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Miniature inverted-repeat transposable elements (MITEs) are non-autonomous class II
transposons which have been shown to influence genome evolution. Brassica nigra L. (B-
genome) is one of three Brassica diploids cultivated primarily as an oil crop, which harbors
novel alleles important for breeding. Two new high copy hAT MITE families (BniHAT-1 and
BniHAT-2) from the B-genome were characterized and their prevalence assessed in the
genomes of the related diploids, rapa L. (A) and Brassica oleracea L. (C). Both novel MITE
families were present at high copy numbers in the B-genome with 434 and 331 copies of
BniHAT-1 and BniHAT-2, respectively. Yet less than 20 elements were identified in the
genome assemblies of the A, and C -genomes, supporting B-genome specific
proliferation of these MITE families. Although apparently randomly distributed across
the genome, 68 and 70% of the B-genome MITEs were present within 2 kb flanking
regions of annotated genes suggesting they might influence gene expression and/or
function. In addition, MITE derived microRNAs and transcription factor binding sites
suggested a putative role in gene regulation. Age of insertion analysis revealed that the
major proliferation of these elements occurred during 2–3 million years ago. Additionally,
site-specific polymorphism analyses showed that 44% MITEs were undergoing active
amplification into the B-genome. Overall, this study provides a comprehensive analysis of
two high copy MITE families, which were specifically amplified in the B-genome,
suggesting a potential role in shaping the Brassica B-genome.

Keywords: Brassica nigra (black mustard), transposons (TE—transposable elements), hAT family, Brassica,
miniature inverted-repeat transposable elements (MITEs)
INTRODUCTION

Transposable elements (TEs) constitute a major fraction of most eukaryotic genomes; for instance
more than 85 and 71% of the Triticum aestivum and Aedes albopictus genome, respectively were
occupied by TEs (Lee and Kim, 2014; Chen et al., 2015; Appels et al., 2018). Based on the
mechanism of transposition TEs are typically classified into class I TEs (Retro-transposons) and
class II TEs (DNA transposons). Class I TEs are mobilized into a new position of the same genome
by a copy-and-paste mechanism through an RNA-intermediate, while class II TEs are mobilized
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through a cut-and-paste mechanism. Autonomous TEs have
functional coding regions allowing independent transposition
while those lacking this ability are non-autonomous.
Transposition of TEs catalyzed by transposases into different
genomic regions can have a significant impact on gene structure,
expression and function and ultimately may influence genome
adaptation and evolution (Wicker et al., 2007; Sampath et al.,
2015; Vicient and Casacuberta, 2017).

Miniature inverted-repeat transposable elements (MITEs) are
non-autonomous class II DNA transposons, usually small (<
1000 bp) in size, AT-rich, and ubiquitously present in almost all
plant genomes (Pritham, 2009; Bennetzen and Wang, 2014;
Sampath and Yang, 2014). Each MITE contains signature
structures known as terminal inverted repeats (TIRs ≥10 bp) at
either end flanked by target site duplications (TSDs, 2–10 bp)
(Fattash et al., 2013). MITEs are deletion derivatives derived
from autonomous TEs thus share structure and sequence
similarity with their parent element; for example a Tourist
superfamily MITE, mPing, is derived from ping DNA
transposons (Feschotte et al., 2002; Naito et al., 2009).
Conversely, some MITE families, such as the stowaway MITE
superfamily may have originated through cross mobilization
facilitated by distantly related TEs such as Marinar like
elements (Feschotte et al., 2005; Macko-Podgórni et al., 2019).
Regardless of their size and origin and their requirement for trans-
acting transposases, MITEs tend to be present in high copy
numbers. In rice MITEs make up 10% of the total genome,
consisting of 179,415 elements from 339 families (Chen et al.,
2013). Though studies have suggested that MITEs are formed
through usurping the endogenous gap repair mechanism, it is still
unclear how MITE copy numbers increase (Naito et al., 2009).

