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In plants, sugar transporters play an important role in the allocation of sugars from cells in
source organs to cells in sink organs. Hence, an understanding of the molecular basis and
regulation of assimilate partitioning by sugar transporters is essential. Leaves are the main
source of photosynthetic products. In jujube (Ziziphus jujuba Mill.), the mechanisms
regulating initial sugar unloading in leaves are still unclear. In this study, an expression
profiling analysis showed that ZjSWEET2.2, encoding a sugar transporter in the SWEET
family, is highly expressed in leaves. Over-expression of ZjSWEET2.2 increased carbon
fixation in photosynthetic organs. Our analyses showed that ZjSWEET2.2 encodes a
plasma membrane-localized sugar transporter protein. Its expression levels were found to
be suppressed under drought stress and by high concentrations of exogenous sugars,
but increased by low concentrations of exogenous sugars. Finally, DNA sequence
analyses revealed several cis-elements related to sugar signaling in the promoter of
ZjSWEET2.2. Together, these results suggest that ZjSWEET2.2 functions to mediate
photosynthesis by exporting sugars from photosynthetic cells in the leaves, and its gene
expression is regulated by sugar signals.

Keywords: Jujube (Ziziphus jujuba Mill.), SWEET, photosynthesis, sugar signal, sugar transporter
INTRODUCTION

In higher plants, photosynthates produced at the photosynthetic “source” (mainly mesophyll cells)
are essential for growth and development, and are major nutritional components of fruits (Zhu et al.,
2010). Photosynthate allocation occurs via transport from the source organ to the heterotrophic
“sink” organs (fruits, roots, seeds) (Lalonde et al., 2004; Ayre, 2011). Adequate photosynthate
production in the leaves can substantially increase the number of flowers and fruit weight.
Improvements in allocation efficiency can increase the proportion of total biomass allocated to
harvestable organs (Zhu et al., 2010; Paterson and Li, 2011). Sugar translocation depends on active
transport by transmembrane proteins or passive transport via the plasmodesmata. In higher plants,
sugar transporters play crucial roles in mediating carbohydrate fluxes (Patrick et al., 2001) and are
linked with biomass gain. By now, sugar transporters found in plants mainly include three types:
Abbreviations: SWEET2a, sugars will eventually be exported transporter 2a; RBCS, ribulose bisphosphate carboxylase/
oxygenase; PGK, phosphoglycerate kinase; RPI, ribose-5-phosphate isomerase; PRK, phosphoribulokinase.
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monosaccharide transporters (MST), sucrose transporters (SUT)
and SWEET transporters (Sugars Will Eventually be Exported
Transporters). Of these, MSTs and SUTs have typical structural
characteristics of the major facilitator superfamily (MFS) with
high hydrophobicity and generally include 12 transmembrane
domains (Fang et al., 2020), which is the most important
membrane transporter family. SUTs are crucial for the sucrose
long-distance transportation in phloem to sink organs as sucrose
is the important form of photosynthetic products (Chandran
et al., 2003; Scofield et al., 2007). In the sink organs, some of the
disaccharide can be degraded to monosaccharide and mediated
by MSTs (Doidy et al., 2019), while in pea seeds, most
carbohydrates transported into cotyledons cells in the form of
sucrose by sucrose transporter PsSUT1 (Zhou et al., 2009).
Besides, sucrose can be used as an important sugar signal to
regulate plant growth and development (Osuna et al., 2007).

