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Plant stomata which consist of a pair of guard cells, are not only finely controlled to
balance water loss as transpiration and CO2 absorption for photosynthesis, but also serve
as the major sites to defend against pathogen attack, thus allowing plants to respond
appropriately to abiotic and biotic stress conditions. The regulatory signaling network for
stomatal movement is complex in nature, and plant peptides have been shown to be
involved in signaling processes. Arabidopsis secreted peptide PIP1 was previously
identified as an endogenous elicitor, which induced immune response through its
receptor, RLK7. PIP1-RLK7 can activate stomatal immunity against the bacterial strain
Pst DC3118. However, the molecular mechanism of PIP1 in stomatal regulation is still
unclear and additional new factors need to be discovered. In this study, we further clarified
that PIP1 could function as an important regulator in the induction of stomatal closure. The
results showed that PIP1 could promote stomata to close in a certain range of
concentrations and response time. In addition, we uncovered that PIP1-RLK7 signaling
regulated stomatal response by activating S-type anion channel SLAC1. PIP1-induced
stomatal closure was impaired in bak1, mpk3, and mpk6 mutants, indicating that BAK1
and MPK3/MPK6 were required for PIP1-regulated stomatal movement. Our research
further deciphered that OST1 which acts as an essential ABA-signaling component, also
played a role in PIP1-induced stomatal closure. In addition, ROS participated in PIP1-
induced stomatal closure and PIP1 could activate Ca2+ permeable channels. In
conclusion, we reveal the role of peptide PIP1 in triggering stomatal closure and the
possible mechanism of PIP1 in the regulation of stomatal apertures. Our findings improve
the understanding of the role of PIP1 in stomatal regulation and immune response.
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INTRODUCTION

Plant stomatal pores are formed by pairs of specialized epidermal
guard cells and serve asmajor gateways tomodulate gas exchange for
photosynthesis and transpirational water loss (Bergmann and Sack,
2007). Stomata are also the major entry sites for different kinds of
pathogens. Plants frequently suffer from various abiotic and biotic
stresses during their life cycle, and stomata play an important role in
allowing plants to respond appropriately to diverse environmental
stimuli or defend against pathogen attack (Melotto et al., 2006; Kim
et al., 2010; Blatt et al., 2017). The regulatory signaling pathway of
stomatal movement is complex and a lot of elements can influence
stomatal pore apertures, such as CO2, light, humidity,
phytohormones, pathogens (Speth et al., 2009; Kollist et al., 2014;
Murata et al., 2015). Among these factors, plant stress hormone
abscisic acid (ABA) signalinghas been studied extensively and shown
to play a vital role in the regulation of stomatal movement (Wang
et al., 2001;Raghavendra et al., 2010; Lee et al., 2013).ABAcan trigger
theactivationofguardcell anionchannels (e.g. SLAC1)andcanresult
in the efflux of anions, which in turn reduces the turgor of guard cells
to promote stomatal closure (Li et al., 2000; Cutler et al., 2010;
Okamoto et al., 2013; Merilo et al., 2015). In addition, the cytosol
reactive oxygen species (ROS) and Ca2+ are important second
messengers which are elevated in response to ABA that in turn
function as positive regulators in ABA-mediated stomatal closure
(Pei et al., 2000;Kimet al., 2010; Suzuki et al., 2011; Singh et al., 2017).

There are numerous small signaling peptides have been
discovered in plants and most of them do not have known
function. Primarily, small signaling peptides have been found to
play roles in plant growth and development (Wang and Fiers,
2010; Murphy et al., 2012; Czyzewicz et al., 2013; Dong et al.,
2019). Additional findings also implicate that small signaling
peptides can play roles in regulating stomatal movement and can
response to abiotic or biotic stress (Wang et al., 2016; Takahashi
et al., 2018; Yu et al., 2018; Zheng et al., 2018; Qu et al., 2019).
flg22 is a 22-amino acid peptide, which is derived from the bacterial
flagellin protein (Monaghan andZipfel, 2012). InArabidopsis,flg22
can be recognized by the receptor kinase FLS2 inplasmamembrane
and then FLS2 interacts with BRI1-associated kinase 1 (BAK1) to
form an active complex by phosphorylation (Chinchilla et al., 2007;
Sun et al., 2013). Besides, another receptor-like kinase, BOTRYTIS-
INDUCED KINASE 1 (BIK1), is a direct substrate of the FLS2-
BAK1 complex which phosphorylates the NADPH oxidase that in
turn induces the production of ROS (Li et al., 2014). flg22-FLS2
pathway can induce a transient elevation of cytosolic Ca2+ and the
production of ROS, which ultimately induces stomatal closure to
prevent bacterial invasion (Melotto et al., 2006). It is noteworthy
that OPEN STOMATA 1 (OST1) and SLAC1 are essential factors
for ABA-induced stomatal closure which have been also shown to
mediate the flg22-regulation of stomatal closure. In fact, OST1 or
second messengers (e.g. ROS or Ca2+) can activate SLAC1 to
promote stomatal closure (Geiger et al., 2009; Vahisalu et al.,
2010; Joshi-Saha et al., 2011). These findings suggest that there is
crosstalk between ABA pathway and small peptide-mediated
regulation of stomatal movement. In addition, MITOGEN-
ACTIVATED PROTEIN KINASE MPK3/MPK6 are known to
play roles in plant immune response (Mao et al., 2011; Meng et al.,
Frontiers in Plant Science | www.frontiersin.org 2
2013; Su et al., 2017) and in small peptide-induced stomatal closure
(Zhang et al., 2019).