MITEs are classified into 15 different superfamilies based on
their TSDs in plant and animal genomes. So far seven
superfamilies of MITE, Tcl/mariner, PIF/Harbinger, hAT,
Mutator, CACTA, P-element, and Novosib, have been found
in plants whereas other superfamilies were common in animals
(Wicker et al., 2007; Chen et al., 2013). The hAT family has been
investigated in many plant species including Zea maya, Orzya
sativa, Arabidopsis thaliana, and Brassica species (Bundock and
Hooykaas, 2005; Muehlbauer et al., 2006; Benjak et al., 2008;
Menzel et al., 2012; Chen et al., 2013; Menzel et al., 2014;
Sampath et al., 2014; Nouroz et al., 2015b) and is among the
most prevalent of such elements, of those Brassicaceae species
studied between 0.7 and 4.5% of the total genome length were
covered by MITE species (Chen et al., 2013). Maize kernel color
changing factor Activator (Ac), an autonomous hAT transposon
was the first TE discovered followed by its non-autonomous
partner element Dissociation (Ds) (Feschotte et al., 2002).
Members of the hAT superfamily have been found in various
distantly related organisms, suggesting their ancient origin,
which predates the divergence of plant-fungi and animals
(Kempken and Windhofer, 2001; Rubin et al., 2001). The
extensive P-MITE database provides a collection of MITE
sequences from 41 plant species that includes 3,527 families
from 7 superfamilies (Chen et al., 2013). MITEs have been shown
to be distributed into almost all genomic regions, although some
Frontiers in Plant Science | www.frontiersin.org 2
MITE families have a tendency to closely associate with genes
(Guo et al., 2017). Insertion of MITEs into various genic and near
genic-regions can impact regulation of genes and genome
evolution (Oki et al., 2008; Naito et al., 2009). Various studies
have suggested that MITEs play a direct role in transcriptional
and post-transcriptional gene modifications by acting as an exon,
a source of small RNAs, or providing the transcription start site
and the poly(A)-tail (Naito et al., 2009; Sampath et al., 2013).
Furthermore, their high copy and stable inheritance make
MITEs a valuable tool for marker development (Monden et al.,
2009; Sampath et al., 2015).

The genus Brassica (family Brassicaceae) is an economically
important source of vegetable, oilseed and fodder crops (Cheng
et al., 2017). The evolutionary relationship of the six Brassica species
including the three diploid species, Brassica rapa L. (A-genome,
2n=2×=485 Mb), B. nigra L. (B, 2n=2×=600 Mb) and B. oleracea L.
(C, 2n=2×=630 Mb) and derived allotetraploids B. juncea (L.)
Czern. (AB, 2n=4×=1100 Mb), B. carinata A. Braun (BC,
2n=2×=1230 Mb) and B. napus L. (AC, 2n=2×=1120 Mb) was
depicted by the triangle of U (Nagaharu, 1935). The recent
availability of whole genome sequences for all species (except BC)
has provided an unprecedented opportunity to study elements of
genome structure and carry out comparative analysis (Wang et al.,
2011; Chalhoub et al., 2014; Liu et al., 2014; Parkin et al., 2014; Yang
et al., 2016). Though the B-genome has comparatively less
economic importance than the A and C genomes, it comprises a
pool of novel alleles conferring numerous elite characteristics for
traits such as diseases resistance, salt and drought tolerance, which
can be used for trait improvement in the valuable oilseed B. napus
(Truco and Quiros, 1994). Genome sequencing of the A and C-
genomes revealed that about 40–60% of the genome was occupied
by repeat sequences including TEs and tandem repeats (Wang et al.,
2011; Chalhoub et al., 2014; Liu et al., 2014; Parkin et al., 2014; Yang
et al., 2016). While there have been a few studies of MITEs in
Brassica genomes, there has as yet been no equivalent analysis of the
B-genome (Nouroz et al., 2015a). In the current study, through
comparison of 170 candidate MITE families between the diploid
genomes two hAT MITE families which proliferated specifically in
the B-genome were identified. Here, we characterized the two hAT
MITE families and their distribution and potential evolutionary
impact on the Brassica B-genome is discussed.
MATERIALS AND METHODS