As a novel family of sugar transporters, the role of SWEET
proteins was first identified in Arabidopsis thaliana (Chen et al.,
2010). A protein structure prediction analysis indicated that
SWEET transporter protein belonged to the MtN3 family and
have seven transmembrane domains (TMSs) with two duplicated
units of three TMSs and a linker element (the fourth TMS)
(Chen et al., 2012; Xuan et al., 2013). SWEET proteins have sugar
efflux and influx activity, and have diverse physiological
functions (Jeena et al., 2019). Other studies sequenced and
characterized SWEET family members in various plant species,
such as tomato (Solanum lycopersicum), wheat, citrus, and pear
(Pyrus bretschneideri) (Xu et al., 2013; Feng et al., 2015; Li et al.,
2017; Gao et al., 2018). The results of those studies provided
some details of the roles of SWEET transporters in regulating
sugar transport and accumulation. SWEET transporters show
low affinity for hexose and sucrose during sugar efflux or import.
In Nicotiana, Arabidopsis, and brassicas, SWEET9 facilitates
sucrose efflux for nectar secretion (Lin et al., 2014). SWEET15
mediates sugar export in the endosperm to promote embryo
development (Wang et al., 2019b) or seed filling (Chen et al.,
2015a). Other SWEET proteins function under different osmotic
stress conditions or in pathogenic reactions (Chen et al., 2015b;
Jeena et al., 2019). Some SWEET proteins are involved in the
mobilization of carbohydrates in leaves (Chen et al., 2010),
which may affect photosynthetic efficiency. In Arabidopsis,
AtSWEET11 and 12 were shown to play crucial roles in sugar
efflux from mesophyll cells to the apoplast (Chen et al., 2012);
and in tomato, SlSWEET1a was found to play roles in glucose
efflux from mature to young leaves (Ho et al., 2019).
Nevertheless, the function of many SWEET sugar transporters,
especially in perennial woody crops, remains unclear.

Jujube (Ziziphus jujuba Mill.), a member of the Rhamnaceae
family, is an important dry fruit crop with a worldwide
distribution (Qu and Wang, 1993). It is strongly resistant to
drought and salinity stress. With a cultivation area of more than
2 million ha, jujube has become the primary source of income for
20 million farmers. Our previous studies identified that sugar
transporters play significant roles in the accumulation of sugars
in jujube fruit (Zhang et al., 2018). However, little is known about
the mechanism of sugar efflux by sugar transporters in leaves. In
Frontiers in Plant Science | www.frontiersin.org 2
this study, we identified ZjWEET2.2 as another member of the
SWEET family in Z. jujuba, and conducted a preliminary
evaluation of its functions. The gene encoding ZjWEET2.2 was
found to be highly expressed in photosynthetic organs, and the
protein was found to localize to the plasma membrane. Over-
expression of this gene increased carbon fixation. Our results
indicate that the expression of ZjSWEET2.2 and the activity of its
encoded protein are mediated by sugar signals. The results of this
study provide new insights into the function and regulation of
SWEET sugar transporters.
MATERIALS AND METHODS

Plant Materials
The Chinese dry jujube cultivar “No. 4 Jinsi,” and fresh jujube
“Zaozhuangcuizao” and “Dongzao,” were grown at the Jujube
Experimental Station, Shandong Institute of Pomology, Taian,
China. The fruits of “No. 4 Jinsi” were collected at different
developmental stages [young fruit at 10 days after anthesis (DAA),
enlarged fruit at 40 DAA, white mature fruit at 80 DAA, half-red
fruit at 100 DAA, and fully red fruit at 110 DAA]. Leaf, root, and
phloem (scraped from the stem using a blade) samples were
also collected.

Jujube young trees were grown in an incubator under a 16-h
light/8-h dark photoperiod, and watered every five days to keep
water content at more than 60% of maximum field capacity. For
drought stress treatments, water was withheld for 2 weeks when
the leaves showed wilting phenotype; while the control group
was keep watering every five days. The leaves were harvested
from water deficit-treated trees and well watered controls for
analyses. In the exogenous sugar application experiment, the
treatment groups were sprayed with 3% or 10% (w/v) glucose or
sucrose, and the control group was sprayed with the same
amount of distilled water. Leaves were collected at 6 h after
treatment for analyses. For each treatment, three biological
replicates were analyzed. All samples were directly frozen in
liquid nitrogen and stored at −80°C until analysis.

