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Plants teem with microorganisms, whose tremendous diversity and role in plant–microbe
interactions are being increasingly explored. Microbial communities create a functional
bond with their hosts and express beneficial traits capable of enhancing plant
performance. Therefore, a significant task of microbiome research has been identifying
novel beneficial microbial traits that can contribute to crop productivity, particularly under
adverse environmental conditions. However, although knowledge has exponentially
accumulated in recent years, few novel methods regarding the process of designing
inoculants for agriculture have been presented. A recently introduced approach is the use
of synthetic microbial communities (SynComs), which involves applying concepts from
both microbial ecology and genetics to design inoculants. Here, we discuss how to
translate this rationale for delivering stable and effective inoculants for agriculture by
tailoring SynComs with microorganisms possessing traits for robust colonization,
prevalence throughout plant development and specific beneficial functions for plants.
Computational methods, including machine learning and artificial intelligence, will leverage
the approaches of screening and identifying beneficial microbes while improving the
process of determining the best combination of microbes for a desired plant phenotype.
We focus on recent advances that deepen our knowledge of plant–microbe interactions
and critically discuss the prospect of using microbes to create SynComs capable of
enhancing crop resiliency against stressful conditions.

Keywords: synthetic microbial community (SynCom), plant microbiome, inoculants, metagenomics, plant growth-
promoting (PGP)
INTRODUCTION

In recent years, significant steps have been taken towards understanding many facets of the plant
microbiome. With advances in sequencing technologies and analytical tools, we have learned that a
functionally diverse microbiota is recruited from the environment and assembled into a defined
structure that is dependent on soil type, host genotype and environmental changes (Walters et al.,
2018; Xu L. et al., 2018; Liu et al., 2019; Zhang et al., 2019). These studies profoundly affected our
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perception of the complexity and dynamics of plant–microbe
interactions. More importantly, they allowed the establishment
of a link between microbial diversity and plant traits, such as
resiliency to biotic and abiotic stresses (Gómez Expósito et al.,
2017; Jacoby et al., 2017; Lemanceau et al., 2017; Compant et al.,
2019). However, while the field of plant microbiome research
has rapidly evolved, few if any of these novel concepts have
been considered in the selection of beneficial microbes for
agricultural applications.

Conventional inoculants used in current agricultural practices
are generally composed of a single strain isolated by in vitro
screening assays for plant growth-promoting (PGP) activities or
inoculation experiments under controlled conditions. Despite being
broadly adopted, these strategies fail to capture important aspects of
plant–microbe interactions. Recent studies have shown that the
plant microbiome is composed of a highly diverse and complex
community, often sustained by multiple interactions between
microbes and their host. Moreover, the beneficial effects of the
microbiota are frequently described as being provided by synergistic
interactions between microbes (Timm et al., 2016; Niu et al., 2017).

More recently, synthetic microbial communities (SynComs)
have received a great deal of interest. SynComs are small
consortia of microorganisms designed to mimic, at some scale,
the observed function and structure of the microbiome in natural
conditions. The rationale is to reduce the complexity of the
microbial community while still preserving some of the original
interactions between microbes and hosts, providing a repertoire of
functions that would not be achievable by a single microbe (Qin
et al., 2016; Niu et al., 2017; Vorholt et al., 2017; Kaminsky et al.,
2019). In addition to broadening the scope of features and
metabolites, SynComs may also increase community stability
through synergistic interactions between their members (McCarty
and Ledesma-Amaro, 2019). Notably, the major advantage of
SynComs lies in the possibility of tailoring communities using
concepts from microbial ecology and genetics with defined and
predictable traits. In this sense, the concept of SynComs can be
expanded to include the rationale of designing communities that
incorporate a desired set of microbial traits for agriculture.

Tailoring SynComs has become a valuable approach for
uncovering plant–microbe interactions. By adding, removing or
replacing microorganisms in a SynCom formulation, the role of
each microbial member can be further investigated, as well as the
factors governing community assembly (Vorholt et al., 2017). In
maize, for instance, removal of a single strain of Enterobacter
cloacae dismantled a microbial community capable of reducing the
severity of blight disease (Niu et al., 2017). In another example, by
comparing indica and japonica rice varieties, Zhang et al. (2019)
observed that the recruitment of a larger proportion of nitrogen
cycle-related bacteria in indicawas associated with NRT1.1B, a plant
nitrate transporter. A SynCom containing indica-enriched
microorganisms had a greater effect on rice growth than a
japonica-enriched SynCom. These studies highlight that factors
governing microbial community assembly should be considered
when designing inoculants for agricultural applications.