Identification of MITE Families From B.
nigra Genome
A newly developed B. nigra whole genome pseudo-chromosome
assembly (Ni100-LR) derived from Nanopore read data was
used, which with unanchored scaffolds covered 503.5 mega
bases (Mb) (Perumal et al., 2020)1. MITE Digger was used
with default parameters (Yang, 2013) and identified 234
candidate MITE families. In addition, MITE finderII (Hu et al.,
2018) was applied with default parameters, which identified 224
July 2020 | Volume 11 | Article 1104
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potential families, of these 170 candidate MITEs were annotated
with both programs and used for further analyses. MITE
signature structures such as TIRs and TSDs were characterized
using the selfBLAST tool from NCBI2. Candidate MITE families
were searched against Repbase and P-MITE database (Chen
et al., 2013; Bao et al., 2015) to identify homologous MITEs in
other plant genomes. MITE-derived microRNAs, were identified
by searching MITE sequences from the two families against the
available microRNA database, miRbase (version19)3 with default
parameters for embryophyta genomes (Kozomara and Griffiths-
Jones, 2013). Secondary structure of MITEs was created using the
Mfold software program (Zuker, 2003). Putative transcription
factor binding sites (TFBS) were identified from the MITE
sequences using PROMO4 for genomes of embryophyta
(Messeguer et al., 2002).

Distribution and Phylogenetic Analysis of
MITE Members in A, B, and C-Genomes
In addition to the B-genome, a whole genome assembly for B.
rapa (389.2 Mb) V 1.5, B. oleracea (488 Mb) Version 1.0 and
Arabidopsis thaliana TAIR 10 (125 MB) were obtained from
BRAD (Cheng et al., 2011), Ensembl (https://plants.ensembl.org/
Brassica_oleracea/Info/Index) and TAIR (Huala et al., 2001),
respectively. Furthermore to assess genome specificity, MITE
members were extracted from available genome sequences of the
Brassica allotetraploids, B. juncea (Yang et al., 2016) and B.
napus (Chalhoub et al., 2014). Related MITEs were identified
from the reference genomes based on two hAT families using
BLASTn (E-value of E-05), those with ≥ 80% sequence alignment
length and identity were considered intact MITEs and extracted
from their respective genome. The position of MITE insertion on
the B -genome relative to gene annotation was compared using a
combination of bedtools and shell scripts. Intact MITEs were
used for phylogenetic analysis. ClustalW alignment of MITE
members of each family and phylogenetic trees were generated
using the neighbor-joining method with 1,000 bootstrap
replications in MEGA X (Kumar et al., 2018).

MITE Copy Numbers in the Brassica A, B,
and C Genomes
MITE copy numbers were estimated in the three Brassica
genomes using the previously described read depth approach
(Waminal et al., 2015). Paired-reads from 11 Brassica accessions
including B. rapa, B. nigra, and B. oleracea were obtained,
accessions and data sources are detailed in Table S1
(Chalhoub et al., 2014; Waminal et al., 2015). Using the CLC
reference map tool included in CLC Assembly Cell
(5.0.2.), whole genome shot-gun (WGS) reads were mapped
against the MITE sequences to quantify the abundance in a
haploid genome with the threshold level of more than 80%
identity across more than 50% of the read length. Overall read
depth was normalized to haploid genome coverage for all three
diploid Brassica genomes based on corresponding genome sizes.
2http://blast.ncbi.nlm.nih.gov/Blast.cgi
3http://www.mirbase.org/
4http://alggen.lsi.upc.es/cgi-bin/promo_v3/promo/promoinit.cgi?dirDB=TF_8.3
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Estimating MITE Insertion Time
The divergence rate between the individual members and their
consensus sequences can be used to estimate the age of the
element (Jiang et al., 2016). In order to estimate the age of the
two MITE families, multiple sequence alignment of members
and consensus sequences for each MITE family was carried out
using clustalw. In order to avoid bias towards the more
numerous subfamilies equal numbers of elements were used
from each subfamily/clade to create the consensus. For example,
for BniHAT-1 the consensus was created with 75 random
members from BniHAT-1 clade I along with 75 members of
BniHAT-1 clade II. Likewise, 69 members from clade II with all
the members from clade I, III, and IV were used to create a
consensus for BniHAT-2. Kimura 2-parameter distance method
implemented in the MEGA X program was used to estimate the
level of base substitution rate per site (k) between each MITE
element and the consensus sequence (Kimura, 1980). Finally,
MITE insertion time was then estimated using the formula T = k/
2r, assuming r = 1.30 × 10−8 (Ma and Jackson, 2006).

