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Aphid herbivory elicits plant defense-related networks that are influenced by host
genetics. Plants of the upland switchgrass (Panicum virgatum) cultivar Summer can be
a suitable host for greenbug aphids (Schizaphis graminum; GB), and yellow sugarcane
aphids (Sipha flava, YSA), whereas the lowland cultivar Kanlow exhibited multi-species
resistance that curtails aphid reproduction. However, stabilized hybrids of Summer (♀) x
Kanlow (♂) (SxK) with improved agronomics can be damaged by both aphids. Here,
hormone and metabolite analyses, coupled with RNA-Seq analysis of plant
transcriptomes, were utilized to delineate defense networks induced by aphid feeding
in SxK switchgrass and pinpoint plant transcription factors (TFs), such as WRKYs that
potentially regulate these responses. Abscisic acid (ABA) levels were significantly higher in
GB infested plants at 5 and 10 days after infestation (DAI). ABA levels were highest at
15DAI in YSA infested plants. Jasmonic acid levels were significantly elevated under GB
infestation, while salicylic acid levels were signifi40cantly elevated only at 15 DAI in YSA
infested plants. Similarly, levels of several metabolites were altered in common or
specifically to each aphid. YSA infestation induced a significant enrichment of
flavonoids consistent with an upregulation of many genes associated with flavonoid
biosynthesis at 15DAI. Gene co-expression modules that responded singly to either aphid
or in common to both aphids were differentiated and linked to specific TFs. Together,
these data provide important clues into the interplay of metabolism and transcriptional
remodeling accompanying defense responses to aphid herbivory in hybrid switchgrass.
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INTRODUCTION

Insect herbivores can impose significant costs to plant fitness (Zust
and Agrawal, 2017; Nalam et al., 2019). Aphids are especially
important plant pests that often have broad host ranges and
significantly reduce growth/yields of susceptible plants via
nutrient depletion and feeding damage to host tissues (Smith and
Chuang, 2014). Aphid feeding triggers host defense responses
arising from mechanical stimuli, plant tissue damage, salivary
secretions, and removal of nutrients (Kindt et al., 2006; Zust and
Agrawal, 2016). Plant defensive responses are influenced by the
genetics of the host and the nature of the plant-aphid interactions.
For example, in aphid-tolerant plants, defensive responses are
modulated following initial infestation, allowing recovery of plant
growth without a significant impact on aphid reproduction, whereas
in susceptible plants, aphid herbivory can lead to significant plant
yield/biomass losses or even plant death (Koch et al., 2016).
Although much progress has been made in understanding the
host defensive-networks underlying responses to aphids in model
systems (Nguyen et al., 2016; Zust and Agrawal, 2017), there is still a
significant lack of data on insect herbivore interactions with non-
model plants and host signaling networks that influence defense
responses at later stages of aphid infestation. Additionally, aphids
can modulate plant defensive responses by secreting elicitors and
proteins that improve their survival (Kaloshian and Walling, 2016).

Several omics strategies alone or in combination have been
used to evaluate plant-aphid, and plant-insect interactions [for
example: (Wu and Baldwin, 2010; Maag et al., 2015b; Tzin et al.,
2015; Zhou et al., 2015; Wozniak et al., 2017; Kiani and
Szczepaniec, 2018; Erb and Reymond, 2019; Nalam et al., 2019;
Sanchez-Arcos et al., 2019; He et al., 2020; Zhang et al., 2020;
Zogli et al., 2020)]. In general, these studies have shown extensive
changes in the transcriptomes and metabolomes upon insect
herbivory. A common factor in many of these interactions has
been the documentation of changes in the levels of plant
hormones such as jasmonic acid (JA), its active form JA-
isoleucine (JA-Ile), and a precursor of JA, 12-oxo-phytodienoic
acid (OPDA), along with other hormones such as salicylic acid
(SA), abscisic acid (ABA), and indole acetic acid (IAA).
Hormone levels can be differentially changed depending on the
pest, the host plant, and timing of analyses. Expression levels of
transcription factors (TFs) that are regulated by changes in
cellular physiology are subsequently impacted. TF families that
are known to have roles in regulating plant defensive networks
including WRKYs, MYBs, ERFs, NACs, bHLHs, and bZIPs,
which, in turn, regulate expression levels of their cognate genes
and pathways. The net result of these changes in TF expression
levels is the modulation of primary and secondary metabolic
pathways, which serve to trigger defense responses to mitigate
herbivory. Although several components of defense responses
are conserved among multiple plant species, plant genotype,
environment, and other factors can lead to variations in the
cellular metabolism of the same hosts challenged by insect
herbivores (Coppola et al., 2013; Maag et al., 2015a; Castano-
Duque and Luthe, 2018; Muneer et al., 2018; Sanchez-Arcos
et al., 2019; Zhao et al., 2019). Despite variations in metabolite
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profiles, certain pathways and compounds produced by these
pathways are known to confer protection to plants against biotic
stressors. These include reactive oxygen and nitrogen
intermediates, glucosinalates, alkaloids, terpenoids, flavonoids,
phenypropanoids, and chemicals derived from amino acids, such
as pipecolic acid. Pipecolic acid is both an antifeedant as well as a
molecule required for triggering systemic acquired resistance
(SAR) (Cecchini et al., 2015; Hartmann and Zeier, 2018;
Hartmann and Zeier, 2019). The plethora of documented plant
defensive strategies serves as a good platform to evaluate a
potential role for similar mechanisms, genes, and metabolites
in the defense responses of switchgrass to aphids.

Switchgrass (Panicum virgatum L.) is an herbaceous non-
model species targeted for bioenergy but with important
ecosystem advantages as a conservation and forage crop (Vogel
et al., 2011). It also has an annotated genome (https://phytozome.
jgi.doe.gov/pz/portal.html#!info?alias=Org_Pvirgatum_er) that
has facilitated a better understanding of genomic and
functional genomic aspects of this plant [for example:
(Dworkin et al., 2017; Taylor et al., 2018; Clifton-Brown et al.,
2019; Jiang et al., 2019; Palmer et al., 2019a)]. Switchgrass occurs
as upland and lowland ecotypes (Vogel et al., 2011), and some
tetraploid switchgrass ecotypes differ in their susceptibility to
aphids (Koch et al., 2014a). A lowland switchgrass cultivar
Kanlow was resistant to greenbug (Schizaphis graminum
Rondani., GB) and moderately resistant to the yellow sugarcane
aphid (Sipha flava Forbes., YSA), whereas an upland switchgrass
cultivar Summer was tolerant/moderately susceptible to GB and
susceptible to the YSA.

