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The family of pantropical spiral gingers (Costaceae Nakai; c. 125 spp.) can be used as a
model to enhance our understanding of the mechanisms underlying Neotropical diversity.
Costaceae has higher taxonomic diversity in South and Central America (c. 72 Neotropical
species, c. 30 African, c. 23 Southeast Asian), particularly due to a radiation of Neotropical
species of the genus Costus L. (c. 57 spp.). However, a well-supported phylogeny of the
Neotropical spiral gingers including thorough sampling of proposed species encompassing
their full morphologic and geographic variation is lacking, partly due to poor resolution
recovered in previous analyses using a small sampling of loci. Here we use a phylogenomic
approach to estimate the phylogeny of a sample of Neotropical Costus species using a
targeted enrichment approach. Baits were designed to capture conserved elements’ variable
at the species level using available genomic sequences of Costus species and relatives. We
obtained 832 loci (generating 791,954 aligned base pairs and 31,142 parsimony informative
sites) for samples that encompassed the geographical and/or morphological diversity of some
recognized species. Higher support values that improve the results of previous studies were
obtained when including all the available loci, even those producing unresolved gene trees
and having a low proportion of variable sites. Concatenation and coalescent-based species
trees methods converge in almost the same topology suggesting a robust estimation of the
relationships, even under the high levels of gene tree conflict presented here. The bait set
design here presented made inferring a robust phylogeny to test taxonomic hypotheses
possible and will improve our understanding of the origins of the charismatic diversity of the
Neotropical spiral gingers.
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INTRODUCTION

One of the most widely recognized patterns in ecology and
biogeography is that lineages tend toward species richness in
tropical regions (Kreft and Jetz, 2007); however, the mechanisms
that originate such patterns of diversity are still poorly
understood. In addition, richness is not uniform across the
tropical regions; the Neotropics stand as the most diverse with
around 90,000–110,000 species of seed plants that could exceed
the numbers of tropical Africa with 30,000–35,000 spp.
and tropical Asia and Oceania with 40,000–82,000 spp.,
combined (Antonelli and Sanmartıń, 2011; Hughes et al.,
2013). Hypotheses addressing higher species richness in the
Neotropics include opportunities for allopatric speciation, the
availability of new habitats through uplift of the Andes (Gentry,
1982), major habitat and climate shifts prompted by shifts in the
Amazon river drainage (Hoorn et al., 2010), and closure of the
Panama isthmus (Bacon et al., 2013). Possibilities for prezygotic
reproductive isolation driven by shifts in pollination syndromes
(Serrano-Serrano et al., 2017), adaptation to local conditions
leading to ecological speciation (Antonelli et al., 2018), or the
effects of polyploidization on diversification rates (Soltis
and Soltis, 2009; Landis et al., 2018) of Neotropical lineages
are additional mechanisms that could explain the relatively
higher diversity of Neotropical plant lineages compared to
their Paleotropical congeners. Alternative explanations for the
uneven distribution of biodiversity at continental scale include
dispersal dynamics driven by historical changes in climate and
differential extinction rates (Meseguer and Condamine, 2020).
Specifically, the importance of extinction has been discussed to
understand lower species richness in Africa compared to the
Neotropics and South-East Asia (Couvreur, 2015).

The idea of the importance of interactions with pollinators for
the diversification of flowering plants traces back to Darwin
(1862). Selection can act to mold the characteristics of flowers
driven by their predominant or most effective pollinators
(Stebbins, 1970). The combination of traits (e.g. morphology,
color, scent, size, rewards) associated with particular pollinator
groups are known as pollination syndromes (Faegri and Pijl,
1979; Rosas-Guerrero et al., 2014). A recent study suggests that
floral traits related to pollination efficiency (flower shape and
orientation, position of reproductive organs) could be more
important than widely considered traits including exposure,
display size, scent, color, symmetry, and timing of anthesis
(Dellinger et al., 2019). Although the validity of the concept of
pollination syndromes has been debated, studies have been able
to predict pollinators using floral traits and to confirm a stronger
association in plants distributed in the tropics and associated
with bats, bees, and hummingbirds (Rosas-Guerrero et al., 2014;
Ashworth et al., 2015). Diversification rates within hummingbird
pollinated lineages have been shown to be higher than in bee
pollinated ones (Lagomarsino et al., 2016; Serrano-Serrano et al.,
2017) and shifts towards hummingbird pollination syndrome
associated with areas of high diversity of these birds in the
Neotropics (Tripp and Manos, 2008). Furthermore, although
syndromes can constitute specialized systems on specific
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pollinator guilds, they have been shown to be labile, with
transitions and reversions happening repeatedly through
the history of some Neotropical plant lineages (Tripp and
Manos, 2008).