Analysis of MITE Insertion
Polymorphism (MIP)
Site-specific polymorphism or MITE insertion polymorphism
(MIP) was analyzed for 22 different Brassica accessions to
identify the presence (inserted site) or absence (empty site)
and activity of a MITE in a specific genomic location (Sampath
and Yang, 2014). Total DNA from the 22 accessions was
extracted from fresh leaves based on the modified CTAB
method (Allen et al., 2006). Accessions used for the MIP
analysis included four B. rapa (A1-A4), fourteen B. nigra (B1-
B14) and four B. oleracea (C1-C4) as described in Table S2.
MITE flanking primers were designed using Primer3 for 60
target regions distributed over the B-genome (Rozen and
Skaletsky, 2000). Primer sequences and their expected product
size and gel profile information are listed in Table S3. PCR was
performed in a 10 µl total reaction volume consisting of 5 ng
DNA concentration, 0.2 µM of each primer, 1 × PCR buffer, 2.5
µM dNTPs, and 1 unit Taq DNA polymerase (Invitrogen, CA).
PCR was carried out with the following conditions; 5 min at 94°
C, 35 cycles of 95°C for 1 min, 57°C for 30 s, and 72°C for 1 min,
with a final extension at 72°C for 5 mins. PCR products were
separated by electrophoresis in 2% agarose gels with 1 x TBE
buffer, gels were pre-stained with GelRed and amplification
products were visualised on a UV trans-illuminator.
RESULTS

Characterization of Two High Copy hAT
Families in the B-Genome
The recently developed B-genome pseudo-chromosome
assembly (Ni100-LR) was used for the characterization of
MITEs (Perumal et al., 2020). Mining of MITE families using
MITE Digger and MITE FinderII identified 170 candidate MITE
families accounting for approximately 1.2% (6.3 Mb) of the B-
genome (Table S4). Comparative analysis of the relative copy
July 2020 | Volume 11 | Article 1104
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number of the 170 MITE families from the three Brassica diploid
genomes (A, B, C-genomes) revealed two MITE elements with
high copy numbers in the B-genome compared to the A and C-
genomes (Table 1). Both elements were comparatively short in
size (673 and 666 bp) with 25 and 12 bp TIRs, respectively
(Figure S1). Following previous classifications, based on the
characteristic 8 bp TSD, the elements were identified as part of
the hAT superfamily (Wicker et al., 2007). Named BniHAT-1
and BniHAT-2, both elements had high AT-content, 70 and 75%
respectively, which is typical of a MITE family. Furthermore,
homology searches against related MITE elements in Repbase
and the P-MITE database revealed BniHAT-1 had homology
with hAT elements from the grapevine genome while BniHAT-2
had homology with elements from the A. thaliana (Table 1).