Previous analyses have elucidated global transcriptomic changes
occurring in GB infested Summer plants (Donze-Reiner et al.,
2017). Principally, GB infestation resulted in an upregulation of
genes associated with cell wall receptors, calcium, and reactive
oxygen species (ROS) signaling cascades within 5 days after
infestation (5DAI), followed by significant upregulation of
defense-responsive genes by 10DAI and concomitant
downregulation of genes encoding proteins required for primary
metabolism. These changes were accompanied by significant
increases in hydrogen peroxide levels and activities of peroxidases
and laccases. Transcriptional signatures suggested a recovery in
plant metabolism by 15DAI, consistent with the tolerant response
observed for this plant x aphid interaction (Koch et al., 2014a).
Transcriptional evidence implicated jasmonate, salicylate, and
ethylene as important mediators of the defense response, similar
to what has been reported in other systems (Thaler et al., 2012;
Nguyen et al., 2016; Zust and Agrawal, 2016).

In contrast to Kanlow and Summer, a stabilized population of
plants derived from random crosses of Summer (♀) x Kanlow
(♂) plants (Martinez-Reyna and Vogel, 2008); hereafter referred
to as SxK) was susceptible to GB (unlike Kanlow plants) and
appeared to be tolerant to YSA (unlike Summer plants) (Koch
et al., 2014a). These data suggested that SxK plants individually
infested with either GB or YSA could provide important new
data on the differential defense responses of hybrid switchgrass.

Here, RNA-seq, gene co-expression, plant hormone, and
metabolite analyses were used to elucidate the shared and
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unique immune networks responsible for hybrid switchgrass
defense responses to GB and YSA herbivory.
MATERIALS AND METHODS

Plant Materials
Seeds of an experimental strain, SxK (HP1 C1 High Yield strain)
were provided by Dr. Kenneth Vogel, USDA- ARS (Retired),
Lincoln, NE.

Insect Colonies
Colonies for GB (biotype I) and YSA were obtained from Dr.
John D. Burd, USDA-ARS (retired) in Stillwater, Oklahoma and
maintained on BCK60 sorghum plants as described earlier (Koch
et al., 2014b).

Experimental Conditions and Sample
Collection
SxK plants were grown from seed in a greenhouse as previously
described (Donze-Reiner et al., 2017; Koch et al., 2018). The
plants were arranged in a 3 x 3 factorial design consisting of three
treatments (GB-, YSA-infested, and control) and three harvest
time points, 5-, 10-, and 15-days after infestation (DAI) and
consisted of three biological replicates, with each replication
containing four individual plants per treatment per time point.
Ten apterous GB or YSA were placed on their respective plants at
the onset of the experiment (day 0). To confine aphids, both
infested and control plants were caged individually with tubular
plastic cages (4 cm diameter by 46 cm height) with vents covered
with organdy fabric. Insect damage ratings were performed a
minimum of four times with at least three replicates per
treatment per timepoint. Tissue was collected from one
experimental set of samples with three biological replicates per
treatment and per time point. Each biological replicate consisted
of four individual genotypes (plants) pooled together. Collected
tissues were subsequently processed for transcriptomic, plant
hormone, metabolomic, and flavonoid analyses.

Prior to harvesting leaf samples at each time point, aphids
were removed with sterile fine-tipped paint brushes and counted.
Injury to plants resulting from aphid infestation was assessed
using a visual damage rating based on a 1–5 scale (Heng-Moss
et al., 2002; Koch et al., 2014b). At harvest, all leaves present on
plants were collected, flash frozen with liquid nitrogen and stored
at -80°C until processed.

RNA-Seq and Bioinformatics
Total RNA was isolated, purified, and quantitated from flash
frozen plant tissue samples and sequenced as previously
described (Palmer et al., 2015; Donze-Reiner et al., 2017).
Single end 100-bp reads were mapped to version 4.1 of the
switchgrass genome (phytozome.jgi.doe.gov) (Goodstein et al.,
2012) using HISAT2 (Kim et al., 2015), and read counts were
generated using featureCounts (Liao et al., 2014). Differential
expression analysis was performed using DESeq2 (Anders and
Frontiers in Plant Science | www.frontiersin.org 3
Huber, 2010; Love et al., 2014) in R (Team, 2011). Pairwise
contrasts between control and aphid infested plants at each time
point were used to generate a list of differentially expressed genes
(DEGs) for the entire dataset using an FDR of <0.05 and a fold
change of >2 as significance thresholds. The variance
stabilization transformation function in DESeq2 was used to
generate normalized expression counts for use in subsequent
network and heatmap analyses. Co-expression analysis was done
by generating signed networks using the weighted gene co-
expression network analysis (WGCNA) package (Langfelder
and Horvath, 2008) in R.

TFs that could potentially have a major role in hybrid
switchgrass defense responses were identified based on three
criteria: (1) TFs were present in the top 10% of gene module
membership within each module, (2) TFs were present in the
75th percentile based on peak expression of all expressed genes in
the network, and (3) TFs had maximal expression differences
between control and infested treatments associated with each
module profile, with the assumption that these statistically
validated and strongly upregulated TFs would be related to
plant defense response. These TFs are hereafter referred to a
target TFs. Subsequently, subnetworks of genes that had
expression profile similarities with each target TF were defined
as genes that were represented within the top 1% of topological
overlap matrix (TOM) scores for each TF byWGCNA. Members
of each subnetwork were categorized for their predicted protein
function and classified into Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathways (Kanehisa et al., 2014).

Plant Hormone and Metabolite Analyses
JA, JA-Ile, OPDA, SA, and ABA were extracted from 50 mg of
ground tissue in methanol/acetonitrile (1:1 v/v) and analyzed by
LC-MS/MS (Pan et al., 2008; Schmitz et al., 2015). Targeted
analysis of polar metabolites extracted from 50 mg of ground
tissue in 80% methanol was performed by multiple reaction
monitoring (LC-MRM-MS) analysis (Yuan et al., 2012; Boone
et al., 2017). Metabolites were assigned to pathways using the
KEGG (Kanehisa et al., 2016). Flavonoid analyses were
performed by the Metabolomics Center at the University of
Missouri-Columbia.

Statistical Analysis
JMP (version 12.2.0, SAS Institute 2015) was used for the
statistical analyses of all aphid count, plant damage, plant
hormone, and plant metabolite data. One-way ANOVA
analysis was used to identify significance (P-value < 0.05),
followed by Tukey HSD (P ≤ 0.05) post-hoc test for mean
separation where appropriate. KEGG pathway enrichment
within co-expression modules were calculated using the
Fisher’s exact test (P ≤ 0.05) in R relative to all genes in
the network.