The family of pantropical spiral gingers (Costaceae Nakai; c.
125 spp.) can be used as a model to enhance our understanding
of the mechanisms underlying Neotropical diversity. Costaceae
has higher taxonomic diversity in South and Central America (c.
72 Neotropical species, c. 30 African, c. 23 Southeast Asian),
particularly due to a radiation of Neotropical species of the genus
Costus L. (c. 57 spp.). Costus is broadly distributed in the New
World inhabiting lowland rain forest, montane rain forests, and
periodically inundated várzea forests in elevations from the sea
level up to 2,000 m, but mainly below 1,000 m (Maas, 1972).
Previous studies have shown that the Neotropical species of
Costus show multiple shifts in pollination syndromes, with
closely related species that are associated with either insects
or birds demonstrating rapid ecological isolation (Kay et al.,
2005; Specht et al., 2012; Salzman et al., 2015). Furthermore,
species within the Neotropical Costus clade have shown higher
diversification rates during the last c. 10–20 million years (see
André et al., 2016 for a discussion on the dates) as compared with
the rest of the family, including the closely related African Costus
lineages, and the prevalence in these lineages of sympatric species
is higher regardless of time to differentiate (André et al., 2016).
However, attempts to estimate phylogenies with a handful of
plastid and nuclear loci have led to unresolved relationships in
the species-rich clade comprising the Neotropical Costus
(Salzman et al., 2015; André et al., 2016). Therefore, a well-
supported phylogeny of the Neotropical spiral gingers, including
thorough sampling of proposed species encompassing their full
morphologic and geographic variation, is much needed.

The low resolution in the phylogenies adds uncertainty
to the current understanding of the mechanisms that
produced the charismatic and intriguing diversity within the
spiral gingers. For example, a clear understanding of the
phylogenetic relationships of closely related species that have
undergone major shifts in morphology would allow us to test
the genetic mechanisms underlying the changes between
ornithophilous (bird attracting) and melittophilous (bee
attracting) pollination syndromes that repeatedly took place in
the history of this lineage and to characterize the role of these
genetic mechanisms in shaping the speciation processes
(Salzman et al., 2015). In addition, a fully resolved phylogeny
of the species-rich clades of Costaceae would enlighten the
taxonomy of the group (Maas, 1972; Maas, 1977), with
extensive implications for understanding spatial and temporal
patterns of distribution.

The difficulties in estimating robust, species-level phylogenies
for speciose lineages are expected because of the combination of
processes affecting recent radiations, including incomplete
lineage sorting due to rapid differentiation and/or large
population sizes and hybridization followed by introgression
(Pamilo and Nei, 1988; Maddison, 1997; Maddison and
Knowles, 2006). Coupled with the advances in sequencing
technologies (Lemmon and Lemmon, 2013; McCormack and
August 2020 | Volume 11 | Article 1195
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Faircloth, 2013), target enrichment provides a solution for the
need to acquire the hundreds or thousands of loci throughout the
genome that are necessary to unveil the phylogenies of species
rich and recently radiated plant lineages (Cronn et al., 2012).
This is particularly true for those groups with large genome sizes,
for which the sequencing and computational costs associated
with whole-genome approaches quickly become restrictive as
accession numbers increase (McKain et al., 2018). One of the
additional and major advantages of targeted sequencing is that
fragmented DNA from herbarium specimens can be used
successfully (Hart et al., 2016; Brewer et al., 2019) allowing the
sampling of lineages that are only available as herbarium
specimens and to include specimens representing historic
distributions. The accessions available for phylogenetic studies
in natural history collections are essential to survey the diversity
of species-rich groups, to include narrow endemics difficult to
collect in the field and to account for variation in widespread and
polymorphic species (Särkinen et al., 2012; Buerki and Baker,
2016; Bieker and Martin, 2018; Valderrama et al., 2018). The use
of target enrichment strategies to gather low or single copy
nuclear loci for phylogenomics of plant lineages at different
scales (Nicholls et al., 2015; Sass et al., 2016) is becoming a
standard technique, and the establishment of universal probe
sets could reduce costs and time while enabling the merging
of datasets from different studies and across plant lineages
(Johnson et al., 2019; Larridon et al., 2020). However,
divergence between the target sequences and the baits does
affect capture efficiency (Larridon et al., 2020). The alternative
process of designing custom baits allows researchers to aim for
variable loci at the specific taxonomic scale of interest for the
focus group, provided preliminary data is available for bait
design (McKain et al., 2018). The increasing availability of
genomic and transcriptomic data across the tree of life and the
accessibility of pipelines to identify potential orthologs with low
or single copy number (Chamala et al., 2015; Faircloth, 2016)
help support the design of clade-specific bait sets (e.g.
Vatanparast et al., 2018; Finch et al., 2019; Soto Gomez et al.,
2019). Larridon et al. (2020) compared family specific probes and
the Angiosperms-353 (Johnson et al., 2019) and obtained similar
results with both approaches. However, universal probes could
save labor and allow merging datasets of multiple studies, while
taxa specific probes could improve recovery of target loci.

Here we use a phylogenomic approach to estimate
the phylogeny of the Neotropical species of Costus, using a
targeted enrichment approach. Baits were designed to capture
conserved elements as identified from genomic sequences of
Costus species and relatives. We sampled described and newly
proposed species to test for reciprocal monophyly and included
multiple samples from widespread and enigmatic species
covering observed morphologic and geographic variation.
DNA was extracted from living collections, field collected
material, and herbarium samples to include population-level
diversity. The resulting phylogeny of the Neotropical spiral
gingers sheds light on the taxonomy of this lineage and enables
us to confirm the multiple shifts in pollination syndromes during
the evolution of Costus species.
Frontiers in Plant Science | www.frontiersin.org 3
MATERIALS AND METHODS

Taxon Sampling
Samples were chosen such that, when possible, they
encompassed the geographical and/or morphological diversity
of each species recognized or proposed for an updated
monograph (Maas, 1972; Maas, 1977; Maas et al. pers. comm.).
Widely distributed species or those being tested for monophyly
include up to four accessions representing geographic and/or
phenotypic variation. For field collected specimens, DNA was
extracted from silica-dried leaf material, and voucher specimens
were deposited in herbaria or in living collections (see
Supplementary Table 1). For those not vouchered or in
cultivation but included to increase geographic sampling for a
given species, provenance data is recorded on inaturalist.org and
is cross referenced with accession numbers. In total, thirty-one of
c. 57 Neotropical Costus species were included in this analysis
with sampling from field and herbarium-collected material.