Transposable element derived microRNAs have been shown to
be involved in regulation of gene function by affecting
destabilization and expression of mRNA. A search for MITE-
derived microRNAs revealed a total of 11 different microRNAs,
using an E-value of 1E-10, with six derived from the BniHAT-1 and
five from the BniHAT-2 family (Table S5). The MITE-derived
microRNAs were distributed randomly across the MITE sequences
and five anti-sense microRNAs were also observed. Furthermore,
predicted secondary structures for representative BniHAT MITE
sequences suggested a mechanism for generation of the miRNAs
(Figure S2). MITEs have been shown to influence transcriptional
regulatory networks by providing novel transcription factor binding
sites (TFBS) (Morata et al., 2018). Both MITE elements were found
to contain 18 different potential TFBS that were enriched with stress
responsive TFBS such as those for bZIP, MADS, and SBF1
transcription factors (Table S6). Studying the overall genome
distribution of the 18 TFBS motifs revealed that the majority
were found in TE space at levels which might be expected based
on the repeat content of the genome; however, some appeared to be
more prevalent in TE space, for example >78% of both the PHR1
(Phosphate starvation response) and LIM1 (Cysteine rich zinc-
binding) motifs were located in TE space. For the BniHAT
elements, which occupy less than 0.001% of the genome, 24 and
16% of the LIM1 and AP3:PI (MADS box transcription factor)
motifs, respectively were derived from the two BniHAT MITE
families. This finding is in keeping with previous analyses
suggesting a role for TE in controlling gene expression, further
functional analysis would be required to confirm a specific role for
the BniHAT elements (Kuang et al., 2009; Cui et al., 2017).

Copy Number Analysis Based on Whole
Genome Assembly and WGS Reads
Both MITE families were used to search the three diploid
Brassica (A, B, C) and the A.thaliana (At) whole genome
Frontiers in Plant Science | www.frontiersin.org 4
assemblies. BLASTn analysis of BniHAT-1 revealed 434 intact
members in the B-genome, while only one element was found in
each of the three other genomes. Likewise, for BniHAT-2, 331, 3,
18, and 5 elements were found in the B, A, C and At-genomes,
respectively (Table 1). Compared to BniHAT-1, BniHAT-2 had
slightly higher numbers in all the related genomes and was found
to have its highest copy number in the B. oleracea genome (Table
1). Both of the MITE families showed B-genome specific
proliferation with 434 to 18-fold difference. In addition,
analysis of MITE members in the available Brassica B-genome
containing allotetraploid B. juncea (AB) identified 432 and 200
members from BniHAT-1 and BniHAT-2, respectively. Of these,
533 in total were positioned on chromosomes, with 78 and 83%
of BniHAT-1 and BniHAT-2 elements, respectively being
present in the B-subgenome of B. juncea. The remaining
chromosome anchored elements (79 BniHAT-1 and 29
BniHAT-2) were from the A-subgenome suggesting recent
mobilization of these elements. In comparison, only 2 copies of
BniHAT elements were found in the B. napus (AC) genome
suggesting no amplification.

Copy numbers were also estimated based on an WGS read
depth approach for the Brassica diploid genomes. This revealed a
similar pattern with that estimated using the whole genome
assemblies, with 550, 10 and 25 BniHAT-1 and 850, 8 and 75
BniHAT-2 members in the B, A, and C-genome, respectively
(Figure 1). While the B-genome has the highest copy numbers,
with up to 20-fold differences, for both elements higher numbers
were observed in the Brassica C-genome compared to the A
(Figure 1).

Genomic Distribution of MITEs
Both MITEs families appeared to show a random distribution
across the B-genome chromosomes (Figure 2). The MITE
insertion positions were characterized in the B-genome to
check for any preferential association with particular genomic
regions or features. Out of 434 and 331 members, 184 (44%)
BniHAT-1 and 156 (47%) BniHAT-2, respectively were in close
proximity to genes (≤ 2 kb flanking) (Figure 3; Table S6; Table
S7). This suggested the preferential association of both MITE
families with euchromatic regions, although only one and three
members from the BniHAT-1 and BniHAT-2 MITE families,
respectively were inserted into gene exons (Figure 3; Table 2).

Phylogenetic Analysis and Age of the
MITE Insertion
Phylogenetic analysis based on intact members from both MITE
families reveals inter- and intra-genomic diversity for Brassica
and the related species A. thaliana. BniHAT-1 family members
TABLE 1 | Characteristics of the two Brassica nigra (Bni) hAT families.