Here, we argue in favor of using the SynCom concept to create
consortia of microbes that can enhance plant production and
Frontiers in Plant Science | www.frontiersin.org 2
resiliency against biotic and abiotic stress in agriculture.
Microbiome data, such as genome and metagenome sequences,
along with microbial profiling, could help design SynComs that
confer stable plant phenotypes and promote robustness in terms of
both plant colonization and persistence throughout plant
development. We explored relevant bottlenecks, functional
gaps, and underexploited tools in the plant microbiome that
may help develop novel strategies for bridging microbial
ecology and screening procedures associated with microbial
functions towards developing microbiome technologies for
agricultural sustainability.
IDENTIFYING RELEVANT MICROBES
WITH KEY TRAITS FOR STABLE AND
EFFECTIVE SYNCOMS

Traditionally, the selection of microbes for agricultural application
has essentially involved in vitro screening for well-known taxa or
PGP activities such as nitrogen fixation, phytohormone
production, and 1-aminocyclopropane-1-carboxylate (ACC)
deaminase activity (Glick, 2012). However, except in some
extensively investigated cases, such as rhizobium–legume
interactions and mycorrhizal fungi, there is still no clear
correlation between these traits and their effectiveness in plant
growth promotion or their contribution to sustaining stable
plant–microbe associations (Finkel et al., 2017; de Souza et al.,
2019). Furthermore, inoculants designed with these conventional
approaches are often unable to establish and sustain associations
with plants under field conditions, yielding unsatisfactory results
(Nadeem et al., 2014; Zimmer et al., 2016).

Advances in microbial ecology, leveraged by high-throughput
sequencing of metagenomes and molecular markers, helped to
shed light onto the factors involving the successful establishment
of the microbial community, as well as the reasons why some
microbes used as inoculants fail to robustly colonize plants. The
plant microbiome comprises highly diverse and complex
microbial communities that are influenced by many factors,
such as host genotype, environmental changes, and plant
development (Coleman-Derr et al., 2016; de Souza et al., 2016;
Liu et al., 2019). A successful inoculant must compete with
indigenous microbes, efficiently colonize plant organs, and
establish stable and resilient associations despite changes in
the environment and soil microbial composition throughout
the growing season. In this scenario, it is not surprising that
common screening approaches for single traits fail to capture
required traits for creating robust inoculants for applications in
the field (de Souza et al., 2016; Finkel et al., 2017).

Since in vitro evidence of such traits per se is insufficient to
ensure that microbes are capable of eliciting the desired phenotype
in plants, the incorporation of additional variables for microbial
selection is highly demanded. In this context, large sequencing
datasets currently available in public databases comprise a
promising alternative for identifying beneficial and efficient
microbes. In contrast to selecting microbes based on single PGP
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activities or taxonomy, genomic datasets can be used to design
SynComs harboring multiple traits, such as robust colonization
(high abundance in plant organs), prevalence (consistency across
plant developmental stages) and specific beneficial functions
(Figure 1).

One strategy to overcome gaps in current inoculants is to
select microbes based on the diversity profile of plant
microbiota. Deep-sequencing analyses of the 16S rRNA
gene have revealed that certain groups of microbes are able
to robustly colonize, consistently establish and sustain
association with plants regardless of changes in the
environment or plant developmental stages (de Souza et al.,
2016; Müller et al., 2016; Xu J. et al., 2018). Members of these
dominant groups, named the core microbiome, can be
incorporated in SynComs, thus preventing the lack of
efficiency and prevalence observed in situations where strains
are outcompeted by naturally occurring microbiota. Notably,
studies using both abundant and prevalent core microbes in
SynComs have shown efficient colonization and beneficial
effects such as plant defense against pathogens and root
growth (Niu et al., 2017; Armanhi et al., 2018). These studies
confirm that core microbial groups are extremely efficient at
colonizing plants, highlighting that dominant groups are
likely involved in functions important for plant growth and
survival. Overall, incorporating both concepts into the
design of SynComs is a fundamental step towards ensuring
inoculum stability.