Baits Design
Bait design followed the phyluce pipeline (Faircloth et al., 2012;
Faircloth, 2016) with the following modifications. Instead of
using annotated genomes and generating simulated reads from
the assembled genomes, raw Illumina reads from Costus
spicatus (Jacq.) Sw. and Costus longibracteolatus Maas genomic
data (unpublished, Ana M.R. Almeida) were cleaned with
TrimGalore 0.6.0 (Martin, 2011; https://github.com/
FelixKrueger/TrimGalore) using a size cutoff of 36 bp (–length
36) and used in the alignment step. For the 7,723 regions that
were found in the phyluce pipeline, local de novo assembly was
performed with aTRAM 2.0 (Allen et al., 2018) using the cleaned
Costus reads for each species separately, using two de novo
assembly algorithms—Velvet 1.2.10 (Zerbino and Birney,
2008) and SPAdes 3.11.1 (Bankevich et al., 2012). Regions
which generated a single de novo assembly contig after
merging overlapping contigs (4-FinalAssembly.pl by Sonal
Singhal; https://github.com/CGRL-QB3-UCBerkeley/denovo
TargetCapturePopGen/blob/master/4-FinalAssembly) were
carried on to subsequent filtering steps (2,686 regions). All
regions that were found as a single contig in either Costus
genome were carried forward; if the same region was found in
both Costus genomes, the longer of the two regions was chosen.
Several steps were added to the phyluce pipeline to filter regions
of repetitive or putatively nonhomologous regions and to expand
the dataset to regions that had known overlap with other
published studies in the Zingiberales. 1) Sequences shorter
than 160 bp were removed [2,388 regions remained]. 2)
megaBLAST (Morgulis et al., 2008) all against all was
conducted, and sequences which matched to any region other
than itself were removed [removed 619 regions]. 3) BLAST
(Altschul et al., 1990) searches against monocot mitochondrial
and plastid genomes downloaded from the RefSeq database
(O’Leary et al., 2016) were performed to remove sequences
that matched these genomes [removed 399 regions]. At this
point 2,019 regions passed filtering. 4) BLAST analyses to the
RepeatMasker database (Smit et al., 2015) were used to identify
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regions matching to transposons [removed five regions]. 5) Only
regions with a GC content between 37 and 55% GC were retained
to improve bait capture efficiency [removed two regions]. 6)
Baits from a single Costus representative found in Sass et al.
(2016) were added to the set [240 regions added]. 7) bait regions
that were generated as part of Carlsen et al. (2018) were subjected
to local de novo assembly with aTRAM as described above, to
find these bait regions for Costus [47 regions added after filtering
for length and GC content, as above]. Some regions were added
that are of specific interest for studies addressing development
and morphological characters (note: these were excluded from
the downstream analyses of the present study) for a total target
length of approximately 1 million base pairs. This dataset was
used to create custom 100 mer probes in a 20 K design by
myBaits (Arbor Biosciences, Ann Arbor, MI, USA) with
3× tiling.

DNA Extraction and Library Preparation
Leaf material was dried in silica and extracted using an SDS
protocol (Edwards et al., 1991; Konieczny and Ausubel, 1993).
Zymo DNA Clean & Concentrator-5 kits were used to purify the
extractions (Zymo Research, Irvine, CA, USA). The size of the
obtained fragments was checked in a 1% agarose gel. When
average fragment size was above 350 bp, we followed the
manufacturer’s protocol for the Covaris E220 evolution
Focused-ultrasonicator (Covaris, Woburn, MA, USA) to obtain
an average fragment size of 350 bp. Double-sided-size selection
was performed with size selection beads using a homemade
solution of Carboxyl-modified Sera-Mag Magnetic Speed-beads
(Thermo Fisher Scientific, Freemont, CA) in a PEG/NaCl buffer
(Rowan et al., 2017).

Dual- indexed l ibrar ies were prepared fol lowing
manufacturer’s recommendations with the KAPA Hyper Prep
kit with 500 ng of size-selected DNA quantified with Qubit 3.0
Fluorometer (Life Technologies, Grand Island, NY, USA). The
volume per reaction was reduced to 1/5th following the
recommendations of Lydia Smith at the Evolutionary Genetics
Laboratory at UC Berkeley (comm. pers.; protocol available at
https://osf.io/fkj2x). We used TruSeq style barcodes (8 bp) with a
Stubby Adapter (see the Supplementary Material Data) and
indexing primers provided by the Vincent J. Coates Genomics
Sequencing Laboratory at UC Berkeley. Indexed samples were
pooled (4–10 samples/reaction) and enriched with the custom
probes following the manufacturer’s instructions (myBaits
Manual v4.01, Arbor Biosciences, Ann Arbor, MI, USA) with a
hybridization temperature of 65°C for 24 h. Because different
blocking oligos show significant differences in performance
(Portik et al., 2016), we used the Roche Universal Blocking
Oligo Kit and SeqCap EZ Developer Reagent with plant C0t-1
DNA instead of the Blockers Mix supplied with the baits.
Capture efficiency was assessed by comparing the amplification
of target and off-target regions with a qPCR using the
PowerUp™ SYBR™ Green Master Mix (Thermo Fisher
Scientific Baltics UAB, Vilnius, Lithuania) in the ViiA 7 Real-
Time PCR System (Applied Biosystems, Foster City, CA, USA).
Frontiers in Plant Science | www.frontiersin.org 4
The enriched and pooled libraries (100 individuals in 11
reactions) were sequenced on a lane of NovaSeq SP 150PE in
the Vincent J. Coates Genomics Sequencing Laboratory at
UC Berkeley.