Arabidopsis secreted peptide PIP1 can be recognized by RLK7,
which is plasma membrane-localized LRR-RLK (Pitorre et al.,
2010), and can amplify immunity response (Hou et al., 2014). A
recent report indicates that PIP1 cooperates with salicylic acid to
regulate stomatal immunity in Arabidopsis thaliana (Hou et al.,
2019). In this study, we further confirmed that PIP1 could
participate in the induction of stomatal closure. PIP1 could
promote stomatal closure in a time- and dose-dependent manner.
Moreover, anion channel SLAC1 played an important role in PIP1-
RLK7 signaling pathway. We further showed that BAK1,MPK3/6,
and an important signaling element of the ABA-pathway OST1
were required for PIP1-induced stomatal closure. In addition, our
research revealed that ROS and Ca2+ channels acted as the
downstream components in PIP1-RLK7 signaling. Altogether,
our study demonstrated the mechanism of PIP1-induced
stomatal closure to some extent, and provided clues to delineate
signal transduction pathways mediated by PIP1 in stomatal
regulation and stress response.
MATERIALS AND METHODS

Plant Materials and Growth Conditions
We used two wild type ecotypes of A. thaliana in this study:
Columbia-0 (Col-0) and Landsberg-0 (Ler-0). Col-0 was the
background of PIP1 over-expression lines (PIP1-OE and PIP1-
OE2), and mutants rlk7 (rlk7-2, SALK_083114) (Hou et al., 2019),
bak1 (bak1-4, SALK_116202) (Hou et al., 2014), bik1 (Zhang et al.,
2010; Hou et al., 2014),mpk3/mpk6 (SALK_151594/SALK_073907)
(Xu et al., 2014; Zhang et al., 2019), slac1-1, slac1-3, and rbohD/F
(CS9558) (Shen et al., 2017). But ost1-1 and ost1-2were Ler-0 ecotype
background. As for seedling growth, seeds were surface-sterilized
with75%ethanol for 3min, then95%ethanol for 1min, and followed
air-dried before use. The sterilized seedswere subsequently plated on
half-strength Murashige and Skoog (1/2 MS) solidified medium
(containing 1/2 MS salts, 1% w/v sucrose, and 0.7% w/v agar, pH
5.7) and then vernalized for 3 days at 4°C. After vernalization, seeds
were transferred to a growth chamber (8-h light/16-h dark cycle, 100
µmol m–2 s–1 light, 70% relative humidity, a temperature regime of
22°C ± 2°C day/18°C ± 2°C night) for 1 week further growth. Then
the seedlings were transplanted to pots containing soil mixture
(vermiculite: rich soil, 1:2, v/v).

Peptide Synthesis
According to the report (Hou et al., 2014), the peptide PIP1 used
in this research was synthesized by Sangon Biotech Company
(Shanghai, China) and the purity level of PIP1 was 98%. The
sequence of peptide is shown from N terminus to C terminus as
follows: RLASG-Hyp-SPRGPGH.

Stomatal Closure Experiment
Stomatal apertures were measured as described previously with
slight modification (Li et al., 2016). Fully expanded rosette leaves
from about 4-week-old plants of every genotype were harvested
for stomatal closure assay. Detached leaves were incubated in
July 2020 | Volume 11 | Article 1029
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closure buffer (1 mM CaCl2, 20 mM KCl, 5 mM MES-KOH, pH
6.15) for 2.5 h in light. Then leaves were treated with PIP1, H2O2

or Pst DC3118 bacterial suspension (the final concentration of
108 cfu/ml) for the indicated time, and non-bioactive PIP1
(hyperthermia inactivation) was the control of PIP1 treatment and
water was used as the control of PstDC3118 or H2O2. Subsequently,
abaxial epidermal strips were peeled away by tweezers to make slides
and placed on a light microscope (Olympus SZX16) to photograph
randomly. The stomatal pore widths and lengths were measured
using Image J (version: 1.37, https://imagej.nih.gov/ij/), and the
stomatal aperture was calculated as the ratio of the inner pore
width/pore length of each pair of stomata (Yang et al., 2017). All
experiments were repeated for three independent biological
replicates, and no less than 40 guard cells were measured for every
sample. Statistical analyses were performed using a One‐way
ANOVA followed by the significant difference test.