Accession Numbers
Bioproject: PRJNA528943. Run accessions: SRR8792755
- SRHR8792789
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RESULTS

SxK Plants Were Colonized and Damaged
by Both Aphids
GB numbers were not significantly different between harvest
dates (Figure 1A). In contrast, YSA numbers increased
significantly with time and were greatest 15DAI (Figure 1A).
Plants infested with GB were damaged by 5DAI and damage
ratings increased to 2.8 ± 0.1 by 10DAI and remained essentially
unchanged at 15DAI. For YSA infested plants, damage ratings
did not differ from control plants at 5DAI (1.3 ± 0.1) but
increased significantly to 2.7 ± 0.2, by 15DAI (Figure 1B).
Frontiers in Plant Science | www.frontiersin.org 4
Aphids Differentially Affect Phytohormones
and Metabolite Accumulation
Levels of select plant hormones linked to defense (Nguyen et al.,
2016) were quantified by LCMS. JA levels were significantly
increased by 5DAI in GB infested plants as compared to control
plants and reached maximal values of 45.5 ng g-1 fresh weight-1

10DAI before decreasing to levels indistinguishable from
uninfested plants (controls) at 15DAI (Figure 1C). Levels of
the active form of JA conjugated to isoleucine (JA-Ile) were also
significantly higher in GB infested plants by 10DAI and
decreased in tandem with JA levels by 15DAI (Figure 1D). In
contrast, JA and JA-Ile levels remained low and did not change
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FIGURE 1 | Changes in aphid numbers, plant damage and metabolites across three sampling dates. (A) Aphid numbers. (B) plant damage ratings. (C) Jasmonic
acid (JA). (D) JA-isoleucine (JA-Ile). (E)12-Oxo-phytodienoic acid (OPDA). (F) Salicylic acid (SA). (G) Abscisic acid (ABA). (H) Metabolite heat map, black = low
abundance, yellow = high abundance. In (A) to (G), green bars are from plants infested with greenbugs (GB), and gold bars are from plants infested with infested
with yellow sugarcane aphids (YSA). In (C) to (G), blue bars are control uninfested plants. Different letters above bars in (A) to (G) denote significant differences at
P ≤ 0.05, with separation of means using Fisher’s LSD. In all panels, days after initial infestation are shown as D5, D10, and D15. In (H), metabolites preferentially
enriched in plants infested with GB (set 1, green box), in plants infested with YSA (set 2, gold box), and metabolites enriched in common in infested plants (sets 3
and 4, red boxes). Metabolite lists are provided in Data S1.
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under YSA infestation (Figures 1C, D). Likewise, OPDA, an
intermediate in JA biosynthesis and a signaling molecule
involved in plant defense (Heitz et al., 2016; Varsani et al.,
2019), was also differentially affected by the two aphids. OPDA
trended to be high at all three harvest dates in plants infested
with GB with a significant difference observed at 10 DAI as
compared to controls. OPDA levels declined by ~50% by 15DAI
(Figure 1E). OPDA levels were not significantly increased in
plants infested with YSAs (Figure 1E).

SA levels remained unchanged in GB infested plants with the
exception at 5DAI where levels were higher than in controls. In
comparison, SA levels in YSA infested plants were significantly
higher than controls at both 5DAI and 15DAI (Figure 1F). ABA
levels were significantly elevated in GB infested plants at 5DAI
and 10DAI and remained significantly higher even at 15DAI
compared to controls. Conversely, ABA accumulated more
gradually in YSA infested plants, with ABA levels significantly
different from controls at 10 and 15DAI (Figure 1G).

Levels of 155 individual metabolites detected by LCMS were
impacted as a result of time or infestation with four major sets of
metabolites whose levels were strongly correlated with aphid
infestation (Figure 1H and Data S1). Overall, metabolite levels
were consistent with plant damage ratings and peaked at 10DAI
and 15DAI for GB and YSA, respectively. Set 1 consisted of
metabolites that were primarily elevated in GB infested plants at
10DAI and contained a majority (10 out of 12) of the identified
amino acids as well as purines. Set 2 contained several
metabolites that were strongly elevated in YSA infested plants
at 15DAI and were associated with pathways related to primary
carbon metabolism, including glycolysis, the TCA cycle, the
pentose phosphate pathway (PPP), and starch and sucrose
metabolism (Data S1). Sets 3 and 4 consisted of metabolites
that were elevated in plants infested by both aphids; however,
levels of metabolites in set 3 were generally higher in GB infested
plants while metabolite levels in set 4 were higher in YSA
infested plants.

Network Analysis Identifies Key Defense
Related Modules of Co-Expressed Genes
Discr iminant analys is of transcr iptomes indicated
developmental-related and aphid-induced changes over the
time course of the experiment (Figure S1A), and 16,192 DEGs
(FDR ≤ 0.05 and a fold change of ≥ 2) as a result of GB or YSA
infestation were identified. Hierarchical clustering (Figure S1B)
revealed gene expression profiles strongly associated with aphid
herbivory reinforcing findings detected by global metabolite
analyses (Figure 1H).

A WGCNA was performed, and six modules of co-expressed
genes, hereafter referred to as M1, M7, M2, M3, M4, and M6,
were identified whose expression profiles spanned a range of
switchgrass interactions with both aphids (Figure S2). Module
(M) number and co-expression profiles are summarized in
Table 1. To better define the plausible relationships between
the selected gene co-expression modules to switchgrass defense,
the top 200 genes (including DEGs and non-DEGs) with the
highest gene module membership scores (see Experimental
Frontiers in Plant Science | www.frontiersin.org 5
Procedures) within the six co-expression modules were used to
interrogate their potential functional roles in plant growth and
defense (Figure 2A and Data S1).

M1 contained genes upregulated in controls but
downregulated by herbivory of both aphids and was enriched
in genes related to chloroplast (growth) and depleted for genes
associated with defense/stress (Figure 2A). M7 contained genes
that likely encoded key factors in switchgrass basal defense
because they were upregulated maximally at 5DAI in response
to both aphids. Genes assigned to this module included orthologs
to Arabidopsis PSB1, a protein kinase integral to plant defense
(Swiderski and Innes, 2001; Sun et al., 2017), calcium channels,
several potential calcium sensors, and calcium-dependent
kinases (Data S1).

M2 contained gene subnetworks likely associated with plant
stress responses that were commonly induced by either aphid,
occurring earlier under GB infestation (5DAI) and later under
YSA infestation (15DAI). A striking feature in M2 was the
extensive co-expression of genes associated with ribosomes,
and a reduced cohort of genes linked with defense/stress
response along with a reduced cohort of genes encoding TFs,
components of the flavonoid biosynthesis pathway, and protein
kinase/phosphatase as compared to M3, M4, M6, and M7
(Figure 2A). M2 was also enriched in genes associated with
secretory/membrane processes as compared to M7.