Reads Processing, Assembly
and Alignment
Reads were trimmed to remove low quality bases and adapter
sequences with TrimGalore and normalized to 100× coverage
using BBNorm (BBMap 38.74; Bushnell, 2020). HybPiper 1.3.1
(Johnson et al., 2016) with default settings was used to extract the
reads that were mapped to the 1,521 target loci with BWA 0.7.12
(Li and Durbin, 2009). Mapped reads were assembled into
contigs with SPAdes 3.13.1 (Bankevich et al., 2012) and
discarded when coverage was lower than 8×. Summary
statistics of the mapped reads were obtained with samtools 1.3
(Li et al., 2009). Only exonic sequences were kept in the
downstream analyses to avoid inaccurate alignments. Paralog
sequences for the assembled loci were retrieved with HybPiper.
Loci with paralog warnings obtained for more than 5% of the
accessions with recovered loci were excluded from downstream
analyses. Available chloroplast genomes (Sass et al., 2016) were
used to assemble plastid coding sequences using HybPiper and
aTRAM; however, we recovered a very low amount of off-target
reads in our libraries preventing us from generating comparable
plastid sequences for our accessions. Contigs obtained were
aligned using MAFFT 7.271 (Katoh and Toh, 2010) with the
iterative (maximum iterations set to 10,000) refinement method
incorporating local pairwise alignment information and with a
gap opening penalty of 10. Trimal 1.3 (Capella-Gutiérrez et al.,
2009) was used to remove poorly aligned bases and spurious
sequences (-resoverlap and -seqoverlap parameters, 0.75. and
75 respectively).

Phylogenetic Inference
The alignments were used to estimate gene trees for each
locus using RAxML 8.2.12 (Stamatakis, 2014) with the rapid
bootstrap analysis (200 replicates) and search for best-scoring
maximum likelihood tree in the same run with a GTR +
GAMMA substitution model. Abnormally long branches were
determined by TreeShrink (Mai and Mirarab, 2018) with default
values for the species mode (a =0.05, b = 5%). The algorithm
estimates the distribution of branch lengths for each individual
within the gene trees and uses it to identify significantly
long branches and removes them in the respective trees
and alignments.

We concatenated the loci and fitted a GTR + GAMMA
substitution model for each gene and allowed IQ-Tree 1.6.10
(Nguyen et al., 2015; Chernomor et al., 2016; Kalyaanamoorthy
et al., 2017) to explore merging those partitions corresponding to
each gene using the greedy heuristic algorithm (Lanfear et al.,
2012) before finding trees. The analysis became computationally
intractable when considering the many possible schemes to
merge the partitions of so many genes. We therefore used the
relaxed cluster algorithm (rcluster option; Lanfear et al., 2014)
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that examines only the top 10% of the partition merging
schemes. To assess the impact of using the relaxed cluster over
the greedy heuristic algorithm, we also reduced the number of
genes dividing the loci into three subsets to complete more
thorough analyses using the greedy algorithm. Focusing on
nodes with higher support within each gene tree (due to the
overall low support values for individual gene trees), we used 40,
50, and 60% as threshold values of the upper quartile of rapid
bootstrap support values obtained in RAxML for each gene tree
to subset the obtained loci. This enabled us to focus on the loci
that produced better supported trees and could potentially be
more informative for our study.

We used ultrafast bootstrap approximation (Hoang et al.,
2018) combined with the single branch SH-like approximate
likelihood ratio test (SH-aLRT; Guindon et al., 2010)
implemented in IQ-Tree, each with 10,000 replicates to assess
the support of the resulting trees. The ultrafast bootstrap support
values resulting from the analyses with the different subsets were
mapped to the topology obtained with all loci using phangorn
2.5.5 (Schliep, 2011). Differences among subsets in ultrafast
bootstrap support values were tested with a Friedman test
(Friedman, 1937) and post hoc Wilcoxon signed-rank tests
(Wilcoxon, 1945) with a Bonferroni correction (Bonferroni,
1935) in R 3.5.1 (R Core Team, 2013). Whenever possible,
analyses were run in the CIPRES portal (Miller et al., 2011).

To consider incongruence among gene trees using methods
statistically consistent under a multispecies coalescent model, we
estimated species trees with ASTRAL 5.6.3 (Zhang et al., 2017)
with all the obtained loci and the subsets. We contracted the low
support branches of the gene trees (<10%) to improve the
accuracy of the method (Zhang et al., 2017) using Newick
Utilities 1.6 (Junier and Zdobnov, 2010). R packages treeio
1.10.0 and ggtree 2.0.4 (Yu et al., 2017) were used to plot the
quartet support values estimated with ASTRAL on the resulting
topology using the −t2 output option. We used phytools 0.6-99
(Revell, 2012) function cophylo to visually compare the
concatenation and coalescent-based species trees.