Quantitative Real-Time PCR
The quantitative real-time PCR (qPCR) was used to analyze the
transcript levels of PIP1 and SLAC1 in response to treatment.
Briefly, A. thaliana 15-day-old seedlings grown on 1/2 MS solidified
agar plates were transferred to 1/2 MS liquid medium for 24 h of
incubation. Then 10 µM PIP1 or Pst DC3118 bacterial suspension
(the final concentration of 108 cfu/ml) was added to themedium and
incubated for another hour. After indicated treatment time, seedlings
were harvested and frozen quickly in liquid nitrogen. The
transcription of PIP1 was also identified by qPCR in the over-
expression lines (PIP1-OE and PIP1-OE2) (Hou et al., 2014). Total
RNA was isolated from seedlings using TRIzol reagent (Roche,
Switzerland) and cDNA was synthesized using the Revert Aid First
Strand cDNA Synthesis Kit (Thermo Fisher, USA). qPCR
experiments were performed using the CFX96 Touch™ Real-Time
PCRDetection system(Bio-Rad,Hercules,CA,USA)whichbasedon
SYBR Premix Ex Taq mix (Roche) with gene specific primers. The
internal control was ACTIN2. All the quantitative analysis was
repeated for three independent biological replicates. The primer
sequences used are shown as follows: ACTIN2 forward primer, 5′-
GGTAACATTGTGCTCAGTGGTGG-3′, ACTIN2 reverse primer,
5′-AACGACCTTAATCTTCATGCTGC-3′. PIP1 forward primer,
5′-AATCGGGAGAATGGAAGTGC-3′, PIP1 reverse primer, 5′-
GACGCCAAACGCTGAAAC-3′. SLAC1 forward primer, 5′-
CCGGGCTCTAGCACTCA-3′, SLAC1 reverse primer, 5′-
TCAGTGATGCGACTCTT-3′.

Guard Cell Isolation and Electrophysiology
Arabidopsis guard cell protoplasts were isolated according to
Zhang et al. (2008) with some modifications. Briefly, the
Arabidopsis abaxial epidermis were peeled from 12 to 14
expanded young leaves of 4-week-old plants. Then, all collected
epidermis were blended in about 500ml distilled water for 28 s and
filtered through a 100-µmnylonmesh. Subsequently, the peelswere
transferred into 2 ml enzyme solution I (0.7% Cellulysin cellulase,
0.1%PVP-40, and0.25%BSA in55%basic solution (5mMMES,0.5
mMCaCl2, 0.5 mMMgCl2, 0.5mM ascorbic acid, 10 µMKH2PO4,
0.55M sorbitol, pH 5.5). The peels were digested in a shaking water
bath at 80 rpm for 30min at 25°C. Another 2-ml basic solutionwas
added to enzyme solution I, and shakingwas continued for a further
Frontiers in Plant Science | www.frontiersin.org 3
10min.After that, thepartiallydigestedpeelswerefiltered througha
100-µmnylonmesh and put into 2ml of enzyme solution II, which
contained 1.5% Onozuka cellulase RS, 0.02% cellulase Y-23, and
0.25% BSA in 100% basic solution. Then digestion of the peels
continued by shaking at 60 rpm for at least 20 min. After digestion,
these peels were collected and filtered through 30-µm nylon mesh.
The guard cell protoplastswere obtainedby centrifuging at 800 rpm
for 5 min and washed twice by basic solution.

The whole-cell mode patch clamp experiment was performed
as described previously (Pei et al., 1997; Pei et al., 2000; Wang
et al., 2001; Acharya et al., 2013). To record the S-type anion
channel currents, the bath solution contained 30 mM CsCl, 2
mM MgCl2, 1 mM CaCl2, and 10 mM MES (pH 5.6) and the
pipette solution contained 150 mM CsCl, 2 mM MgCl2, 6.7 mM
EGTA, 3.35 mM CaCl2, and 10 mM HEPES (pH 7.5). The
osmolarity of the solutions was adjusted respectively with sorbitol
to480 and500mOsmfor bath andpipette solutions.TheATP (Mg-
ATP, 10 µM) and GTP (10 µM) were added to pipette solutions
before use from stock solutions. To investigate PIP1 activation of
Ca2+-permeable ICa channels, thepipette solutioncontained10mM
BaCl2, 4 mM EGTA, 0.1 mM DTT, and 10 mM HEPES-Tris (pH
7.1). 5mMNADPHwas freshly added to the pipette solution before
experiments. The bath solution contained 100 mM BaCl2, 0.1 mM
DTT, and 10 mMMES-Tris (pH 5.6). Osmolarity was adjusted to
500 and 485 mOsm for the pipette solution and the bath solution
respectively with D-sorbitol.