M3 contained genes that were strongly upregulated in response
to GB infestation and were largely unresponsive to YSA herbivory
and were enriched for genes associated with defense/stress, TFs,
protein kinases/phosphatases, and secretory/membrane, such as
transporters potentially involved in ABA uptake [annotated as
pleiotropic drug resistance 12; Data S1; (Kang et al., 2010)],
consistent with significantly greater ABA levels at 5DAI and 10
DAI in GB infested plants (Figure 1G).

M4 contained subnetworks of genes that were upregulated at
all three sampling dates in GB infested plants but were only
upregulated at 15DAI in YSA infested plants. Functions of these
genes largely mirrored the distributions observed in M3, except
M4 contained more genes related to transport and was relatively
less populated with genes encoding TFs (Figure 2A; Data S1).
However, like M2, genes annotated as sugar, phosphate, amino
acid, and heavy metal ions transporters were also enriched in
M4, suggesting some mechanistic commonality in defense
responses to the two aphid species.

Genes that were most strongly induced in response to YSA
herbivory were found in M6. Predicted functions of proteins
TABLE 1 | Relationships of gene co-expression modules and their profiles in
aphid infested relative to control uninfested plants.

Module no. Gene co-expression profile

M1 Upregulated in controls, downregulated by aphids
M7 Upregulated at 5DAI in response to both aphids
M2 Upregulated 5DAI by GB and at 15DAI by YSA
M3 Upregulated by GB all days, not by YSA
M4 Upregulated by GB all days and by YSA at 15DAI
M6 Upregulated by YSA, not by GB
Actual profiles are provided in Figure S2.
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assigned to this module were similar to those found in M3;
however, unlike M3, M6 contained several genes encoding
enzymes involved in flavonoid biosynthesis (Figure 2A and
Data S1). Flavonoid biosynthesis is responsive to SA in other
plants (Wozniak et al., 2017), and increased expression of genes
associated with flavonoid metabolism could be linked to the
significantly elevated levels of SA in YSA infested switchgrass
plants, especially at 15DAI (Figure 1F).

TF classes downloaded from the Plant Transcription Factor
Database, PlantTFDB v5.0 (http://planttfdb.gao-lab.org/index.
php?sp=Pvi) were used to identify TFs in the top 10% of the
Frontiers in Plant Science | www.frontiersin.org 6
members within each module (Figure 2A; Data S1). There was a
striking underrepresentation of WRKYs and NACs, along with
an enrichment of the FAR1, B3, and C3H classes of TFs in M1
(Figure 2B). Among TFs classified into “Other” category in M1
was Pavir.4NG231900 encoding a TCP20 homolog. In marked
contrast, the five modules associated with plant responses to
aphid herbivory were enriched for WRKYs, NACs (except M7),
and AP2/ERF classes of TFs.

Enrichment of WRKYs was evident in M7, M2, M3, and M4,
all of which contained genes that were upregulated in response to
both aphids. In contrast, M6, which contained genes that were
largely triggered in response to YSA herbivory, was depleted in
WRKYs (Figure 2B). Likewise, TFs encoding AP2/ERFs were
enriched in the modules associated with response to aphids
(Figure 2B) with the largest proportions of AP2/ERFs
associated with M7 and M4. Both M7 and M4 contained genes
whose expression levels were induced by both aphids either at
5DAI (M7) or to GB (all DAIs) and YSA at 15DAI, indicating a
link to switchgrass defense responses. MYB TFs were found in all
six co-expression modules although their proportions were lower
in M3, which contained genes strongly associated with GB
herbivory. NACs were also relatively depleted in some of the
modules associated with aphid feeding, including M7 and M4
(also M1) but enriched in the other three modules (Figure 2B).
NACs associated with M2 and M3 could be implicated in
response to plant damage induced by aphid herbivory,
consistent with plant damage ratings shown in Figure 1B.
Genes encoding bZIPs and bHLH TFs were likewise enriched
in the modules associated with aphid herbivory, with greater
enrichment in M7 (early response) and in M6 (associated with
YSA herbivory).

Differences in the module proportions of C2C2 and C2H2
classes of TFs were also observed, with greater enrichment of
both classes in M2, relative to the other modules (Figure 2B).
Genes encoding FAR1 TFs were detected only in M6 and M1.

Subnetwork Analysis Identifies Target TFs
Linked to Switchgrass Defense Responses
Target TFs and their co-expressed genes were determined as
described in the experimental procedures section. Altogether,
genes encoding proteins involved in twenty different KEGG
pathways were found to be significantly enriched in one or
more target TF subnetwork (Figure 3) relative to all genes in
the entire network.

Eighteen target TFs were identified in M1 (control plants).
Statistically significant enrichments were found for biosynthesis of
amino acids with four TFs, photosynthesis with 12 TFs, porphyrin
and chlorophyll metabolism with all 18 highly expressed TFs, and
pentose phosphate pathway with 12 TFs. Gene expression
subnetworks linked two MYBs, Pavir.3KG211000 and
Pavir.3KG210300, and one ARF ortholog to multiple metabolic
processes, suggesting a direct role for these target TFs in
switchgrass growth responses.

The M7 co-expression module, upregulated in response to
both aphids at 5DAI, contained eight target TFs whose
subnetworks were all associated with glutathione metabolism.
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Four out of these eight TFs encoded ethylene response factors
(ERFs) orthologous to Arabidopsis RAP2.12 and 2.6 proteins,
and their subnetworks were significantly linked to pentose
phosphate pathway and amino sugar and nucleotide sugar
metabolism. Subnetworks associated with two other ERFs,
Pavir.1NG521800 and Pavir.2NG476400, were enriched in
genes associated with flavonoid metabolism (Figure 3). Other
target TFs in M7 included two bHLH orthologous to Arabidopsis
ASK2 (AT1G05805) and PIF3 (AT2G03340), a nuclear factor Y
subunit A6 homolog whose subnetworks included genes
associated with plant-pathogen interactions, and starch and
sucrose metabolism. A WRKY-encoding gene strongly induced
at 5DAI by GB and YSA feeding was significantly linked to genes
encoding proteins involved in protein processing in endoplasmic
reticulum, amino sugar and nucleic sugar metabolism, pentose
phosphate pathway, and peroxisome (Figure 3).