Construction of Phylogenetic Tree
Jujube genes putatively encoding sugar transporter proteins were
obtained from the Junzao genome (accession number:
LPXJ00000000) (Huang et al., 2016). The BLASTP tool was
used to retrieve loci encoding putative sugar transporters, using
Arabidopsis sequences as queries with E-values ≤1e-5. To
construct the phylogenetic tree, the sequences of transporters
from jujube, Arabidopsis, and Solanum lycopersicum L. were
aligned by ClustalW with MEGA5 (Tamura et al., 2011). The
phylogenetic tree was constructed using the Neighbor-Joining
method, and the phylogeny test was based on the bootstrap
method with 1000 replications.

Vector Construction and
Plant Transformation
The vector was constructed using the method described by Jiang
et al. (2017b). The coding sequence of ZjSWEET2.2 was inserted
July 2020 | Volume 11 | Article 1081
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downstream of the CaMV35S promoter in the plant expression
vector pVBG23000-GFP, which includes the gene encoding green
fluorescent protein (GFP). For the subcellular localization
analysis, the positive vector CaMV35S-ZjSWEET2.2-GFP was
transiently expressed in tobacco leaves after infiltration with
Agrobacterium tumefaciens strain GV3101 containing the
vector. The pRT101-AtPIP2A-red fluorescent protein (RFP) was
used as a plasmamembrane marker, and was co-transformed with
CaMV35S-ZjSWEET2.2-GFP. The tobacco plants were incubated
at 25°C for 48 to 72 h, and the fluorescence of GFP was observed
under a high resolution laser confocal microscope (Zeiss,
Jena, Germany).

For the transient overexpression analysis, jujube leaves were
vacuum-infiltrated with Agrobacterium containing the vector
along with 500 µl Tween 20. The CaMV35S-GFP construct
was used as a control. The leaves were cultured on Murashige
and Skoog (MS) medium for 48 to 72 h in an incubator under a
12-h dark/12-h light photoperiod. The presence and relative
amount of the transgene in transgenic leaves were determined by
qRT-PCR.

Analyses of mRNA Levels
Total RNA was extracted using a Plant RNA Extraction Kit
(Foregene, Chengdu, China) following the manufacturer’s
instructions. To analyze the transcript levels of ZjSWEET2.2
and genes related to carbon fixation [RBCS (encoding
ribulose bisphosphate carboxylase/oxygenase), PGK (encoding
phosphoglycerate kinase), RPI (encoding ribose-5-phosphate
isomerase), and PRK (encoding phosphoribulokinase)],
reverse-transcription quantitative real-time PCR (qRT-PCR)
was performed using a SYBR Premix Ex Taq Kit (Vazyme,
Nanjing, China) on a Bio-Rad IQ5 instrument (Bio-Rad,
Hercules, CA, USA). The reaction volume was 20 µl. All qRT-
PCRs were performed with three technical replicates and three
biological replicates. The primers were designed from the coding
sequences of jujube genes using Primer5 software and are listed
in Supplemental Table 1. Primer specificity was determined
based on melting curve analyses. Expression data were analyzed
using the 2-DDCT method (Livak & Schmittgen, 2001). The
selected reference gene was UBQ (Zhang et al., 2015).

Measurement of Sugar Contents
The contents of sucrose, glucose, and fructose were measured by
high performance liquid chromatography (HPLC) according to
Gao and Wang, (2013). All samples were extracted and analyzed
in triplicate. For each sample, 1 g tissue was homogenized and
measured. Three biological replicates were analyzed for each
time point and variety.
RESULTS

Sequence Analysis of ZjSWEET2.2
We identified 19 candidate ZjSWEET genes from the jujube
genome. The phylogenetic tree was constructed using amino acid
sequences of SWEET transporters from jujube, A. thaliana, and
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S. lycopersicum (Supplemental Table 2). The SWEET sugar
transporters from the three species could be classified into four
clades (Figure 1). Clade I includes the members of SWEET1,
SWEET2, and SWEET3, subclades), clade II includes the
members from SWEET4 to SWEET8, clade III includes the
members from SWEET9 to SWEET 15, and clade IV includes
SWEET16 and SWEET17. Consistent with the fact that a recent
common whole genome duplication event has occurred in many
species, there were duplicate copies of some SWEET genes in the
genome. In our comparisons, ZjSWEET2.2 in clade I of the
SWEET family showed the closest relationship with its paralog
ZjSWEET2.1 and its ortholog AtSWEET2 from A. thaliana.
Protein structure analyses of ZjSWEET2.2 revealed seven
predicted TMDs in a protein comprising 266 amino acids
(Supplemental Figure 1).