The anion channel currents were recorded using the Axopath-
200B amplifier (Molecular Devices, Downingtown, PA, USA) after
the whole-cell configuration was achieved. The holding potential
was +30 mV, and voltage steps were applied from –145 to +35 mV
in +30 mV increments, with a duration of 60 s for every test voltage.
For PIP1 treatment, guard cell protoplasts were exposed to 10 µM
PIP1 for 2 h before measurement and PIP1 was also added to both
the bath and pipette solution. As to record Ca2+ channel currents,
thewhole-cellCa2+currentswere recorded5minafter achieving the
whole-cell configuration. The holding potential was −13 mV and
voltage rampswere from−200 to+80mV.PIP1 or LaCl3was added
to the bath solution. To acquire and analyze the anion or Ca2+

channel currents, pCLAMP software (version 10.2; Axon
Instruments, Sunnyvale, CA, USA) was used, and SigmaPlot 12.0
(Systat Software, Richmond, CA, USA) was used to draw the
current-voltage plots and for data analysis.
RESULTS

PIP1 Peptide Can Promote Stomatal
Closure in A. thaliana
It is well known that stomata are the major entry sites for various
pathogens, and PIP1 has been previously shown to function in
plant immunity (Hou et al., 2014). Therefore, we found that
exogenous treatment of Pst DC3118 bacteria, which is the COR
deficient, could induce PIP1 expression (Figure 1). Besides, Pst
DC3118 could close the stomata in wild type, and the stomatal
apertures were much smaller in PIP1 over-expression lines than
those of Col-0 (Figure 1 and Supplementary Figure S3). These
results indicated that PIP1 could close stomata to restrict
July 2020 | Volume 11 | Article 1029
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pathogen entry via a PIP1-dependent manner. To further confirm
the function of PIP1 in stomatal movement, we synthesized PIP1
peptides as described by Hou et al. (2014) and conducted stomatal
closure experiments. Firstly, we analyzed stomatal aperture by
exogenous application of different concentrations (0, 1, 10, 100
µM) of PIP1 peptides. The result showed that the stomatal aperture
decreased in size under higher concentrations of PIP1 until the 10
µMconcentration (Figure 1). Additionally, we also found that PIP1
could induce stomatal closure in a time-dependent manner. As
shown in Figure 1, the stomatal aperture did not change obviously
without PIP1 exposure but decreased within 1 to 2 h upon 10 µM
PIP1 treatment, and the minimum aperture was observed at 2 h
(Figure 1). Interestingly, the stomatal aperture began to recover at 3
hofPIP1 treatment.According to these results, weused10µMPIP1
as the optimal concentration and 2 h as the optimal treatment time
for our follow-up experiments. These results indicate that secreted
peptide PIP1 of Arabidopsis can play a role in regulating stomatal
closure as a signalingmolecule and can function in dose- and time-
dependent manner.

The Anion Channel SLAC1 Functions in
PIP1-RLK7 Signaling
Previous studies have shown that SLAC1 is the major component
of S-type anion channels and plays an important role in ABA-,
high CO2-, flagellin-induced stomatal closing responses in guard
Frontiers in Plant Science | www.frontiersin.org 4
cells (Vahisalu et al., 2008; Kim et al., 2010; Guzel Deger et al.,
2015; Zhang et al., 2018). These facts prompt us to find out
whether SLAC1 is also required for PIP1-induced stomatal closure.
We found that exogenous PIP1 could improve the transcriptional
level of SLAC1 (Figure 2). In the presence of exogenous PIP1, the
stomatal aperture reduced obviously in Col-0, but did not in slac1
mutants: slac1-1 and slac1-3 (Figure 2). In addition, similar toPIP1,
Pst DC3118 could induce the transcription of SLAC1
(Supplementary Figure S1). Moreover, the genetic result showed
that the stomatal closure of slac1mutants were hyposensitive to Pst
DC3118 (Supplementary Figure S1). These findings suggest that
SLAC1 may play an important role in PIP1-induced stomatal
closure and the response to Pst DC3118.

The research has shown that PIP1-induced stomatal closure is
RLK7 dependent (Hou et al., 2019). To explore the mechanism of
PIP1-RLK7 pathway in the regulation of stomatal response, we
also conducted patch clamp whole-cell recordings of S-type
anion currents in Col-0 and rlk7 guard cell protoplasts under
control condition and treated with 10 µM PIP1. The path clamp
data showed that the size of anion currents of Col-0 guard cells
increased when exposed to PIP1 (Figure 2C). However, the
anion currents of guard cells from rlk7mutants failed to increase
after addition of PIP1 (Figure 2C). In addition, SLAC1
transcripts did not change in rlk7 with PIP1 treatment
(Supplementary Figure S2), which suggest RLK7 is essential
A B