Preliminary analysis indicated that the accessions from other
Neotropical genera (Dimerocostus Kuntze and Chamaecostus C.
Specht & D. W. Stev) were very divergent compared to the
differentiation found within the Neotropical Costus lineages and
could inflate the tree diameter and reduce the ability of
TreeShrink to detect abnormally long branches, so only Costus
species were included in the final analyses, with the African C.
fenestralis Maas & H.Maas used as an outgroup based
on previous studies confirming that Neotropical Costus are
derived from African lineages (Salzman et al., 2015; André
et al., 2016). Alignments with too few individuals (<50) and
subsequently, individuals with too few loci (<520 for the analysis
with all the obtained loci) were excluded from the analyses to
avoid the effects of excessive missing data. Whenever necessary,
accessions were removed from the alignments using AMAS 0.98
that was also used to generate summary statistics (Borowiec,
2016). The proportion of parsimony informative sites was
compared among subsets with a Fisher–Pitman permutation
test implemented in the R package coin 1.3-1 (Hothorn et al.,
Frontiers in Plant Science | www.frontiersin.org 5
2008) using an approximative (Monte Carlo) reference
distribution with 100,000 replicates and a post hoc pairwise
permutation test with a Bonferroni correction to adjust p
values for multiple comparisons with rcompanion 2.3.25
package (Mangiafico, 2016). Because of the assumed absence of
hybridization and introgression transversal to the phylogenetic
inference methods, all analyses were remade excluding the
individuals identified as potential hybrids to avoid their impact
on the results. The potential hybrids (nine individuals) and
candidate parentals were identified based on morphological
characters, and access to detailed images of those individuals is
provided in Supplementary Table 1. We also estimated an
evolutionary network for the New World Costus species using
the NeighborNet algorithm with uncorrected p-distances and
500 bootstrap replicates in SplitsTree 4.16.1 (Huson and
Bryant, 2005).
Phylogenetic Comparative Methods
To better understand the evolution of pollination syndromes in
the Neotropical Costus clade we used stochastic character
mapping (Huelsenbeck et al., 2003) to reconstruct ancestral
character states. Taxa were coded as either bee pollinated
(melittophilous) or bird pollinated (ornithophilous) based on
their morphological display of pollination syndrome. We used
models with equal and different transition rates for the shifts in
pollination syndromes, as implemented in phytools, and
generated 1,000 stochastic character maps with the resulting
phylogeny of the concatenation approach. The equal and
different rate models were compared with a likelihood-ratio
test. Individuals of the same species that formed monophyletic
clades were pruned from the phylogeny leaving a single accession
per species. The resulting character maps were summarized to
estimate posterior probabilities of the ancestral pollination
syndromes of Costus diversity in the new world tropics. To
explore biogeographical history of the study group, we assigned
species to the World Wildlife Fund’s ecoregions (Olson et al.,
2001) as summarized by Antonelli et al. (2018). We used the data
presented by Salzman et al. (2015) and from herbaria records
available in the Global Biodiversity Information Facility to
assign the areas to the species. Undescribed taxa and poorly
known lineages were excluded to avoid underestimating the
distribution ranges. Nonmonophyletic species were reduced to
a single accession by keeping the one that matched the known
phylogenetic affinities (Salzman et al., 2015; André et al., 2016).
We used BioGeoBEARS likelihood framework to fit a model of
Dispersal-Extinction Cladogenesis (DEC) to our dataset
(Matzke, 2013), allowing any species to occupy a maximum of
six areas of the eight included in the analysis. To fit a DEC model
the tree was forced to be ultrametric using penalized likelihood
with correlated rate variation among branches (Kim and
Sanderson, 2008) using the chronos function of ape R package
(Paradis and Schliep, 2019), and branch lengths were multiplied
by 100,000 to have a range of values between 1 and 1,000. The +J
model was not considered in the analysis because of its
conceptual and statistical flaws (Ree and Sanmartıń, 2018).
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RESULTS

Capture Efficiency and Phylogenetic
Information of Captured Reads
We obtained on average 4.018 (SD = 2.016, Min = 0.615–Max =
9.606) million reads per accession of which 46.612% (8.889%,
27.100–64.400%) were on target and assembled on average
on 1,210.600 (248.501, 162–1,355) loci per accession
(Supplementary Figure 1). Of the target loci intended for the
phylogenomic reconstruction, we obtained 1,145 aligned loci
generating 881,627 aligned base pairs yielding 36,596 parsimony
informative sites (PIS). 313 loci had paralogy warnings for more
than 5% of the obtained sequences; the remaining 832 had
792,974 aligned base pairs with 31,462 PIS. The distribution of
loci that produced gene trees with higher bootstrap support
values according to the thresholds (>40, >50, and >60%) of the
upper quartile of the RAxML rapid bootstrap support values is
presented in Table 1 and Supplementary Figure 2. The longer
alignments show a tendency to have more PIS (Figure 1), and
the proportion of PIS is significantly different among the subsets
of loci (c²[3] = 171, p < 0.0001; Figure 2). The PIS are
significantly higher in the subsets of loci that yielded the gene
trees with at least 40% rapid bootstrap support values in the
upper quartile (bs > 40% v. bs ≤ 40%: Z = 8.587, adjusted p <
0.0001; bs > 50% v. bs ≤ 40%: Z = 8.566, adjusted p < 0.0001; bs >
60% v. bs ≤ 40%: Z = 11.260, adjusted p < 0.0001) and marginally
(bs > 50% v. bs > 60%: Z = −3.072, adjusted p = 0.0128) or
nonsignificantly different among them (bs > 40% v. bs > 50%: Z =
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0.794, adjusted p > 0.999; bs > 40% v. bs > 60%: Z = −1.838,
adjusted p = 0.396).