Subcellular Localization of ZjSWEET2.2
The coding sequence for ZjSWEET2.2 was fused to eGFP and
transiently expressed in leaves of Nicotiana benthamiana to
determine the subcellular localization of its encoded protein.
The construct was co-expressed with the mRFP1-labeled plasma
membrane marker. Confocal images showed that GFP
fluorescence was localized to the plasma membrane, the
cytoplasm and nucleus of the tobacco epidermal cells, and
ZjSWEET2.2-GFP was co-located with the plasma membrane
marker at the plasma membrane (Figure 2).

Tissue Expression Patterns of ZjSWEET2.2
Our previous RNA sequencing results showed that ZjSWEET2.2
transcript levels were highest in leaves among various tested
jujube tissues (spires, leaves, flowers, fruit, and stems) (Huang
et al., 2016; PRJNA306374). To explore the putative functions of
ZjSWEET2.2, we determined its transcript levels in different
tissues (Figure 3). The transcript levels of ZjSWEET2.2 were
highest in the leaves followed by flowers and green fruit, while
there were low transcript levels in the root and the phloem of
branches (Figure 3A). We also determined its transcript levels in
the flesh and green peel of three different cultivars (Figure 3B).
In all cultivars, the ZjSWEET2.2 transcript levels were higher in
the peel than in the flesh, consistent with the higher chlorophyll
content in the peel than in the flesh. Furthermore, ZjSWEET2.2
transcript levels were analyzed in different development stages of
fruit (peel) (Figure 3F). The transcript levels of ZjSWEET2.2 in
fruit were high at the young stage and decreased as fruit ripened,
alongside the degradation of chlorophyll.

Overexpression of ZjSWEET2.2 in
Transgenic Lines
To explore the patterns of regulation of ZjSWEET2.2 in leaves, the
CaMV 35S: ZjSWEET2a-GFP construct was transformed into
jujube leaves for transient expression. We then determined the
transcript levels of ZjSWEET2.2 and genes related to photosynthetic
carbon assimilation by qRT-PCR. The transcript level of
ZjSWEET2.2 in the ZjSWEET2.2-OE line was nearly 20 times
higher than that in the GFP-expressing control. We determined the
transcript levels of genes encoding RBCs, the key enzyme in carbon
fixation in the leaf; RPIs, which function upstream of RBCs; and
July 2020 | Volume 11 | Article 1081
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FIGURE 1 | Maximum likelihood phylogeny of SWEET sugar transporters. Accession numbers for SWEET genes from Arabidopsis are those reported by Wei et al.
(2014) and those for tomato genes are those reported by Feng et al. (2015).
FIGURE 2 | Subcellular localization of ZjSWEET2.2. 35S:GFP-ZjSWEET2.2 was transiently expressed in tobacco leaves and co-localized with transiently expressed
plasma membrane marker RFP. Scale bars, 10 mm.
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PGKs, which function downstream of this pathway (Figure 4). Two
genes in the RBCs family were significantly up-regulated in the
ZjSWEET2.2-OE line compared with the control. Among the RPIs
family, two members were expressed weakly and two showed no
differences in their transcript levels between the ZjSWEET2.2-OE
line and the control. However, the LOC107422427 transcript levels
in leaves were higher in ZjSWEET2.2-OE than in the control. One
PRK gene was up-regulated in the ZjSWEET2.2-OE line. In the
PGKs gene family, PGK1 (LOC107431911) transcript levels were
not affected in the ZjSWEET2.2-OE line, but the other two PGKs
were up-regulated. Together, these results suggested that
overexpression of ZjSWEET2.2 increased carbon fixation to some
extent via increased export of assimilation products from
photosynthetic tissues.