M2 consisted of genes that were upregulated in response to GB
at 5DAI and YSA at 15DAI and contained twelve target TFs
belonging to the NAC (6), WRKY (2), MYB (2), bHLH (1), and
GRAS (1) families (Figure 3). Four of the six switchgrass NACs
were homologous toArabidopsisATNAP, a NAC that regulates leaf
senescence in Arabidopsis (Guo and Gan, 2006). Subnetworks
associated with these NACs were also enriched genes related to
protein processing in the endoplasmic reticulum, biosynthesis of
amino acids, proteasome, TCA cycle, phenylpropanoid
biosynthesis, and peroxisome, among others. Subnetworks for the
twoWRKYs in M2 were enriched in genes involved in biosynthesis
of amino acids, proteasome, and the TCA cycle. Notably, the bHLH
gene inM2was significantly associated with genes classified into the
ribosome KEGG pathway and several other metabolic processes
Frontiers in Plant Science | www.frontiersin.org 7
potentially related to ribosomal function, such as protein processing
in the endoplasmic reticulum, biosynthesis of amino acids, and
RNA transport, suggesting an important role for this TF in
switchgrass defense response.

Predominantly, linkages in M3 occurred between TFs and pathways
for diterpenoid biosynthesis and plant-pathogen interaction. In addition,
a C2H2 TF encoded by Pavir.9NG043500 was significantly associated
with amino sugar and nucleic acid sugar metabolism, Pavir.6NG226500
encoding a bZIP was significantly associated with phenylpropanoid
biosynthesis, and one MYB was significantly associated with protein
processing in the endoplasmic reticulum, biosynthesis of amino acids,
flavonoid biosynthesis, TCA cycle, and phenylpropanoid biosynthesis,
but not diterpenoid biosynthesis.

Six WRKYs were among the 11 target TFs in M4. Significant
associations for five of these six WRKYs were to diterpenoid
biosynthesis with more variable associations to other metabolic
processes, including oxidative phosphorylation, phenylpropanoid
biosynthesis and plant-pathogen interaction. Similarly, one ERF and
one NAC were also associated with multiple processes (Figure 3).

The YSA specific M6 contained eight target TFs, with four
bZIPs, two MYBs, and one each of CAMTA and TALE TFs
(Figure 3). The most significant associations between these TFs
and metabolic processes were for glycerophospholipid
metabolism and flavonoid biosynthesis. Two bZIPs,
Pavir.2NG96500 and Pavir.2KG189400, were also significantly
linked to glutathione metabolism. The two MYBs in M6 were
linked to biosynthesis of amino acids and proteasome. Differences
in the target TFs connections in M3 responding to GB herbivory
and M6 responding to YSA herbivory suggest distinctive defense
responses of hybrid switchgrass to the two different aphids.
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Aphid Herbivory Coordinately Changes
Pathways and Metabolite Enrichment
Pairwise comparisons of DEGs encoding proteins associated
with KEGG pathways and metabolites enriched within each
pathway was next performed to identify pathways that were
most significantly associated with aphid infested and control
plants (Figure 4). It should be noted that genes and metabolites
were not uniquely and exclusively associated with one pathway.
Pathway occupancy was defined as a percentage of the number of
DEGs or differentially abundant metabolites in pathway/total
number of expressed genes or detected metabolites in the KEGG
pathway and was used to visualize changes occurring between
controls and treatments.

Control plants had an enrichment of pathways related to
photosynthesis and photosynthetic pigment biosynthesis,
especially at 5DAI and 10DAI, as compared to GB infested
Frontiers in Plant Science | www.frontiersin.org 8
plants. However, primary metabolites linked to porphyrin and
chlorophyll metabolism (glutamate and threonine) and carbon
fixation (sugars) were enriched in GB infested plants, which
could have arisen from dissimilatory routes. Pathways linked to
defense perception, signaling, and metabolic redirection were
enriched in GB infested plants. These included MAPK signaling,
ribosome biogenesis, protein export, and fatty acid metabolism.
Similarly, several primary and secondary metabolic pathways
and associated metabolites were significantly enriched by 5DAI
in GB infested plants relative to controls (Figure 4). Notably,
these included valine, leucine, and isoleucine degradation;
arginine and proline metabolism; and tyrosine metabolism,
with concomitant increases in levels of associated amino acids
and their oxo-acid breakdown products. For tyrosine,
tryptophan, and phenylalanine, genes associated with their
biosynthetic and degradative pathways as well as their
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associated metabolites were upregulated by GB herbivory.
Additionally, pathways that utilize these three amino acids as
precursors for the biosynthesis of secondary defense metabolites,
such as those derived from the phenylpropanoid, flavonoid,
stilbenoid, indole alkaloid, and isoquinoline alkaloid
biosynthetic pathways, were also all strongly upregulated by
GB feeding. Terpenoid biosynthetic pathways were similarly
upregulated, indicative overall of a strong defense response and
diversion of products of primary plant metabolism to the
formation of defensive compounds.

Delayed changes to expression of genes associated with
primary and secondary metabolism were found under YSA
infestation with maximal gene expression levels frequently
observed at 15DAI. For example, several pathways including
fatty acid metabolism; alpha-linoleic metabolism; fatty acid
biosynthesis; and glycine, threonine, and serine metabolism
were enriched at 5DAI in GB infested plants and at 15DAI
under YSA infestation. Furthermore, as compared to GB-
switchgrass interactions, in the YSA-switchgrass interactions,
metabolites and transcripts associated with porphyrin and
chlorophyll metabolism and carbon fixation did not differ from
control plants until 10DAI and 15DAI. These data were
consistent with limited plant damage observed at 5DAI in
hybrid switchgrass infested with YSA with increase in damage
score and aphid numbers recorded until 15DAI. YSA infestation
until 15DAI. In many of these instances, metabolite enrichment
tracked with pathway enrichment (Figure 4).

Other differences were also evident in plant responses to the
two different aphids. Histidine levels were strongly elevated in
GB infested plants and only moderately elevated in YSA infested
plants. Such differences were also seen for metabolites associated
with the b-alanine, taurine and hypotaurine, phenylalanine, and
phenylpropanoid metabolism (Figure 4).

Other Defense-Related Molecular
Signatures of GB and YSA Herbivory
Recently, (Koch et al., 2018) did not observe any correlations
between aphid feeding and callose deposition or the expression
profiles of specific callose synthase genes after 3DAI. In the
current studies performed over a longer duration, expression
profiles of these same genes yielded similar results (Figure S3).

Both GB and YSA herbivory significantly elevated levels of
pipecolic acid by 5DAI. Once induced, these levels remained
high throughout the time-course of the experiment (Data S1).
Genes encoding enzymes involved in the biosynthesis of
pipecolic acid (ALD1, ALDH, LKR/SDH, and SOx; Figure
5A), and several genes encoding hydroxycinnamoyl CoA-
quinate transferases required for the biosynthesis of
chlorogenic acid and related compounds were also significantly
upregulated by 5DAI (HCT; Figure 5A), corroborating earlier
findings (Donze-Reiner et al., 2017).