Designing SynComs containing microbes compatible with
different plant genotypes and resiliency through different
Frontiers in Plant Science | www.frontiersin.org 3
environments is challenging. Recent examples have shown that
robust colonizing microbes from sugarcane are capable of
colonizing maize and benefiting its growth (Armanhi et al., 2018).
Bacterial strains isolated from lodgepole pine significantly improve
maize plant biomass accumulation (Puri et al., 2015). The genome
sequences of core microbiome members isolated from sugarcane
shows that robust-colonizing strains are enriched in genes coding
for carbon metabolism when compared with non-core microbiome
strains (de Souza et al., 2019). As the genome sequences of plant
microbiomes become increasingly available, comparative genomics
would help to identify specific genomicmarkers for key traits, which
will guide the selection of beneficial microbes (Finkel et al., 2017;
Toju et al., 2018).

In addition to microbial profiling data, the expanding number
of reference genomes and metagenomes in public databases is an
important foundation for identifying microbes with desired traits.
This rationale is driven by using genomic information and gene
expression profiles to select microbes containing plant-beneficial
functional traits or metabolic capabilities that will help in
designing the best microbial combination for inoculants
(Vorholt et al., 2017; Toju et al., 2018). Because important traits
such as colonization efficiency and prevalence are likely associated
with multiple genes, genome surveys for multiple gene markers
will be key to identifying relevant microbes (Cole et al., 2017; Levy
et al., 2018; de Souza et al., 2019). Ultimately, genomics-available
datasets will make it easier to screen microbial candidates based on
genomic markers as the use of these datasets tend to be less
laborious than traditional procedures (Finkel et al., 2017).
Identifying microbial candidates that contain multiple plant
FIGURE 1 | A framework for tailoring stable and effective synthetic microbial communities (SynComs) to enhance crop resiliency to environmental stresses. The selection of
microbes in a culture collection is based on functional and empirical evidence, regardless of taxonomic classification. The rationale is driven by using both genome and
microbial profiling data in the selection of key microbial candidates. Machine learning and artificial intelligence computational tools drive crucial steps in identifying
microorganisms possessing traits for robust colonization, prevalence throughout plant development, and specific beneficial functions for plants. As a proof of concept for
SynCom effectiveness, tools for plant phenotyping serve as an important diagnostic platform for measuring the impact of SynComs addressing the demand for both
increased productivity and plant resiliency. The figure was prepared with the effective use of colors to help people with low visual acuity or color blindness.
August 2020 | Volume 11 | Article 1179
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beneficial traits will assist to more precisely design SynComs
containing microbes with synergistic traits.

In light of these massive amounts of data, computational tools
such as machine learning and artificial intelligence (AI) will be
critical for identifying microbial candidates from large datasets and
culture collections. In biomedical science, these tools have already
proven to be effective in discovering novel antibiotics (Stokes et al.,
2020). In plant science, however, there are few reports employing
these tools to address questions related to plant–microbe
associations (Levy et al., 2018). Machine learning and AI will be
critical for predicting the outcome of SynComs based on
microbiomes and will likely take the field to a new level (Figure 1).
MAGNIFYING MICROBIAL CULTIVABILITY

Building microbial culture collections is key to manipulating
plant-associated microorganisms and designing SynComs with
agronomic functional properties (Schlaeppi and Bulgarelli, 2015;
Finkel et al., 2017; Vorholt et al., 2017). However, culture-
independent data have shown that a sizeable amount of
microbial diversity may remain unexplored given cultivability
limitations (Lundberg et al., 2013; Turner et al., 2013). Thus, the
lack of better approaches for microbe cultivation reduces our
capability to design inoculants impacting plant performance and
represents a major hurdle to exploring novel microbes.

Novel strategies have been proposed to maximize access to
microbial strains while maintaining their viability (Kehe et al.,
2019). Recently, the use of microfluidic platforms has been
shown to be a promising method to cultivate hitherto-uncultured
microorganisms in complex communities (Aleklett et al., 2018). By
facilitating microbial interactions in a microenvironment reflective
of natural conditions, microbe–microbe interactions are preserved,
and microbial survival is dramatically increased (Nichols et al.,
2010). In accordance, high-throughput droplet-based systems for
manipulating core microbiomes have allowed the screening and
isolation of sets of microorganisms based on cell sorting and
encapsulation (Hosokawa et al., 2015).