Regulation of ZjSWEET2.2 by Sugars
Exogenous sugars at two concentrations were sprayed onto the
leaves of jujube plants, and then the transcript levels of
ZjSWEET2.2 were monitored by qRT-PCR (Figure 5A). After
treatment with 3% (w/v) exogenous glucose, the transcript level
of ZjSWEET2.2 was significantly up-regulated by approximately
three-fold, compared with that in the control. In the plants
treated with 3% (w/v) exogenous sucrose, the transcript level was
also increased, but only by 50% compared with that in the
control. When the concentration of exogenous sugars was
increased to 10% (w/v), the transcript level of ZjSWEET2.2
decreased to lower than that in the control, and this difference
Frontiers in Plant Science | www.frontiersin.org 5
was more significant in the plants treated with glucose than in
those treated with sucrose. These results showed that the
expression of ZjSWEET2.2 was induced by low concentrations
of sugars, but suppressed by high concentrations of sugars, and
was more responsive to glucose than to sucrose.

Next, we analyzed the correlation between the transcript
levels of ZjSWEET2.2 and sugar contents in fruit during
development. The contents of hexoses (fructose and glucose)
increased steadily during fruit development, while sucrose began
to accumulate rapidly from the white ripening stage (2.9 g/100 g
fruit fresh weight), ultimately reaching 7.8 g/100 g (Figure 5B). A
correlation analysis showed that the transcript level of
ZjSWEET2.2 was significantly negatively correlated with
hexose content (r = −0.985, P < 0.015).

To explore the regulation of ZjSWEET2.2 expression, the 2-kb
promoter region upstream (5′) of the start codon of ZjSWEET2.2
was sequenced and analyzed (Supplemental Figure 2). Tools at
the PlantCare server were used to identify cis-elements in this
sequence, and additional cis-elements that are known to be sugar
regulation regions were also considered (Li et al., 2006; Baena-
Gonzalez et al., 2007). In total, 12 cis-elements related to sugar
repression and seven related to sugar induction were identified
(Table 1). Interestingly, most of these elements were located
within the 1-kb region upstream of the start codon. The large
number of sugar signaling-related cis-elements in close proximity
to the start codon strongly suggested that sugar signals regulate
the expression of ZjSWEET2.2.
A B

D

E

FC

FIGURE 3 | Transcript levels of ZjSWEET2.2 in different tissues of jujube and phenotypic characteristics of fruits at different development stages. (A) Transcript levels
of ZjSWEET2.2 in phloem, root, flowers, leaves, and fruit. (B) Transcript levels of ZjSWEET2.2 in peel and flesh of three different jujube varieties. (C) White mature
fruit and (D) half-red fruit on jujube tree. (E) Four different development stages of jujube fruits (Y, young fruit; EN, enlargement stage; WH, white mature stage; HF,
half-red stage). (F) Changes in relative transcript levels of ZjSWEET2.2 during fruit development. Three biological replicates were analyzed. Error bars represent SE.
Asterisks indicate significant difference as determined by Student’s t-test (**P < 0.01; *P < 0.05).
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Suppression of ZjSWEET2.2 Expression
Under Drought Stress
We determined the transcript levels of ZjSWEET2.2 in leaves of
jujube plants under drought stress. The results showed that the
transcript level decreased to approximately one-quarter its pre-
Frontiers in Plant Science | www.frontiersin.org 6
stress level under drought stress, suggesting that SWEET2 plays
important roles in regulating cell osmotic potential by reversing
sugar efflux. Consistent with this, the contents of fructose and
glucose in leaves of jujube increased under drought stress
(Supplemental Figure 3).
FIGURE 4 | Transcript levels of genes involved in carbon fixation in photosynthetic organ. RBCSs: ribulose bisphosphate carboxylases; PRKs,
phosphoribulokinases, RPIs: ribose-5-phosphate isomerases, PGKs: phosphoglycerate kinases. Results are normalized against transcript level in control group,
which was set to 1. Data are mean ± SD of three replicates. ** indicate significant difference (P < 0.01) as determined by Student's t-test.
A B