Several other amino acids, sugars, and metabolites associated
with vitamin and nucleic acid metabolism also accumulated in
GB and YSA infested plants, supporting an upregulation of genes
encoding hydrolases and a concomitant downregulation of genes
involved in biosynthesis of primary macromolecules. In most
Frontiers in Plant Science | www.frontiersin.org 9
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cases, peak expression levels were observed at 10DAI with
subsequent decreases by 15DAI in GB infested plants, whereas
greatest enrichment was often observed at 15DAI for YSA
infested plants (Data S1). Methionine sulfoxide, a byproduct of
oxidative stress, was significantly enriched by 5DAI in GB
infested plants and by 10DAI in YSA infested plants, as was 4-
amino butyrate (GABA) at all harvest dates under GB infestation
and only at 5DAI under YSA infestation, although levels of
GABA increased with time in YSA infested plants (Data S1).

Levels of Phenylalanine (Phe), tyrosine (Tyr), and tryptophan
(Trp), key amino acid precursors for several plant secondary
metabolites, were also changed in response to aphid herbivory
(Data S1). Levels of Phe and its breakdown product phenyllactic
acid were significantly enriched only in plants infested with GB.
However, prephenate, another breakdown product arising from
Phe and an intermediate for chorismite biosynthesis, was
significantly elevated at 15DAI in YSA infested plants,
indicating that potential differences in how plant secondary
metabolism was affected by these two aphids. Levels of Tyr
were significantly different only at 10DAI in hybrid switchgrass
plants infested with GB, and no significant changes in Tyr levels
were detected in YSA infested plants (Data S1).

Evidence for both accumulation and breakdown of Trp were
detected. Trp levels were significantly elevated at all sampling
dates in plants infested with GB and YSA, with a continued
increase in levels observed from 5DAI to 15DAI under YSA
pressure, although levels of Trp declined by approximately 37%
between 10DAI and 15DAI in GB infested plants (Data S1).
Genes encoding tryptophan synthases were moderately
upregulated under GB herbivory, but their expression levels
were relatively unaffected by YSA feeding, and no other
obvious differences in expression patterns in other genes
associated with this pathway were observed in plants infested
with YSA (Figure 5B). Products of Trp degradation, kynurenine
and anthranilate, were significantly elevated in plants infested
with both aphids, with greater levels of anthranilate observed
under YSA infestation. Among other pathways, anthranilate is
required for quinazoline alkaloid biosynthesis, suggesting these
alkaloids as potential switchgrass defensive compounds.

Levels of hydroxyphenylpyruvate, an intermediate for Tyr,
Phe, and alkaloid biosynthesis, were significantly upregulated at
all time points under aphid herbivory. Genes related to aromatic
amino acid metabolism were differentially induced by each aphid
(Figure 5B). Accumulation of 2-dehydro-D-gluconate and D-
gluconate in plants infested with GB and YSA indicated the
activation of the PPP (Data S1). However, other metabolites
linked to PPP were significantly elevated mostly in YSA infested
plants relative to plants infested with GB, including 3-
phosphoglycerate, 6-phospho-D-glucono-1,5-lactone, and
sedoheptulose-1-7-phosphate. Erythrose-4-phosphate levels, a
precursor required for shikimate biosynthesis was not
significantly different in any treatment, although genes linked
to shikimate biosynthesis were frequently upregulated 5DAI
under GB infestation and generally at 10- and 15DAI under
YSA pressure. Phosphoenolpyruvate, an essential intermediate
for the shikimate pathway, was significantly enriched 5DAI
Frontiers in Plant Science | www.frontiersin.org 10
under GB infestation and at 5DAI and 15DAI under YSA
infestation (Data S1). Genes encoding enolases (Figure 5C)
were enriched by aphid herbivory, suggesting a path to
enhanced generation of phosphoenolpyruvate. Altogether,
these data supported an enhanced flux of carbon to terpenoid,
phenylpropanoid, and flavonoid pathways.

Upregulation of genes associated with terpenoid,
phenylpropanoid, and flavonoid pathways was detected in hybrid
switchgrass plants under insect pressure from both aphids (Figure
6). Recently, switchgrass terpene synthases (TPS) have been
classified, many have been biochemically characterized, and
several shown to be induced after herbivory by fall armyworm
(Spodoptera frugiperda) (Pelot et al., 2018; Muchlinski et al., 2019).
GB and YSA feeding induced upregulation of several TPS genes
(Figure 6A). There was a significant induction of specific mono/
sesqui TPS genes by 5DAI in response to both aphids. Sustained
upregulation of class I and class II di-TPS through 10DAI and
15DAI was more prevalent in plants subjected to herbivory by GB
as compared to YSA (Figure 6A), although a cluster of class II di-
TPS genes were upregulated by both GB and YSA herbivory.
Similarly, expression of genes encoding enzymes of the
phenylpropanoid pathway were upregulated by GB and YSA
herbivory. As with the TPS genes, GB herbivory induced a rapid
upregulation by 5DAI, whereas maximal expression of these genes
was observed at 15DAI in plants infested with YSA (Figure 6B).
Genes associated with flavonoid biosynthesis were significantly
enriched under YSA herbivory (Figure 6C), consistent with the
apparent diversion of carbon to support flavonoid biosynthesis in
these plants. To determine whether upregulation of these genes was
associated with altered levels of thesemetabolites, flavonoids present
in plants at 15DAI were analyzed by LCMS (Figure 6D). Several
putative flavonoids were significantly enriched in plants subjected to
YSA herbivory and included isomers of catechin, epicatechin,
leucodelphinidin, and quercetin glucosides. p-Coumaroylquinic
acid, a product of the condensation of p-coumaroyl-CoA with
quinic acid catalyzed by hydroxycinnamoyl CoA-quinate
transferases, was also enriched at 15DAI in YSA infested
switchgrass plants (Figure 6D). A gene encoding a cytochrome
p450s annotated as coumaroylquinate(coumaroylshikimate) 3’-
monooxygenase (CYP98A3, C3’H; Pavir.3KG235800) that can
convert p-coumaroylquinic acid to chlorogenic acid was also
significantly upregulated in YSA infested plants, suggesting that
both HCT-like and CYP98A3 related enzymes are part of the
defense response genes in switchgrass.
DISCUSSION

Plant responses to aphids can be highly variable based on the
genetics of the host and the aphids (Koch et al., 2016; Zust and
Agrawal, 2016). GB was unable to utilize the lowland cultivar
Kanlow as a host but caused significant damage to the upland
cultivar Summer. YSA could colonize both cultivars, although
plant damage was always greater on Summer plants (Koch et al.,
2014a; Koch et al., 2014b). Here, the potential host networks
contributing to the defense response of a hybrid switchgrass,
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derived from crosses between Summer and Kanlow plants, were
evaluated. This stabilized hybrid was colonized and damaged by
GB and YSA (Koch et al., 2018). Previously, the defense
responses of Summer plants to GB infestation had been
studied (Donze-Reiner et al., 2017), but detailed transcriptomic
or metabolomic plant responses to YSA herbivory have yet to be
reported in the literature.