MITE
family

size
(bp)

TIR
(bp)

TSD
(bp)

AT
(%)

Intact copies in reference genomes Homologous
element (HE)

HE inP-MITE
DB

B. rapa
(A)

B. nigra
(B)

B. oleracea
(C)

B. juncea
(AB)

B. napus
(AC)

A.
thaliana

BniHAT-1 673 25 8 70 1 434 1 432 1 1 VIHAT2-N1_VV DTA_Brr74
BniHAT-2 666 12 8 75 3 331 18 200 1 5 ATHATN1 DTA_Brr81
July 2020 | Volume 11
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showed a lower level of intra-species divergence compared to
BniHAT-2 and a distant relationship with the small number of
inter-specific elements (Figure 4). Three clades (I–III), including
one clade containing the solitary A and C-genome members, can
be observed from the phylogenetic analysis of the 437 BniHAT-1
family members. Clade I and II consist of 75 and 359 B-genome
specific members, respectively, suggesting that members were
amplified in a B-genome specific manner (Figure 4A). Likewise,
phylogenetic analysis of 357 BniHAT-2 family members revealed
five different clades (I–V) with 33, 227, 81, 7, and 5 members for
each clade, respectively. BniHAT-2 members from A. thaliana
were grouped into a separate clade from the Brassica genomes.
Members from Clades I and III contained related C-genome
elements, while Clade II consisted of 229 members from the B-
genome, and a single member from the A-genome (Figure 4B).

The age(s) of the MITE elements were estimated to suggest
the time of differential diversification. This revealed that the
BniHAT-1 family has two bursts of amplification, a larger
expansion about 2 million years ago (mya) and a smaller
expansion about 6 mya. While BniHAT-2 family members
showed a major proliferation of 150 members at approximately
3 mya with a less well defined event about 10 mya (Figure 5).

Insertion Polymorphism of hAT Members
in the Three Major Diploid Brassica
Genomes
Insertion and potential activity of MITEs was studied using
MITE insertion polymorphism (MIP) analysis, focusing on 60
specific sites in 22 Brassica accessions (Figure 6). Out of 60
targets analysed, which included 30 each from the two BniHAT
families; 30 (100%) and 23 (77%) sites showed expected
amplification, for BniHAT-1 and BniHAT-2 members,
respectively. Overall, 52 out of the 53 amplified sites were
specific to the B-genome and only one BniHAT-2 insertion
was found in the C-genome, with no amplification found in
the A-genome. MIP analysis revealed that 49 (92%) members
Frontiers in Plant Science | www.frontiersin.org 5
appeared to be polymorphic in at least one accession. In addition,
13 out of 53 (25%) members showed evidence of recent
insertions in the B-genome for two or more accessions
(Table S7).
DISCUSSION

MITEs play an important role in gene and genome evolution by
influencing gene structure and expression (Sampath and Yang,
2014). Taking advantage of the recently sequenced B. nigra B-
genome, genome-wide characterization of MITEs was completed
using the denovo MITE identification tools, MITE Digger and
MITE finderII (Yang, 2013; Hu et al., 2018). Comparative
analysis of the candidate elements revealed two MITE
superfamilies of hAT transposons, which showed unique
amplification in the Brassica B-genome compared to A and C-
genomes. There have been various studies focusing on MITEs in
Brassica genomes suggesting their evolutionary importance and
also utility as source of markers (Chen et al., 2013; Sampath et al.,
2013; Sampath et al., 2014; Nouroz et al., 2015a; Nouroz et al.,
2015b). Though there is an extensive collection of MITEs for
many plant genomes, including B. rapa and B. oleracea, very few
elements have been subjected to in-depth structural and
functional characterization (Chen et al., 2013). In addition, few
studies on comparative analysis have included the B-genome
(Nouroz et al., 2015a). This study provides the first in depth
characterization of two largely B-genome specific MITE families.

