGURE 5 | The effects of 50 mg L−1 BPA on the maximum photochemical efficiency (Fv/Fm) after 6-h (A), 12-h (B), and 24-h exposure (C), and the redox state of
the plastoquinone (PQ) pool (qp), a measure of the fraction of open PSII reaction centers after 6-h (D), 12-h (E), and 24-h exposures (F), all measured at 140 mmol
photons m−2 s−1 in Arabidopsis thaliana leaves. Symbol explanation: control whole leaves (CWL) maintained in Petri dishes on filter paper soaked with distilled water
and considered as controls; BPA-treated whole leaves (BWL) maintained in Petri dishes on filter paper soaked with 50 mg L−1 BPA; spot BPA zone (SPB) the spot
like zone that was affected by BPA; spot surrounding area (SSA); rest of the leaf (RL), that is the leaf area that remains if the spot BPA zone (SPB) and the spot
surrounding area (SSA) are subtracted from the BPA-treated whole leaves (BWL). Error bars on columns are standard deviations based on three independent
biological replicates under all treatments. Columns under the same time treatment with the same letter are statistically not different (P < 0.05).
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Our results confirm the view that ROS-removing systems are
considering ROS as beneficial molecules that regulate damaging
ROS below dangerous levels (Noctor et al., 2018). So, one can
easily conclude, that ROS seem to play a pivotal role in plant
response against BPA toxicity (Zhang et al., 2018), as we
observed in BPA-affected leaves of A. thaliana. While the
Frontiers in Plant Science | www.frontiersin.org 9
concept that animal and plant cells need to remove ROS
production to avoid extreme and permanent oxidation was the
dominant view in the literature, the opinion is now shifting
towards recognition of a positive role of ROS as well (Noctor and
Foyer, 2016; Foyer et al., 2017). ROS generation can activate the
plant’s defense mechanisms in order to cope with the oxidative
FIGURE 6 | Color-coded images of the chlorophyll fluorescence parameters Fv/Fm, FPSII, FNPQ, FNO, and qP, after exposure of Arabidopsis thaliana leaves to 0
(control), or 50 mg L−1 BPA plus 500 µM NAC, or 500 µM NAC alone, or only 50 mg L−1 BPA, for 24 h. The color code depicted at the bottom of the images ranges
from black (pixel values 0.0) to purple (1.0). Ten to fourteen AOIs are shown in each image together with the average value (± SD) of the whole leaf for each
photosynthetic parameter.
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stress damage and are essential for redox sensing, signaling and
regulation (Petrov et al., 2015; Foyer, 2018; Malea et al., 2019).
Plants have developed during the course of evolution numerous
ROS-generating pathways tightly accomplishing plant function
and development (Noctor et al., 2018). Therefore, the necrotic
death-like spots under BPA exposure could be due to ROS
accumulation, but H2O2 production has dual function in
plants playing also a protective role in BPA-induced stress.
A crucial ROS role in the photochemical reactions of
photosynthesis is further on confirmed.
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