Since many microbial groups required defined growing
conditions, several studies have suggested different approaches
to increase microbial cultivability. An example is coculturing
microbial mixtures of low richness, introduced by the concept of
community-based culture collection (CBC) (Armanhi et al.,
2018). By picking non-confluent colonies from primary
platings, regardless of whether they represent single or multiple
microorganisms, this approach allows culturing communities
instead of solely axenic colonies and greatly increases microbial
cultivability. Instead of employing purification procedures in
search of axenic cultures of all colonies, one can later target only
those of interest including, for instance, robust colonizing
microorganisms (Armanhi et al., 2016). Additionally, many
cross-feeding compounds have already been found in microbe–
microbe interactions (Kosina et al., 2016; Lubbe et al., 2017).
Cocultivation empowers metabolic interactions between
microbes and enables more efficient microbes to thrive. Also,
simple and convenient approaches like supplementing the
Frontiers in Plant Science | www.frontiersin.org 4
culture media with extracts from their environmental origin
have helped to increase retrieval of microbial groups (Stewart,
2012; Armanhi et al., 2018).

Undeniably, when seeking robust colonizing microbes to
compose a SynCom, the culture and identification of
microorganisms have little impact unless their relevance for
plants is considered. Therefore, an equally important but often
neglected step is the cross-referencing of isolated microbes and
the plant microbiome profile. Based on that, recent studies
verified that previously obtained microbial culture collections
comprise substantial proportions of the host microbiome (Bai
et al., 2015; Armanhi et al., 2018). Such a strategy is built on the
rationale of selecting microbes in a culture collection based on
empirical evidence from microbial surveys, regardless of
taxonomic classification or preselected traits (Figure 1). By
using this approach, microbes are targeted based on relevant
traits, such as robust colonization and prevalence (Armanhi
et al., 2018; de Souza et al., 2019).
DESIGNING SYNCOMS FOR CROP
RESILIENCY

Crop development is known to be strongly influenced by adverse
environmental conditions. For instance, drought is considered one
of the most severe weather events that directly reduces crop yield
(Bartels and Sunkar, 2005; Yamaguchi and Blumwald, 2005).
Another major constraint for crop production refers to biotic
stress, which includes those caused by bacterial, fungal, and viral
pathogens (Boyd et al., 2013). In addition, limited bioavailability of
nutrients for plant metabolic processes is also a critical concern in
arable lands, as in the case of nitrogen (Oldroyd and Dixon, 2014)
and phosphorus (Sharma et al., 2013), among other macro- and
micronutrients essential for crop growth.

In the last few years, a flurry of reports has supported the
beneficial impact of microbes on the alleviation of detrimental
effects caused by climatic events. In many of those reports,
however, beneficial microorganisms were individually investigated.
Notably, studies on the microbiome are gradually considering the
synergistic and cumulative effects of SynComs on different
microbial groups (Qin et al., 2016; Kong et al., 2018; Toju et al.,
2018; Arif et al., 2020). For example, by inoculating poplar with
many bacterial consortia composed of diazotrophs, Knoth et al.
(2014) observed a dramatic increase in plant biomass. Additionally,
very recently, Carrión et al. (2019) elegantly demonstrated that
Flavobacterium and Chitinophaga together provide more consistent
disease protection to sugar beet than when individually inoculated.

Under stressful environmental conditions, plants recruit sets of
microorganisms with the ability to alleviate specific detrimental
effects (Compant et al., 2019). This phenomenon was investigated
by Naylor et al. (2017), who interestingly observed in C4 grasses
under drought stress significant enrichment of Actinobacteria, a
bacterial class previously reported as being related to plant growth
under stress (Anwar et al., 2016). With such knowledge, it seems
reasonable that traits incorporated by the SynComs should also be
considered to strategically ensure plant homeostasis in unfavorable
August 2020 | Volume 11 | Article 1179
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environments, thus mitigating losses in plant productivity, rather
than solely targeting increases in plant performance under
normal circumstances.

It is well accepted that the plant microbiome is shaped through a
process of coevolution with its host under adverse environmental
conditions (Theis et al., 2016). Thus, further studies have suggested
that plants in stressful ecosystems may harbor microorganisms
capable of electing traits of tolerance to that unfavored condition
(Woodward et al., 2012; Camargo et al., 2019). A successful strategy
of microbial selection aiming to further application in the field
should consider microbiome origin as the first clue to microbial
capabilities in an environmentally guided selection of traits. For
example, microbes with a significant impact on crop stress resiliency
have been isolated from saline habitats. These halotolerant bacteria
are capable of mitigating salt stress in wheat (Ramadoss et al., 2013).
In another significant example, bacterial strains isolated from zinc-
polluted soil decreased the concentration of zinc in clover (Vivas
et al., 2006).
ASSESSMENT OF SYNCOM INFLUENCE
ON PLANT PRODUCTIVITY AND
PHYSIOLOGY