DC

FIGURE 1 | PIP1 induces stomatal closure in Arabidopsis. (A) Induction of transcript level of PIP1 in response to Pst DC3118 treatment (the final concentration of
108 cfu/ml). Asterisks indicate significant differences between means (P < 0.01). (B) Stomatal aperture in PIP1 overexpression plants by treating with Pst DC3118
(the final concentration of 108 cfu/ml). (C) Induction of stomatal closure by different concentrations of PIP1 peptides (0, 1, 10, 100 µM). (D) Time course of stomatal
closure in response to 10 µM PIP1 treatment. In stomatal closure experiments, error bars indicate SE for three independent biological replicates. Different letters
represent significant differences between groups using Holm-Sidak significant difference test after one-way ANOVA (P value < 0.05).
July 2020 | Volume 11 | Article 1029
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for PIP1 induced SLAC1 transcription, and thus to facilitate the
anion solutes efflux of guard cells to close stomata.

BAK1, MPK3/6, and OST1 Take Part in
PIP1-Induced Stomatal Closure
The receptor kinase BAK1 and BIK1 often play an important role
in peptide signaling or immune response by forming heteromeric
co-receptor complexes with multiple LRR-RLK receptors (such
as FLS2, PEPR1, and so on) (Chinchilla et al., 2007; Lu et al.,
2010; Liu et al., 2013; Zheng et al., 2018). Additionally, BAK1 can
regulate ABA-induced stomatal closure in guard cells (Shang
et al., 2016). Previous report indicates that PIP1-RLK7 signaling
is partially dependent on BAK1, but independent of BIK1 (Hou
et al., 2014). Therefore, we would like to test the possible
functions of BAK1 and BIK1 in PIP1-induced stomatal closure.
Firstly, we used genetic approach to further examine if BAK1 and
BIK1 participated in PIP1-induced stomatal closure. The
stomatal closure experiments of Col-0, bak1, and bik1 showed
that the stomatal aperture of bak1mutants became insensitive to
PIP1 when compared with Col-0 and bik1 (Figure 3). Moreover,
consistent with the observing result in rlk7, further data revealed
that PIP1 could not activate SLAC1 transcription in mutant bak1
(Supplementary Figure S2), however, PIP1 could normally
induce SLAC1 transcription in mutant bik1 (Supplementary
Frontiers in Plant Science | www.frontiersin.org 5
Figure S2). Our findings suggest that BAK1 instead of BIK1
may be required for PIP1-induced stomatal closure.

Published reports show that flg22-induced stomatal closure is
compromised inmpk3 andmpk6mutants (Montillet et al., 2013)
and MPK3/MPK6 mediate peptide-induced stomatal movement
(Zhang et al., 2018). Since MPK3 and MPK6 have been shown to
be activated upon PIP1 induction in Arabidopsis seedlings (Hou
et al., 2014), thus we also tested the contributions of MPK3 and
MPK6 to PIP1-induced stomatal closure. The result showed that
PIP1-triggered stomatal closure was impaired in both mpk3 and
mpk6 mutants (Figure 3). Our finding indicate that MPK3 and
MPK6 also serve as the downstream components in PIP1-
RLK7 pathway.

Stomatal movement is regulated by the phytohormone
abscisic acid (ABA) (Lee and Luan, 2012). The ABA-triggered
activation of guard cell anion channels results in the efflux of
anions, which in turn promotes guard cells to close the stomata
(Wang et al., 2013). In addition, we has established that SLAC1
plays a role in stomatal response in PIP1-RLK7pathway. Therefore,
we would like to explore the role of ABA signaling in PIP1-induced
stomatal closure in guard cells. OST1, a SnRK2-type kinase, which
has been shown to be critical signaling element for ABA-induced
activation of S-type anion channels and ABA-induced stomatal
closure (Joshi-Saha et al., 2011; Brandt et al., 2012). OST1 also
A B

DC

FIGURE 2 | SLAC1 plays an important role in PIP1-RLK7 signaling. (A) Evaluation of SLAC1 induction in response to 10 µM PIP1 by qPCR. Asterisks indicate
significant differences between means (*: P < 0.05). (B) Stomatal closure experiments in slac1 mutants (slac1-1 and slac1-3) in response to 10 µM PIP1. Error bars
indicate SE for three independent biological replicates. Different letters represent significant differences between groups after one-way ANOVA (P value < 0.05). (C)
Patch clamp whole-cell recordings of the anion currents in Col-0 and rlk7 guard cell protoplasts with/without 10 µM PIP1. (D) Current/voltage relationships of whole-
cell slow-type anion currents, as illustrated in (C). The numbers of guard cells measured were as follows: Col-0-Control, n = 11; Col-0-PIP1, n = 7; rlk7-Control, n =
7; rlk7-PIP1, n = 7. Values are means ± SE.
July 2020 | Volume 11 | Article 1029
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regulates flg22-induced stomatal closure and the activation of S-
type anion channels (Guzel Deger et al., 2015). These facts
prompted us to examine the possible function of OST1 in PIP1-
induced stomatal closure. The result showed that the stomatal
apertures of OST1 mutants ost1-1 and ost1-2 were hyposensitive
toPIP1when comparedwithwild-typeLer-0 (Figure 3). Therefore,
OST1may also be required for PIP1-induced stomatal closure and
OST1may be a commonnode of PIP1 signaling andABA signaling
pathway in stomatal regulation.