MITEs are generally present in large quantities (hundreds of
thousands of copies) per genome. An analysis of MITEs in 19
Arabidopsis accessions revealed 343,485 MITE-related sequences
which contribute to a significant proportion of the genome, and
impact the evolution of the genome (Guo et al., 2017). Similarly,
genome-wide characterization of MITEs in B. rapa revealed
45,821 MITE-related sequences belonging to 174 families that
are believed to influence genome structure and evolution (Chen
FIGURE 1 | Estimation of MITE copy numbers in four diploid Brassica genomes (B. nigra: Bni, B. rapa: Bra, B. oleracea: Bol) based on read mapping using whole
genome sequence reads.
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A

B

C

FIGURE 2 | Distribution of two HAT family members across the pseudo-chromosomes of the B. rapa (A), B. nigra (B) and B. oleracea (C) genome.
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et al., 2013). Furthermore, extensive characterization of MITEs
in B. rapa revealed many relatively intact copies in the genome,
for instance, the BraSto family was present in >1,500 intact
copies per haploid genome (Sampath et al., 2013). Likewise, hAT
superfamilies of MITEs were identified and characterized in
various species including B. rapa and B. oleracea, Oryza
species, Musa species, and Beta vulgaris and were found to be
present at high copy numbers (Bundock and Hooykaas, 2005;
Muehlbauer et al., 2006; Nouroz et al., 2015b). MITEs comprised
Frontiers in Plant Science | www.frontiersin.org 7
approximately 1% of the B. nigra genome (Perumal et al., 2020),
and in our analysis we identified two hAT families that are
largely specific to the B-genome. Genome or lineage specific
amplification of transposons including MITEs has been observed
for many species (Feschotte et al., 2002; Choi et al., 2014) and has
been suggested to play a role not only in increasing genome size
but more specifically in genome adaptation (Parisod et al., 2010;
Belyayev, 2014). Recent analysis of MITEs in multiple carrot
genomes revealed extensive diversity in MITE insertion site
A

B

FIGURE 3 | Genomic position of BniHAT-1 and BniHAT-2 elements in the B. nigra genome. (A) Plot showing distribution of MITEs within 5 Kb of the Transcription
start/stop site. (B) Graph showing number of MITEs in each genomic position.
TABLE 2 | MITE Members from BniHAT-1 and BniHAT-2 inserted into exonic regions of the B. nigra genome.

ID Chr# Start End Size E-value B. nigra _gene Orthologue
(A. thaliana)

Function

BniHAT2-4 B1 53,961,873 53,962,535 667 0 BniB01g054500.2N.1 AT3G10520 Class 2 non-symbiotic hemoglobin
BniHAT2-233 B4 6,296,857 6,297,488 649 0 BniB04g013020.2N.1 AT5G43600 Allantoate Amidohydrolase 2
BniHAT2-259 B5 16,032,215 16,031,555 667 0 BniB05g032100.2N.1
BniHAT1-375 B4 8,429,613 8,428,948 675 0 BniB04g016760.2N.1 AT5G44900 Toll-Interleukin-Resistance (TIR) domain family protein
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polymorphism and differential association of particular MITE
families with transcription factors, suggesting a role in gene
regulation (Macko-Podgórni et al., 2019).

After polyploidization events in plants, bursts of transposon
amplification have been found and thought to mitigate the effects
of genome shock and gene dosage (Vicient and Casacuberta,
2017). In particular, bursts of transposition into various genic
regions can take control of nearby gene expression for adaptation
and genome evolution (Naito et al., 2009; Tenaillon et al., 2010).
Furthermore, transposition bursts also influence structural
changes of genes and genomes by subsequent inter-element
recombination and chromosomal rearrangement, which can
result in a decrease of genome size and loss of chromosomes
Frontiers in Plant Science | www.frontiersin.org 8
as a long-term path to diploidization (Vicient and Casacuberta,
2017). This evolutionary response is unique for each
transposable element family and each genome (Han et al.,
2010; Lu et al., 2011). For example, characterization of TE
types in Gossypium species revealed that different TE families
with lineage-specific amplification caused variation in genome
size (Hawkins et al., 2006). In Brassica, the centromeric
associated PCRBr gypsy transposon specifically amplified in
the A-genome (Lim et al., 2007). On the other hand, the B-
genome does not have centromeric tandem repeats, which are
common to A and C-genomes, suggesting a divergent
evolutionary path (Lim et al., 2007; Koo et al., 2011). In this
study, two MITEs were identified that specifically proliferated in
the B-genome while few copies were found in the close relatives,
implying the importance and potential influence of these MITEs
on B-genome evolution. We also observed that BniHAT
members are present at a low copy number in the A-
subgenome of B. juncea suggesting active mobilization of
BniHAT elements and implying a possible role in divergence
of the allotetraploid sub-genomes.