FIGURE 5 | Transcript levels of ZjSWEET2.2 in leaves of plants treated with exogenous sugars (A), and correlation between transcript levels of ZjSWEET2.2 and
monosaccharide sugar content (B). Three biological replicates were analyzed. Error bars represent SE. ** indicate significant difference (P < 0.01) as determined by
Student’s t-test.
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DISCUSSION

ZjSWEET2.2 Plays Roles in Mediating
Sugar Export From Photosynthetic Organs
The SWEET sugar transporters from the three species could
be classified into four clades, previously uncovered in
Arabidopsis (Chen et al., 2010; Eom et al., 2015; Doidy
et al., 2019). Our analyses showed that ZjSWEET2.2 is in the
clade I SWEET gene family, and is phylogenetically closest to
AtSWEET2. In Arabidopsis, AtSWEET2 encodes a glucose
transporter (Xuan et al., 2013; Chen et al., 2015a). In this
study, we found that ZjSWEET2.2 could be regulated
by exogenous glucose, but its expression was relatively
insensitive to exogenous sucrose. Therefore, we speculate
that ZjSWEET2.2 also mainly exports glucose. We detected
low transcript levels of ZjSWEET2.2 in sink organs of jujube,
but high transcript levels in leaves, where photosynthates are
produced and then continuously exported to sink organs.
Although sucrose may account for the largest proportion of
sugars exported from the leaf, it can also be hydrolyzed into
glucose and fructose by cell wall invertases, thereby forming a
sucrose gradient to facilitate outflow (Osorio et al., 2014).
When the ZjSWEET2.2 protein was transiently expressed in
tobacco leaves, it co-localized with a plasma membrane
marker in the plasma membrane, suggesting that this is the
primary site of apoplastic sugar transport. On the basis of our
results, we suggest that the plasma membrane-localized sugar
transporter ZjSWEET2.2 directly transports glucose and
indirectly facilitates sucrose loading in the leaf. AtSWEET2
limits carbon sequestration in the roots in Arabidopsis, while
LcSWEET2a in Litchi chinensis is involved in early seed
development (Xie et al., 2019). In contrast, ZjSWEET2.2 is
expressed abundantly in chlorenchyma cells. Besides,
AtSWEET2 was characterized as a vacuolar transporter (Chen
et al., 2015b), while the orthologous gene ZjSWEET2.2 is located
at the plasma membrane. We speculate that the function of
SWEET2 may differ among different species. Soluble sugars are
known to be involved in the regulation of osmotic potential in
cells of plants under salt and drought stress (Lemoine et al., 2013).
In our study, the transcript level of ZjSWEET2.2 significantly
decreased in jujube plants under drought stress. This led to
Frontiers in Plant Science | www.frontiersin.org 7
decreased sugar export from cells, so that the content of
hexose sugars increased. Together, our results suggest that
ZjSWEET2.2 plays a key role in sugar export from source
(photosynthetic) leaves.

Previous studies have shown that the over-accumulation of
carbohydrates in leaves reduces the photosynthetic rate (Baker
et al., 2016). In Arabidopsis, ATSWEET11 and 12 are located in
the vascular tissues of leaves. Mutations of their encoding genes
were shown to result in the accumulation of starch in leaves,
which seriously reduced photosynthetic efficiency (Chen et al.,
2012). Similar phenomena have been observed in Zea mays, in
which photosynthesis was impaired in the genome-edited knock-
out mutants of ZmSWEET13 paralogs (a, b, and c) (Bezrutczyk
et al., 2018). In contrast, increasing sugar efflux can stimulate
photosynthetic activity (Ainsworth and Bush, 2011). The
maize protein CTS1, a homolog of ATSWEET1, increases
photosynthesis by regulating the sugar content in subsidiary
cells in maize (Wang et al., 2019a). In our study, overexpression
of ZjSWEET2.2 resulted in increased transcript levels of genes
related to carbon fixation and photosynthesis. We speculate that
ZjSWEET2.2 indirectly improves photosynthesis by stimulating
phloem loading and decreasing the carbohydrate levels in
mesophyll cells.