ROS Production and Ca2+ Signaling Are
Required for PIP1-Regulated Stomatal
Closure
ROS, crucial signal molecules, participate in the regulation of
stomatal movement (Purohit et al., 1994; Murata et al., 2015).
PIP1 also has been reported to induce ROS production in adult
leaves of Arabidopsis (Hou et al., 2014; Hou et al., 2019).
AtRbohD and AtRbohF play essential roles in ROS production.
Therefore, we genetically examined the stomatal response to
PIP1 in rbohD/F double mutants, which fail to produce ROS. The
result showed that rbohD/F double mutants were impaired in
Frontiers in Plant Science | www.frontiersin.org 6
PIP1-induced stomatal closure but stomatal aperture decreased
again when treated with additional H2O2 (a form of ROS)
(Figure 4). The result suggest that ROS is required for PIP1-
induced stomatal closure.

Ca2+ also functions as a key second messenger, which
participates in the regulation of stomatal closure (Moscatiello
et al., 2006) and Kwak et al. (2003) have reported that ROS can
activate Ca2+-permeable channels and can produce concurrent
cytosolic Ca2+ increase. In this study, we found that the ROS
production participated in PIP1-induced stomatal closure, and it
was needed to analyze whether Ca2+ also could be induced by PIP1.
By using patch clamp, we detected a clear increase of Ca2+ currents
through plasma membrane into cytoplasm after treatment with
PIP1, but no obvious change of Ca2+ currents under control
conditions was observed in guard cells (Figure 4B). The
application of LaCl3, a calcium channel blocker, completely
abolished the PIP1-induced Ca2+ influx (Figure 4B), indicating
PIP1 can stimulate Ca2+ influx through activating the guard cell
Ca2+ channels. In addition, our finding indicated that RLK7,
receptor of PIP1, was required for the PIP1-activated Ca2+

currents (Figure 4C).
A B DC

FIGURE 4 | ROS and Ca2+ signaling participate in PIP1-regulated stomatal closure. (A) The stomatal closure in Col-0 and double mutant rbohD/F exposed to 10
µM PIP1 or 10 µM PIP1+100 µM H2O2. Error bars indicate SE for three independent biological replicates. Different letters represent significant differences between
groups after one-way ANOVA (P value < 0.05). (B, C) Typical whole cell recordings of Ca2+ currents in guard cell protoplasts isolated from Col-0 (B) and rlk7 (C)
with 10 µM PIP1, 10 µM PIP1+1 mM LaCl3. (D) Current/voltage curves of time-activated Ca2+ currents as indicated in (B, C). The number of guard cells measured
as follows: Col-0 (control): 5; Col-0 (PIP1): 6; Col-0 (PIP1+LaCl3): 6; rlk7 (control): 5; rlk7 (PIP1): 6.
A B C

FIGURE 3 | BAK1, MPK3, MPK6, and OST1 are involved in PIP1-induced stomatal closure. (A–C) 10 µM PIP1-induced stomatal closure in bak1 and bik1 mutants
(A), mpk3 and mpk6 mutants (B), ost1-1 and ost1-2 mutants (C). Values are means ± SE (n = 3). All the experiments were performed in three independent
biological replicates with similar results. Different letters indicate significant difference between groups after one-way ANOVA (P value < 0.05).
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DISCUSSION

Plant stomata, consisting of a pair of guard cells, are dynamic
structures that open or close to modulate gas exchange and water
loss, and also allow plants to respond appropriately to diverse
pathogens invasion. Therefore, stomata play essential roles in
abiotic and biotic stress responses (Blatt et al., 2017). The regulation
of stomatal movement is complex, and as time progresses,
researchers discover new signaling elements which make the
signaling networks of stomatal movement more complex (Chen
et al., 2019; Sun et al., 2019). Recent years, in addition to plant
growth and development, plant small signaling peptides have been
implicated in stomatal aperture regulation (Li et al., 2014; Zheng
et al., 2018; Qu et al., 2019). The Arabidopsis secreted peptide PIP1
plays a role in plant immune response, and the function of PIP1 is
receptor RLK7-dependent (Hou et al., 2014). The PIP1-RLK7
pathway also functions with salicylic acid to regulate stomatal
immunity (Hou et al., 2019). However, it is still unclear that the
specific mechanism of PIP1-RLK7 signaling in stomatal regulation.
In this study, we further identify new factors which play critical
roles in PIP1-induced stomatal closure and the possible
mechanism by which PIP1 regulates stomatal movement. This
study also contributes to combine peptide-signaling with stomatal
signal transduction pathway in guard cells.