MITEs can be activated by stress causing them to transpose
into a different genomic location, while also amplifying their
copy number; possibly by an abortive gap repair mechanism or
by an unknown mechanism (Naito et al., 2009). Analysis of
MITE age based on synonymous substitution rate revealed that
both B-genome MITE families have a long and continuous
evolutionary trajectory from 1–14 mya. Though both MITE
families showed irregular and gradual amplification until 2
mya, the largest events occurred about 2–3 mya for both
A B

FIGURE 4 | Phylogenetic analysis of BniHAT-1 (A) and BniHAT-2 (B) family members from the three diploid Brassica genomes and A. thaliana. The origin (color
coded) and number of the different members from each of the four genomes is shown in parenthesis for each clade.
FIGURE 5 | Age distribution of BniHAT-1 and BniHAT-2 family members in
B. nigra genome.
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families. speculating a specific role of BniHAT families in B-
genome evolution. The Brassica B-genome diverged 9 mya from
the common ancestor of B. rapa-oleracea; independent
amplification of the BniHAT elements in the B-genome
suggest a role in genome adaptation and their close association
Frontiers in Plant Science | www.frontiersin.org 9
with genic regions implicate their potential for impacting
gene regulation.

MITEs have a tendency to distribute randomly across the
genome, yet associate with genes or near genic regions and the
distribution of MITEs into various genomic locations such as
A

B

D

C

FIGURE 6 | MITE insertion polymorphisms analyses of members from BniHAT-1 (A, B) and BniHAT-2 (C, D) families in three diploid Brassica genomes.
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exon, intron and regulatory regions has the ability to influence
gene structure, function and evolution (Naito et al., 2009). Based
on our analysis, a significant proportion of members from both
B-genome families were inserted proximal to gene regions (<= 2
Kb), suggesting they may have a functional influence on
associated genes. In addition, microRNAs derived from MITEs
may influence gene regulation which could be important for B-
genome evolution (Table S5) (Morata et al., 2018). Furthermore,
a number of potential TFBS were found in the two MITE family
sequences, in particular the two BniHAT MITE families
contributed 24 and 16% of LIM1 and AP3:PI motifs from the
total genome, suggesting a putative role in gene regulation and
stress responses (Table S6) (Hénaff et al., 2014). However, more
functional analysis will be required to support the assumption of
MITE-derived microRNA and TFBS. The abundance, genic
association, and short nature of MITEs facilitates their use as
simple markers in diversity and evolution studies (Sampath et al.,
2015). Intact and stable inheritance of MITE can provide a
source of markers for QTL and association studies (Sampath
and Yang, 2014). Insertion polymorphism analysis based on
MITE flanking markers provided evidence of insertion and
activity in divergent B genome varieties.
CONCLUSIONS

MITEs are an important transposon family which are present at
high copy number and would be expected to impact structural
and functional divergence of genes. Two hAT MITE families
specific to the B. nigra genome were identified. Both MITE
families were largely absent from the related A and C-genomes
but are present at high copy numbers and have undergone
relatively recent amplification in the B-genome. Though hAT
family members show a random distribution throughout the
genome there was a biased association with genes or gene related
regions suggesting the importance of these MITEs to structural
and functional evolution of the B. nigra genome.
Frontiers in Plant Science | www.frontiersin.org 10
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