The emerging interests in designing and applying beneficial
SynComs for agricultural sustainability are challenged by the
demand for assessing microbial impacts on plant physiology. The
assessment of plant traits conferred by SynComs requires
methodologies capable of quantifying microorganisms in terms
of their robustness of colonization and preferred organs in plants,
as well as their capability to outcompete pathogenic resident
microbiota. Such further validation should consider both adverse
environmental conditions and heterogeneity in farmlands
(Toju et al., 2018). Overall, beyond a deep investigation of
microbial composition, the assessment of plant development and
productivity is a fundamental step as a proof of concept for
SynCom effectiveness. That stated, as microbes significantly affect
host physiological status, phenotyping might serve as an important
diagnostic platform for measuring the impact of SynComs or even
detecting an imbalance in the microbiota (Figure 1).

Invasive and punctual approaches of plant phenotyping have
conventionally been employed in a time-consuming manner. The
development of automated and noninvasive techniques for
measuring plants has increased for small-, medium-, and large-
scale setups, especially with regard to imaging (Fahlgren et al., 2015;
Rouphael et al., 2018). Optical techniques (such as RGB, infrared
and hyperspectral imagery) are routinely applied in plant disease
detection and crop breeding (Mahlein, 2016; Mohanty et al., 2016;
Shakoor et al., 2017). As environmental parameters intrinsically face
continuous fluctuations, a recent discussion pointed out the need
for continuously measuring plant traits under experimental
conditions (Halperin et al., 2017). Nevertheless, the lack of tools
for continuous phenotyping still remains an important gap in the
functional analysis of plant–microbe interactions and their
application in agriculture.

Integration of phenotyping and omics data through machine
learning and AI algorithms will be an important step towards
Frontiers in Plant Science | www.frontiersin.org 5
data-driven optimization and monitoring of SynCom efficiency.
By constantly monitoring and integrating multiple genomic and
phenomic datasets throughout different growing seasons, the
analysis platform will become increasingly robust in determining
the best combination of microbes as well as predicting the
outcome of SynCom inoculation. While predictive pipelines
and algorithms are becoming popular, devising solutions for
integrating data from different omics fields remains challenging.
CONCLUSION AND FUTURE
PERSPECTIVES

As the microbiome is extensively reported as playing fundamental
roles in plant processes, the application of microorganisms
in agriculture has emerged as a promising and sustainable
alternative for improving crop performance, especially with
regard to enhancing plant resiliency to environmental stresses.
However, developing stable and effective SynComs for agriculture
will require novel approaches that incorporate recent advances
in microbiome research, such as the rational use of both
genome and microbial profiling data in the selection of key
microbial candidates.

We argued that twomajor factors to be considered are microbial
robustness in terms of colonization and their prevalence through
plant development. Identifying and incorporating robust and
prevalent plant colonizers, such as those belonging to core
microbiomes, has the potential to increase SynCom stability
throughout the growing season and to prevent the inoculated
community from being overcome by naturally occurring
microbes. Additionally, the selection of microbial candidates
should consider screening approaches based on the microbial
genome in search of traits related to functions beneficial to plants
and traits that enhance SynCom stability. A combination of these
strategies will likely be leveraged by computational methods,
including machine learning and AI, for the design of SynComs
with predictable and successful impacts on plants.

When designing SynComs for agriculture, some constraints
should also be considered. Since scaling up microbial growth in
industrial processes is still a bottleneck, the ability to use a
minimal number of microbes is urgently needed to reduce costs
and simplify procedures, a requirement that can be achieved
by tailoring SynComs whose members display synergistic
and cumulative effects. The validation of SynCom stability,
effectiveness and robustness of colonization is supported by
sequencing techniques applied to small-scale proof-of-concept
trials. Additionally, the application of SynComs to address the
demand for both increased productivity and increased plant
resiliency faces a further limitation regarding approaches
for measuring and assessing plant performance under field
conditions. Recently, efforts have been made towards developing
tools capable of providing a comprehensive picture through plant
phenotyping, with an emphasis on imagery. Data from such
platforms will greatly contribute to quantifying SynCom efficiency
and improving the SynCom design process thereafter. Although
multidisciplinary approaches for integrating different dimensions of
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omics data are still lacking, the rational design of SynComs for
agricultural purposes will undoubtedly create novel opportunities
for sustainable production.
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