Phylogenomic Inference
We obtained high support values for most of the inferred
relationships using the concatenation approach (Figure 3). The
ultrafast bootstrap support values obtained with the different
subsets of loci are significantly different (c²[3] = 49.127, p <
0.0001), and the analysis with the highest levels of support is the
one that includes all available loci, as compared with analyses
using only loci that produced more resolved gene trees and had a
higher proportion of PIS (Figure 4). Wilcoxon signed-rank tests
showed significant differences in the comparisons of the ultrafast
bootstrap support values of All loci v. bs > 50% (V = 501,
adjusted p < 0.001, adjusted r = −0.454), All loci v. bs > 60% (V =
622, adjusted p < 0.0001, adjusted r = −0.540), bs > 40% v. bs >
50% (V = 467.5, adjusted p = 0.005, adjusted r = −0.365) and bs >
40% v. bs > 60% (V = 612, adjusted p < 0.0001, adjusted r =
−0.518). We obtained marginal differences for bs > 40% v. bs >
50% (V = 515.5, adjusted p = 0.080, adjusted r = −0.228) and
nonsignificant differences for All loci v. bs > 40% (V = 273,
adjusted p = 0.607, adjusted r = −0.067). All p values were
corrected for multiple comparisons and subsequently used to
estimate the r values. Considering a smaller subset of the best
merging schemes of substitution models for the partitions did
not prevent the analysis (including all loci) to yield higher
support values. The topology remains stable when the number
of regions included is reduced (except for the >60% subset), but
support values decay when considering fewer loci, even if those
being kept are the more informative ones within the dataset
(Supplementary Figures 3A–C). The reduction in support
values is most noteworthy for the deeper nodes in the tree
comprising the early diverging lineages of Neotropical Costus.
The branch lengths of the more weakly supported backbone of
the phylogeny are very short, and the values of the local posterior
probability of the ASTRAL analysis are also the lowest in the tree.

The normalized quartet score of the topology obtained with
ASTRAL is 70.778%, suggesting high levels of discordance
among gene trees. The quartet scores indicate high levels of
gene tree conflict in the backbone of the phylogeny; even
relationships with high local posterior probabilities show that
several gene trees support the alternative topologies of each
quartet (Figure 5). Despite the high levels of conflict among
gene trees, short branches in the early diverging lineages of the
phylogeny and the completely different approaches used to
estimate species trees, the overall topology recovered with
concatenation v. coalescent-based species tree method is
almost identical, suggesting robustness of the relationships
recovered by the methodology (Figure 6).

Most of the species which were sampled for more than one
individual are recovered as monophyletic in our resulting
phylogeny, even when considering broad geographical
variation (e.g. Costus lima K. Schum. with individuals sampled
from Ecuador and Costa Rica, Costus lasius Loes. with
individuals from Peru and Panama) or morphological variation
(e.g. Costus sp. nov. Peru with glabrous and pubescent forms
recovered as sister). Enigmatic lineages that will likely constitute
TABLE 1 | Summary statistics of the length in base pairs and the number of
parsimony informative sites (PIS) for the alignments of all the 832 loci and the
subsets defined by the upper quartile of the RAxML rapid bootstrap support
values of each gene tree (≤40, >40, >50, and >60%).

Contig (bp) PIS

All mean 951.868 37.43
n = 832 sd 968.228 66.529

min 126 0
max 6,123 686
total 791,954 31,142

≤40 mean 449.222 11.463
n =568 sd 411.547 21.41

min 126 0
max 3,515 290
total 255,158 6,511

(40,50] mean 1,684.18 69.876
n = 89 sd 957.432 77.98

min 165 11
max 5,895 595
total 149,892 6,219

(50–60] mean 2,031.622 87.418
n = 98 sd 847.812 90.043

min 675 24
max 6,123 686
total 199,099 8,567

>60 mean 2,439.026 127.857
n = 77 sd 864.684 99.038

min 487 45
max 5,349 654
total 187,805 9,845
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new species show considerable divergence from closely related
species (e.g. C. sp. nov. Colombia). In other cases, our phylogeny
includes lineages that are not closely related yet are currently
considered as a single species: for example, C. amazonicus (Loes.)
subspecies amazonicus J.F.Macbr. and Costus amazonicus
subspecies krukovii Maas, and C. guanaiensis varieties (incl.
Costus guanaiensis var. tarmicus (Loes.) Maas). Similarly, an
individual from Puerto Rico identified as Costus pictus D.Don is
not related to the accessions of the same species fromMexico and
Costa Rica. Either Costus aff. erythrothyrsus accessions from the
Acre Region in Brazil or Costus erythrophyllus Loes. lineages
from the foothills of the eastern and western ridges of the
Colombian Andes are monophyletic clades in our results.
Various accessions having intermediate morphologies that
were identified as potential hybrids between species cluster
with one of the species identified as possible parentals. The
support values for the backbone of the phylogeny are visibly
lower in the analyses that included the potential hybrids
(Supplementary Figure 4) than the analyses where those
accessions were excluded (Figure 3). The NeighborNet
network similarly clusters potential hybrids with candidate
parentals and supports the topology obtained with the other
analyses (Supplementary Figure 5).