We firstly further explored the impact of PIP1 on stomatal
closure.Ourfindings showed thatPIP1could induce stomatal closure
in adose-dependent and a time-dependentmanner (Figure1C). The
elevated transcription ofPIP1 induced byPstDC3118 (Figure 1) and
the much smaller stomatal aperture of PIP1-OE lines exposed to Pst
DC3118 (Figure 1 andSupplementaryFigure S3), suggest that PIP1
canmimic the function of PstDC3118 and can resist the pathogenic
aggression through promoting stomatal closure. In addition, RLK7
acts as aPIP1 receptor in guard cells that activates stomatal immunity
response upon PIP1 detection (Hou et al., 2019). Therefore, we
further explored the mechanism of PIP1-RLK7 pathway induced
stomatal closure. It is well known that the activation of S-type anion
channels plays an important role in decreasing guard cell turgor and
then leading to stomatal closure (Kim et al., 2010; Zhang et al., 2018;
Munemasa et al., 2019). We found that SLAC1, an important S-type
anion channel, mediated the PIP1-RLK7 signaling in regulating
stomatal closure. The transcriptional level of SLAC1 was enhanced
by treatingwithPIP1 (Figure 2) and the stomatal apertures of slac1-1
and slac1-3mutants failed to respond to PIP1 (Figure 2). To obtain
more concrete evidences for the involvement of SLAC1 in PIP1-
induced stomatal closure, we found that SLAC1 transcripts did not
change in mutant rlk7with PIP1 treatment (Supplementary Figure
S2). Additionally, we also tested the S-type anion currents in Col-0
guard cell protoplasts and found that PIP1 increased the size of anion
currents (Figure 2C). However, PIP1 could not activate the S-type
anion channels in rlk7mutants (Figure 2C). The results confirm that
PIP1-RLK7 signaling induce stomatal closure through the activation
of S-type anion channel SLAC1.

In this study we has established that SLAC1 plays an important
role in stomatal response to PIP1-RLK7 pathway, then we further
explored the signaling mechanism for the activation of SLAC1 and
Frontiers in Plant Science | www.frontiersin.org 7
sought key factors which transmitted the signal fromPIP1-RLK7 to
SLAC1. BAK1 belongs to the SERK family and acts as forming
ligand-induced heteromers with multiple LRR-RLKs, including X
subfamily of LRR-RLK BRI1 and XII subfamily of LRR-RLK FLS2
(Chinchilla et al., 2007;Wang et al., 2008). Previous study has found
that PIP1-induced root inhibition is less predominant in bak1
mutants (Hou et al., 2014). Here, we also found that bak1 was less
sensitive to PIP1 for the induction of stomatal closure (Figure 3)
and PIP1 could not induce the expression of SLAC1 in bak1, which
was similar to that in rlk7 (SupplementaryFigureS2).These results
suggest that BAK1 may be required for PIP1-RLK7 signaling in
inducing stomatal closure process. In future research, it will be
necessary to determine whether BAK1 serves as a co-receptor of
RLK7 in perceiving the PIP1 ligand. In plants, MPKs widely
function in various processes of plant development or in response
to biotic and abiotic stresses (Rodriguez et al., 2010; Lee et al., 2016).
Arabidopsis genome encodes 20 MPKs and among these, MPK3
and MPK6 function in flg22-induced stomatal closure (Montillet
et al., 2013). In addition,MPK3 andMPK6 are involved in stomatal
immunity and MPK3/MPK6 cascade-induced stomatal closure is
related tomalate/citratemetabolism(Suet al., 2017).Recently, it has
been shown that MPK3 and MPK6 also serve as the downstream
components in peptide CLE9-induced stomatal closure (Zhang
et al., 2019). PIP1also can induce thephosphorylationofMPK3and
MPK6 in an RLK7-dependent manner (Hou et al., 2014). In our
study, we demonstrated that both mutant mpk3 and mpk6 were
insensitive to PIP1 (Figure 3), which indicates that PIP1-RLK7
possibly stimulates stomatal closure through the activation of
MPK3/MPK6-mediated pathways. But it is required to further
investigate how PIP1-RLK7 influences MPK3/MPK6 and then
induces stomatal closure.