GB herbivory is generally accompanied by severe host
responses (Burd and Porter, 2006; Zhang et al., 2019).
Virulence associated with GB herbivory has been linked to
toxins present in aphid saliva (Nicholson and Puterka, 2014),
and damage to switchgrass plants detected by 5DAI was
consistent with a virulent response. Conversely, YSA herbivory
increased plant damage over the time course of the experiment
and likely reflected the sustained loss of plant nutrients required
to support increased aphid numbers. GB numbers did not
change significantly over the 15 days of the experiment and
damage ratings stabilized by 10DAI. A virulent response to YSA
has not been reported, although reddish discoloration of leaves,
Frontiers in Plant Science | www.frontiersin.org 11
through accumulation of anthocyanins, has been attributed to
YSA herbivory of Sorghum halepense (L.) Pers. (Costa-Arbulu
et al., 2001; Gonzales et al., 2002).

Aphids activate initial plant basal defenses that respond to
mechanical and probing stimuli. These responses include
calcium fluxes, cell wall perturbation, activation of MAP
kinases, detection of aphid-dependent elicitor molecules,
downregulation of photosynthesis and assimilation of
nutrients, and an upregulation of catabolic processes (Kerchev
et al., 2012; Nicholson and Puterka, 2014; Hettenhausen et al.,
2015; Vincent et al., 2017; Erb and Reymond, 2019; Xiao et al.,
2019). Another common denominator in plant-aphid
interactions is the generation and perception of ROS and
related signals (Kerchev et al., 2012; Foyer et al., 2015; Koch
et al., 2016). Either directly or indirectly these early signals
induce changes in plant hormone levels and precipitate longer
term defensive changes (Erb et al., 2012). The 5DAI switchgrass
responses to both aphids contained molecular signatures
indicative of these signaling patterns. Notably, genes encoding
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wall-associated kinases, MAPKs, RBOHs, and EF-Tu receptor
were upregulated (Figure S4), and corroborated data obtained
with Summer switchgrass x GB interactions (Donze-Reiner et al.,
2017). Also, among these early responses were differential
changes in hormone levels in response to the two aphid species.

The lack of change in JA, JA-Ile, and OPDA levels in response
to YSA but not to GB herbivory was somewhat unexpected,
because oxylipins are a critical component of plant responses to
wounding and herbivory (Wasternack and Strnad, 2018; Varsani
et al., 2019; Yang et al., 2019), although aphids can modulate
plant hormone levels to improve feeding outcomes (Thaler et al.,
2012; Erb and Reymond, 2019; Yang et al., 2019). There was a
stronger induction of genes encoding both 9- and 13-
lipoxygenases (LOX) that could contribute to JA biosynthesis
in plants infested with GB relative to plants infested with YSA
(Figure S5). However, in addition to JA and OPDA, oxylipins
produced by LOX activities can be converted to other products
such as green leaf volatiles (Mochizuki et al., 2016; Varsani et al.,
2019; Yang et al., 2019). Whether there was a diversion of
oxylipins to other compounds in YSA infested switchgrass is
yet to be determined.

ABA and SA are also important hormones impacting plant
responses (Hillwig et al., 2016; Kersch-Becker and Thaler, 2019;
Yang et al., 2019). ABA was induced early in response to GB and
later in response to YSA, while SA was induced solely in response
to YSA. Potentially, these changes reflected the ability of YSA to
suppress JA-related defenses. Interestingly, weak correlations
between expression of genes associated with ABA and SA
biosynthesis and levels of these hormones were observed in
this study, suggesting that mobilization of stored or
transported sources of these hormones could have occurred
during aphid herbivory. Both SA and ABA can be mobilized
from distal sources, including roots, and/or converted from
inactive esters to active forms via the action of hydrolases
(Seiler et al., 2011; Maruri-Lopez et al., 2019). ABA has also
been associated with increased aphid colonization of plants
(Studham and MacIntosh, 2013; Chapman et al., 2018), and
this appears to be the case in switchgrass as well. In addition,
several switchgrass homologs of PDR12 (AT1G15520), which
functions as an ABA transporter (Boursiac et al., 2013), were
upregulated in plants subjected to aphid herbivory, suggesting
mobilization from other tissues and/or stored forms as potential
sources of increasing shoot ABA levels. Regardless of the sources
of hormones, upregulation of several genes that respond to
elevation in ABA, SA, and JA levels, such as those encoding
pathogen responsive proteins (PR), plant protease inhibitors, and
dehydrins (Figure S5), indicated that increased hormone levels
indeed influenced plant metabolism.

Despite the differences in hormonal responses to GB and
YSA, both aphids seemed to activate basal defenses. Another
early metabolic consequence of herbivory by both aphids was the
rapid deceleration of nutrient assimilation and acceleration of
catabolic processes as evidenced by the significant increases in
amino acids, amino acid precursors, and derivatives and
downregulation of genes associated with these processes. These
findings are consistent with literature reports on aphid herbivory
Frontiers in Plant Science | www.frontiersin.org 12
attenuation of plant primary processes, such as photosynthesis,
carbon and nitrogen assimilation, and the increase in
dissimilatory processes (Wu and Baldwin, 2010; Louis and
Shah, 2015; Erb and Reymond, 2019; Nalam et al., 2019).
Increased levels of metabolites derived from amino acids such
as pipecolic acid, chlorogenic acid, flavonoids, terpenoids, and
other secondary compounds strengthen the linkage of
repurposing amino acids to the basal defense response
in switchgrass.

Transcriptional and metabolomic changes provided a
framework for identifying target TFs that potentiated defense
responses in switchgrass that were consistent with changes at the
transcriptomic and metabolite levels. Due to the early activation
of genes in M7 in response to both GB and YSA, we hypothesize
that these TFs provide the foundation for longer-term defense
responses. Arabidopsis homologs to the M7 TFs respond to biotic
stress, changes in hormone levels, and cellular ROS. All
conditions occurred by 5DAI in hybrid switchgrass under GB
and YSA infestation. Notably, these TFs included a 1:1 ortholog
of ArabidopsisWRKY3/4, which is induced by pathogens and SA
(Lai et al., 2008). WRKYs as a class of TFs are well documented
for their roles in regulating response to biotic stress and ABA
signaling (Park et al., 2006; Oh et al., 2008; van Eck et al., 2010;
Rushton et al., 2012; Van Eck et al., 2014). Other TFs were
Pavir.2KG048300 encoding a switchgrass PIF4 homolog of
AT2G03340 that integrates different environmental cues with
hormone signaling in Arabidopsis (Choi and Oh, 2016);
Pavir.1NG340000 encoding a bHLH protein homologous to
Arabidopsis AKS2 (AT1G05805) required for ABA-initiated
signaling (Takahashi et al., 2017); and four switchgrass
homologs of the Arabidopsis RAP2.12 gene (AT1G53910) and
related ethylene response factor (ERF) genes that respond to
changes in cellular ROS and oxygen content among other
changes initiated by stress (Liu et al., 2012; Papdi et al., 2015;
Yao et al., 2017).