Sugar Signals Mediate Expression of
ZjSWEET2.2
Accumulation of free sugars can lead to down-regulation of
photosynthesis through sugar signaling networks (Rolland
et al., 2006). In this study, we found that the abundance of
ZjSWEET2.2 transcripts was significantly negatively correlated
with sugar accumulation in fruits, and was significantly reduced
by exogenous sugars at a high concentration. These results
suggested that high concentrations of soluble sugars may also
down-regulate the expression of the sugar exporter
ZjSWEET2.2. In contrast, a low concentration of exogenous
glucose promoted ZjSWEET2.2 expression, indicating that it is
induced by low-sugar signals. Both sugar-induction and sugar-
repression cis-acting regions were identified in the promoter of
ZjSWEET2.2, including three W boxes (TTGACC/T), which
are indispensable for mediating sugar signaling (Sakr et al.,
2018). The WRKY-type transcription factors specifically
TABLE 1 | Known cis-acting elements involved in sugar repression/induction in 2,000-bp fragment of ZjSWEET2.2 promoter.

Cis-Elements Sequence Response Copies References

W-box TTGACC Sugar induce 2 Sakr et al., 2018; Chen et al., 2019
W-box TGACT Sugar induce 1 Sakr et al., 2018
SUCROSE BOX 3 AAATCA.AA Sugar induce 4 Hwang et al., 1998; Lu et al., 1998;
TATCCAOSAMY TATCCA Sugar suppress 2 Lu et al., 2002; Sun et al., 2003

Baena-Gonzalez et al., 2007
G box CACGTG Sugar suppress 1 Hwang et al., 1998
CATCC CATCC Sugar suppress 2 Li et al., 2006
I-BOX core GATAA Sugar suppress 3 Manzara et al., 1991
AMYBOX1 TAACAAA Sugar suppress 1 Hwang et al., 1998
EVENINGAT core ATATCT Sugar suppress 2 Li et al., 2006
GATTA GATTA Sugar suppress 1 Li et al., 2006
Ju
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recognize W-Box cis-elements (Eulgem et al., 2000; Jiang et al.,
2017a) and are known to be involved in sugar induction of gene
expression (Chen et al., 2019). However, we detected more
sugar-repression elements than sugar-induction elements in
the promoter of ZjSWEET2.2. A previous study demonstrated
that sugar regulatory motifs in the promoter of STP1 in
Arabidopsis are involved in repression of gene expression by
glucose (Cordoba et al., 2015). Six out of the seven different
motifs identified in the promoter of STP1 were also detected in
the promoter of ZjSWEET2.2. We detected two TATCCA
elements in the 2-kb region of the ZjSWEET2.2 promoter. In
rice, the TATCCAOSAMY motif is recognized by the MYB-
type transcription factor OsMYBS2, which regulates expression
of a-Amy3 in response to sugar signaling (Lu et al., 2002;
Baena-Gonzalez et al., 2007). Consistent with this, we speculate
that some transcription factors bind to the cis-acting regions in
the ZjSWEET2.2 promoter to mediate its expression. Further
research is needed to clarity the regulation mechanism of these
putative orthologs.

Model of Regulation Mechanism of
ZjSWEET2.2
On the basis of the expression patterns of ZjSWEET2.2 in
different tissues, we propose a hypothetical model for its
regulation mechanism. As shown in Figure 6, our results
suggest that ZjSWEET2.2 plays a critical role in exporting
sugars from leaves. Low sugar content may promote
ZjSWEET2.2 expression. Over-expression of ZjSWEET2.2
increases carbon fixation into photosynthates by decreasing the
carbohydrate content in mesophyll cells. When the sugar content
Frontiers in Plant Science | www.frontiersin.org 8
increases in the cytosol, such as under drought stress or in
ripening fruit, the expression of sugar-responsive transcription
factors increases. These bind to sugar-suppressed elements in the
promoter region of ZjSWEET2.2 to repress its expression. Besides,
the over-accumulation of sugar reduces the photosynthetic rate
(Baker et al., 2016). This model also explains the phenomenon of
high expression levels of ZjSWEET2.2 in mature leaves, but
decreasing levels in ripening fruit as sugars accumulate.
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