There are multiple signaling elements have been discovered
which play critical roles for ABA-induced stomatal closure. We
hypothesize that some key signaling elements may also play roles
in PIP1-induced activation of S-type anion channels. Therefore,
we examined the possible functions of several signaling
molecules including a SnRK2-type kinase, OST1. OST1 has
been demonstrated to contribute in flg22-FLS2 signaling, and it
is required to activate the guard cell S-type anion channels to
induce stomatal closure (Melotto et al., 2006; Koers et al., 2011;
Ye et al., 2015). Therefore, we expected that PIP1-RLK7 signaling
may also require OST1 to initiate stomatal closure. The stomatal
experiment result indicated that, to some extent, OST1 mediated
the regulation of PIP1-induced stomatal closure (Figure 3). Our
finding suggests that PIP1-mediated stomatal response and ABA-
induced stomatal closure overlap in common downstream
components including OST1. BAK1 can serve as an upstream
activator of OST1 and can form a complex with OST1 in response
toABA in guard cells (Shang et al., 2016). In addition,BAK1has been
shown toplay a role inPIP1-RLK7signaling.Accordingly,weassume
thatBAK1mayalso functionby interactingwithOST1 inPIP1-RLK7
pathway which is similar to in ABA-signaling. In future study, we
would like to confirm the relationship between BAK1 and OST1 in
PIP1 signaling. Furthermore, ROS have been considered as crucial
secondary messages in ABA-induced stomatal closure and OST1
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catalyzes ROS production (H2O2) mediated by NADPH oxidase
(RbohD and RbohF) (Brandt et al., 2012). In our study, we detected
double mutant rbohD/F was insensitive to PIP1 for closing stomata
(Figure 4). The data suggest that ROS generation is required for
PIP1-induced stomatal closure. Besides, the study (Kwak et al., 2003)
has been reported thatH2O2 application in guard cells activates Ca

2+

channels and produces concurrent cytosolic Ca2+ increase. Here, the
results indicated that PIP1 could also activate Ca2+-permeable
channels in RLK7-dependent manner (Figures 4B–D), suggesting
that Ca2+ signal may participate in PIP1-induced stomatal closure.

In conclusion, a possible working model for the role of secreted
peptide PIP1 in the regulation of stomatal closure is presented in
Figure 5. The function of PIP1-induced stomatal closure depends
on theperceptionby its receptorRLK7, then further activates S-type
anion channel SLAC1 to lead to stomatal closure. On one hand,
RLK7 may share a downstream component, OST1, with the well-
studied guard cell ABA pathway by recruiting BAK1 or other
unknown factors. OST1 can induce the production of ROS, and
ROS further activate Ca2+ channels. These factors ultimately result
in the activation of anion channel SLAC1 to promote stomatal
closure. On the other hand, we found that PIP1-mediated
regulation of stomatal aperture requires MPK3/MPK6, which serve
as downstreammediators. Collectively, our study further reveals that
PIP1 peptides can regulate stomatal aperture and explains the
possible functional mechanism. It not only connects peptide
signaling with stomatal regulation, but also illustrates that PIP1
may function in stress response by closing stomata. Nevertheless,
there are many specific questions remaining to be answered and
further work will be carried out to clarify molecular mechanism of
Frontiers in Plant Science | www.frontiersin.org 8
PIP1-induced stomatal closure. We also need to further investigate
how PIP1 influences MPK3/MPK6 pathway and the relationship
between RLK7 and BAK1 will be confirmed by protein-protein
interaction approaches (such as Co-IP). In addition, we cannot
confirm if OST1 mediates PIP1-signaling in BAK1-dependent
manner, or there are other factors participating in signal
transduction from PIP1 perception to the activation of SLAC1. We
would like to study in future by employingmultiprongedapproaches.
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FIGURE S1 | (A) The Pst DC3118 induction on SLAC1 transcription in Col-0
seedlings. Asterisks indicate significant differences between means (*: P < 0.05).
(B) Stomatal closure experiments in slac1-1 and slac1-3mutants in response to Pst
DC3118 (the final concentration of 108 cfu/ml). Error bars indicate SE for three
FIGURE 5 | A proposed model for the role of PIP1 in the regulation of
stomatal closure. PIP1 can bind to its receptor RLK7, then activates S-type
anion channel SLAC1 to induce stomatal closure. PIP1-RLK7 also possibly
recruits the coreceptor BAK1 or other proteins to form a receptor complex,
and OST1 may act as downstream factor to facilitate ROS and Ca2+ signaling
to close stomata. In addition, MPK3 and MPK6 are also required for PIP1
regulating stomatal movement signaling in guard cells.
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independent biological replicates. Different letters represent significant differences
between groups after one-way ANOVA (P value < 0.05).

FIGURE S2 | The SLAC1 transcription in Col-0 and rlk7, bak1, bik1mutants upon
PIP1 treatment. Asterisks indicate significant differences between means (* P < 0.05).
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FIGURE S3 | (A) The qPCR-based assessment of PIP1 transcription in Col-0 and
the over-expression lines PIP1-OE and PIP1-OE2. (B) Stomatal aperture in PIP1-
OE2 by treating with Pst DC3118 (the final concentration of 108 cfu/ml). Different
letters represent significant differences between groups after one-way ANOVA (P
value < 0.05).
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