Further attenuation of the basal defense responses involved
several overlapping transcriptional events, presumably regulated
by the M7 target TFs. These longer-term changes (>5DAI)
included balancing metabolism between senescence and
growth, a common theme in plants challenged by insect
herbivores (Wu and Baldwin, 2010; Zust and Agrawal, 2017;
He et al., 2020). Transcriptional changes consistent with these
themes were observed in response to both aphids but tended to
occur earlier in response to GB and later in response to YSA, and
responses that were unique to either aphid. These changes
appear to be controlled by a variety of TFs that included many
WRKYs, NACs, MYBs, and bHLHs. As examples, four of the
NAC TFs in M2 encoded ATNAP homologs [AT1G69490; (Guo
and Gan, 2006)]. These four switchgrass NAC genes were also
upregulated during the onset of leaf senescence in switchgrass
(Palmer et al., 2015; Palmer et al., 2019b), indicating that certain
senescence-related KEGG pathways such as ‘peroxisomes’ and
‘fatty acid degradation’ were induced by aphid herbivory, either
due to loss of leaf functions or as a means to reallocate nutrients
away from aphid-infested leaves to other sinks. More
intriguingly, a grass specific WRKY (Pavir.5NG041300), related
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to Arabidopsis WRKY51 (AT5G64810), was strongly induced in
M2. This WRKY gene had minimal expression in control plants,
suggesting a direct role in switchgrass defense responses to
herbivory. ATWRKY51 is regulated via Ca2+/calmodulin-
dependent phosphorylation and required for JA biosynthesis
(Yan et al., 2018), providing some correlative evidence for a
plausible role for Pavir.5NG041300 in regulating JA/oxylipin
biosynthesis in switchgrass or as a response to changes in cell
calcium levels. Similarly, four WRKYs assigned to M4 were
homologs of Arabidopsis WRKY50 (AT5G26170) and
ATWRKY70 (AT3G56400). Notably, ATWRKY70 influences
both senescence and defense signaling pathways, providing a
link between these two processes (Ulker et al., 2007).
ATWRKY50 has been linked to repression of JA-inducible
defense response (Gao et al., 2011). Target TFs in M4 were
also s ignificant ly associated with di terpenoid and
phenylpropanoid biosynthesis, which generate a variety of
metabolites that can stiffen cell walls, act as antifeedants and
serve as attractants to parasitoids, and are often upregulated in
response to herbivory (Dinh et al., 2013; Tzin et al., 2015; Donze-
Reiner et al., 2017; Muchlinski et al., 2019).

The GB-specific co-expression module M3 was enriched for
WRKYs, which could indicate the strong defense response initiated
by GB herbivory. As an example, Pavir.2KG586900 encodes a
WRKY with homology to ATWRKY46 (AT2G46400).
ATWRKY46 has been implicated in several functions including
basal defense and osmotic stress (Ding et al., 2015), both conditions
expected to occur in switchgrass plants under aphid pressure.
Several groups have shown the importance of WRKYs in
regulating metabolism in response to biotic stress (Voelckel et al.,
Frontiers in Plant Science | www.frontiersin.org 13
2004; Li et al., 2008; Oh et al., 2008; Smith et al., 2010; Van Eck et al.,
2014). Among the other target TFs inM3, a bZIP homeologous pair
(Pavir.6KG215500 and Pavir.6NG226500) homologous to
AT4G34590 (ATGBF6) were associated with genes encoding
enzymes involved in diterpenoid metabolism among others,
potentially linking these bZIPs to defense networks that spiked in
response to GB herbivory. A target MYB TF in M3 encoded by
Pavir.8NG311100 is a homolog of ATMYB112 (AT1G48000),
which positively regulates anthocyanin biosynthesis and
suppresses flavonoid biosynthesis in Arabidopsis (Lotkowska et al.,
2015). A finding that was consistent with the lack of flavonoid
enrichment in switchgrass plants infested with GB. Notably, some
genes annotated as encoding leucoanthocyanidin dioxygenases
(LDOX) were strongly induced by GB herbivory and shared an
expression profile with Pavir.8NG311100. LDOX catalyzes the
conversion of leucoanthocyanidins to their O+ forms, which are
starting substrates for further anthocyanin biosynthesis (KEGG
Flavonoid/Anthocyanin pathways). The co-expression association
of Pavir.8NG311100 and LDOX genes suggests that regulation of
anthocyanin biosynthesis in switchgrass could be like those
documented in Arabidopsis.

Genes that were upregulated largely in response to YSA were
associated significantly with flavonoid biosynthesis based on KEGG
pathway analysis, and those encoding proteins linked to Pi stress.
Flavonoids were significantly enriched in YSA infested plants at
15DAI, confirming a correspondence to gene expression. M6 target
TFs, including bZIPs, CAMTA, and TALE, which were significantly
associated with flavonoid metabolism. Since ABA content was
elevated in plants challenged with YSA, these data could reveal
new aspects of switchgrass defense. Recently, the intersection of
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ABA, flavonoid biosynthesis, and bZIP TFs has been proposed to be
an important trait of land plants (Brunetti et al., 2019). Pi-starvation
response in plants is well characterized (Puga et al., 2017), and
several switchgrass genes annotated as “phosphate starvation-
induced,” “SPX-domains 1 and 3,” “phosphate transporter,” and
“purple acid phosphatase” were significantly induced and part of
M6. These data suggest that both flavonoid biosynthesis and Pi-
stress response are part of the broader adaptations of defense
in switchgrass.

Using a combination of biochemical analysis and bioinformatic
approaches, gene co-expression modules, plant hormones, and
metabolites that appear to underpin hybrid switchgrass defense
responses to aphid herbivory were differentiated. These data are
summarized in Figure 7. We suggest that these target TFs identified
in M7 are part of the basal/primary defense response of switchgrass
that subsequently regulate secondary defense responses through
other downstream co-regulated and co-expressed gene and
metabolic clusters. In addition, our data provided evidence that
there were aphid-specific responses (green and gold rectangles, solid
arrows, Figure 7). Future studies using other pathogens and/or pests
could assist in delineating defense pathways that occur in common
to biotic stressors and discover exploitable genetic differences in
switchgrass plants that could be useful to breeding programs.
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