Phylogenetic Comparative Methods
We selected the model with equal transition rates for the
shifts in pollination syndromes for the stochastic character
mapping analysis because including different rates did not
FIGURE 1 | Positive relation between alignment length and parsimony informative sites for the 832 loci obtained. Different shapes identify the subsets based on the threshold
values of the upper quartile of rapid bootstrap support values obtained in RAxML for each gene tree. Colors indicate the number of accessions for which each loci was obtained.
FIGURE 2 | Violin plots showing the distribution of the proportion of
parsimony informative sites for the subsets of loci.
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improve likelihood significantly (c2[1] = 0.916, p = 0.339).
Posterior probabilities indicate multiple changes in pollination
syndromes during the evolutionary history of Costus, with shifts
occurring at least four times within the Neotropical lineage.
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The changes involve shifts to melittophilous pollination
syndromes and subsequent regains of ornithophilous flowers.
Our results suggest that the most recent common ancestor of
all Neotropical Costus species was most likely ornithophilous
FIGURE 3 | Phylogenetic reconstruction with the concatenation of 832 loci analyzed in IQ-Tree; the values above the branches are the result of the SH-aLRT (above
80 are considered strongly supported) and ultrafast bootstrap support (above 95 are considered strongly supported) showing high support values in most of the
branches. Equal branch lengths were used to allow the reader to distinguish support values; branch lengths are depicted in Figure 6.
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in form (Figure 7). The analysis reconstructing the evolution of
the distribution range of Costus shows very high levels of
uncertainty but also suggests a Central American origin for the
genus (Figure 8 and Supplementary Figure 6).
DISCUSSION

The custom-designed baits allowed us to gather informative
loci for a good proportion of the sampled individuals.
Phylogenetic signal recovered for the sampling of Neotropical
Costus demonstrates the efficacy of using a targeted enrichment
approach to estimate phylogenies in challenging plant lineages
with large genomes, especially those involving rapid radiations,
putative hybrids, and/or high levels of incomplete lineage
sorting. The low proportion of reads recovered from the
plastid genome prevented us from obtaining comparable
sequences of the chloroplast and including them in the
phylogenomic analysis. Our observed level of minimal capture
of off-target reads has been documented in other studies (e.g.
Villaverde et al., 2018; Forrest et al., 2019) and is perhaps
attributable to highly efficient capture by our baits which were
designed specifically for Costus. Studies that have particular
interest in the plastid genome could still use similarly designed
probes but increase the coverage of chloroplast regions by
sequencing a mixture of captured and uncaptured libraries
(Weitemier et al., 2014).
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The phylogeny presented here considerably improves the
resolution and support values of previous studies (Kay et al.,
2005; Specht, 2006; Salzman et al., 2015; André et al., 2016),
particularly providing resolution among the early branches (i.e.
backbone) of the Neotropical Costus radiation. The branch lengths
obtained along the backbone are relatively short, supporting the
idea of a rapid radiation of the Neotropical lineages. Furthermore,
normalized quartet score of the coalescent-based species tree
topology indicates high levels of gene tree discordance, a result
expectedwhen incomplete lineage sorting is prevalent in the history
of the group. Hybridization and the resulting introgression over the
entire evolutionary history of the genus could also lead to the
observed conflict in gene trees, contributing to the challenges in
obtaining a well-supported phylogeny for the Neotropical Costus.
Disentangling the influence of incomplete lineage sorting v.
hybridization in our gene trees is not possible with the current
sampling; however, more detailed sampling of various species
complexes (e.g. Costus comosus (Jacq.) Roscoe; Costus
guanaiensis) in the future could help detangle these processes
particularly at the tips. Additional cases of nonmonophyletic
species like Costus amazonicus and Costus pictus could be the
pattern resulting from hybridization and introgression but also
examples of cryptic species that require further studies on
morphological and genomic evidence. Despite the challenging
scenario of highly incongruent gene trees, the almost absolute
concordance of the concatenation and coalescent-based species
tree approach suggests that the topology obtained is stable, and the
signal of the obtained loci overcomes the assumptions and caveats
FIGURE 4 | Violin plots comparing the ultrafast bootstrap support values obtained with the concatenation of all the loci and the different subsets in IQ-Tree.
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FIGURE 5 | Species tree reconstruction by ASTRAL with local posterior probabilities above the branches. Pie charts illustrate the quartet scores for each node for
the 832 loci, with red representing the current topology, blue the second most favored topology, and white the remaining one. Equal branch lengths were used to
allow the reader to distinguish support values; branch lengths are depicted in Figure 6.
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of the methods. The fact that the concatenation method produced
the same topology as the method using a multispecies coalescent
model, which explicitly accounts for incomplete lineage sorting,
highlights the utility of concatenation-based methods for
phylogenomic studies even in the presence of some degree of
Frontiers in Plant Science | www.frontiersin.org 11
incomplete lineage sorting (Tonini et al., 2015; Streicher and
Wiens, 2017). This is especially important given the high levels of
gene tree incongruence present in this dataset.

Our observed decay in support values when building trees
with reduced numbers of loci points to the importance of
FIGURE 6 | Topologies obtained with concatenation v. coalescent-based species tree analyses, showing just one node difference between the two. Branch lengths
proportional to the number of substitutions for the IQ-Tree result and to coalescent units in the ASTRAL result.
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FIGURE 7 | Summary of the stochastic character mapping showing multiple shifts in pollination syndromes during the history of the Neotropical Costus. Pie charts
indicate the posterior probabilities obtained from the 1,000 stochastic mappings (m, melittophilous; o, ornithophilous).
FIGURE 8 | Classification of the geographical distribution of the species of Costus included in the analyses. The regions from north to south are 1. Mesoamerica, 2.
West Indies, 3. Amazon, Interandean Valleys and Choco-Darien region, 4. Northern and Central Andes, 5. Llanos region, 6. Cerrado, and 7. Atlantic Forest.
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including as many loci as possible, ideally scattered across the
genome (Blom et al., 2016; Bragg et al., 2018). The inclusion of
more loci, even those with a lower proportion of parsimony
informative sites and/or those generating poorly resolved gene
trees, improved the support values of our resulting topology
in concatenation analyses, particularly for the backbone
where a lack of resolution has been emblematic for the
Neotropical Costus clade. In our dataset, improvements in
resolution obtained from including more loci overcome the
computational restrictions in selecting schemes for merging
partitions; this could be explained by the nonmutually
exclusive effects of a very efficient solution for the heuristic
problem (Lanfear et al., 2014) or the positive effect of gathering
more phylogenetic signal when including more regions. It is
important to highlight that the quartet scores indicate that
relationships among the early diverging lineages of the
Neotropical Costus show high discordance among gene trees.
Even for some branches with relatively high local posterior
probabilities, the quartet scores for the backbone of the current
topology are low, suggesting that many loci support each of the
alternative topologies in the quartets.

The ancestral area reconstruction shows very high
uncertainty, probably due to the very short branches along the
backbone of the phylogeny. Overall, our results agree with
Salzman et al. (2015) in suggesting a Central American origin
of Neotropical Costus species. Our results for the evolution of
pollination syndrome morphology also agree with previous
studies, indicating multiple shifts between bee- and bird-
associated morphology occurring throughout the history of the
genus. Results from stochastic character mapping suggest that
the most recent common ancestor of all New World Costusmost
likely had a bird-pollinated form. Because most of the African
species are insect pollinated (Maas-van de Kamer et al., 2016)
and have either a melittophilous or generalist pollination form,
our results point to an early appearance of the ornithophilous
pollination syndrome in the ancestors of the Neotropical Costus.
Furthermore, we confirm the reversal to a melittophilous
form from ornithophilous morphology to have taken place
at least twice and up to four times given our sampling
(Figure 7). Interestingly, we also find evidence of regains of
the bird pollinated flowers with high support in Costus aff.
erythrothyrsus Loes. and Costus spiralis (Jacq.) Roscoe and with
high uncertainty in Costus plowmaniiMaas. These three lineages
can be found at mid elevations (c. 1,000 m.), and the interaction
with the highly diverse community of Neotropical montane birds
(Quintero and Jetz, 2018) could have triggered those changes
in morphology (Salzman et al., 2015). Establishing a temporal
framework for these events will allow us to test the relationship of
the shifts in pollination syndrome with the dramatic changes in
the landscape that took place in the Neotropical region during
the last 20 million years and elucidate the mechanisms that led to
the high species richness in this clade perhaps resulting from an
interaction between biotic and abiotic factors (Antonelli and
Sanmartıń, 2011). It is important to highlight that while
including more species in our phylogeny and character
mapping could change the specific results, overall agreement
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with the previous studies in the group suggests that the pattern of
repeated shifts in overall floral form associated with pollinators is
robust (Salzman et al., 2015; André et al., 2016).

Our phylogeny provides a guide for resolving problematic
taxonomic hypothesis by testing and confirming monophyly
when considering geographical and morphological variations
within the described species. It also helps place enigmatic and
undescribed lineages by comparing them carefully with their
closest relatives. Some widely distributed and variable species are
likely to be split into separate taxonomic units, thereby adjusting
the taxonomy to accurately reflect evolutionary, morphological,
and geographical variation. It is clear that diversity in the genus
is underestimated by the current taxonomy and urges for
an updated taxonomic revision. The potential to apply the
baits described in this study to obtain similar datasets for a
comprehensive sampling of all spiral gingers, including African
taxa and the diversity only available as herbarium specimens,
will allow us to test the hypothesis regarding the genetic
mechanisms underlying the evolution of floral form and the
recurrent changes in floral characters shown by closely related
ornithophilous and melittophilous species. Finally, hybridization
and introgression are likely to have been prevalent in the
diversification of Costus in the Neotropics; a genome-wide
dataset including comprehensive sampling of the diversity
within the genus will allow us to test the prevalence and the
directionality of hybridization events to better understand the
role of reticulate evolution in the origin and diversification of the
Neotropical spiral gingers.
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