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The lower regeneration rate of wheat calli is the main factor restricting the development of
transgenic wheat plants. Therefore, improving the regeneration rate of wheat callus is a
precondition for developing genetic engineering-based wheat breeding approaches. In
the present study, we explored the molecular mechanism of wheat regeneration and
aimed to establish an efficient system for transgenic wheat. We isolated and identified a
regeneration-related gene, TaTCP-1 (KC808517), from wheat cultivar Lunxuan 987.
Sequence analysis revealed that the ORF of TaTCP-1 was 1623bp long encoding 540
amino acids. The TaTCP-1 gene was expressed in various wheat tissues. Further, the level
of TaTCP-1 expression was higher in calli and increased gradually with increasing callus
induction time, reaching a peak on the 11th day after induction. Moreover, the expression
level of TaTCP-1 was higher in embryogenic calli than in non-embryonic calli. The
TaTCP-1 protein was localized to the nucleus, cytoplasm, and cell membrane. The
callus regeneration rate of wheat plants transformed with TaTCP-1-RNAi reduced by
85.09%. In contrast, it increased by 14.43% in plants overexpressing TaTCP-1. In
conclusion, our results showed that TaTCP-1 played a vital role in promoting wheat
regeneration, and regulated the somatic embryogenesis of wheat. These results may have
implications in the genetic engineering of wheat for improved wheat production.
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INTRODUCTION

With the rapid development of biotechnology, traditional
methods, combined with the molecular breeding, are being
extensively utilized in wheat breeding. Since the first published
report of successful transformation of wheat by microprojectile
bombardment using embryogenic calli as explants (Vasil et al.,
1992), significant advances have beenmade in wheat transformation,
including the development of different transgenic wheat varieties
(Patnaik and Khurana, 2003; Supartana et al., 2005; Ding et al., 2009;
Wang et al., 2009), the application of genotype and explant resources
(Hess and Carman, 1998; Delporte et al., 2001; He and Lazzeri, 2001;
Khurana et al., 2002), and the improvement of selection procedures
and the development of co-culture techniques (Janakiraman et al.,
2002; Cheng et al., 2003; Khanna and Daggard, 2003; Cheng et al.,
2004; Jones et al., 2005; Bhalla et al., 2006). Previous studies focused
on increasing the rate of wheat callus regeneration by screening
genotypes with higher regeneration potential, using themost effective
explants, optimizing the medium composition, and screening of
culture conditions. However, the molecular mechanism of callus
tissue regeneration remains inadequately analyzed, and therefore,
there is a need to understand the molecular mechanism underlying
somatic embryogenesis (Boutilier et al., 2002) in wheat.

Somatic embryogenesis is a complex developmental program
in which competent somatic cells undergo restructuring through a
series of morphological, biochemical, and molecular changes. This
requires genome-wide changes in gene expression, which are in
turn, regulated via epigenetic pathways (Heringer et al., 2013; Li
W. et al., 2013; Talapatra et al., 2014; Xu and Huang, 2014; Zhang
et al., 2014). Many plant-based studies on regeneration-related
gene expression have shown that the molecular changes during
somatic embryogenesis involve differential gene expression
(Chugh and Khurana, 2002) triggered by a series of signaling
cascades. Ikeuchi et al. (2016) have comprehensively summarized
the molecular level of plant control regeneration and discussed the
influences of efficiency in plant regeneration.

The regeneration ability of plants is related to different
genotypes and various types of regeneration. Developmental and
environmental constraints influence these regulatory mechanisms
(Ikeuchi et al., 2016). Quantitative trait loci (QTL) associated with
regeneration-related genes have been identified and mapped in
many plant species (Armstrong et al., 1992; Mano et al., 1996;
Schiantarelli et al., 2001; Torp et al., 2001; Trujillo-moya et al.,
2011; Li S. et al., 2013; Seo et al., 2013). Activation tagging showed
that Sho was associated with callus regeneration in Petunia
hybrida L. (Zubko et al., 2002). In a similar study, the cloning of
Os22A proved its association with the regeneration ability of
Konanso in rice (Oryza sativa L.) (Ozawa and Kawahigashi,
2006). Similarly, OsNiR was cloned and proved to be associated
with the high regeneration ability of Kasalath through Map-based
Abbreviations: Bp, Base pair; BLAST, Basic local alignment search tool; Cdna,
Complementary DNA; GFP, Green Fluorescent protein; Amp, Ampicillin; LB,
Luria-Bertani medium; mRNA, Messenger RNA; NCBI, National Center for
Biotechnology Information; PCR, Polymerase Chain Reaction; RT-PCR, Reverse
Transcription Polymerase Chain Reaction; qRT-PCR, Quantitative Real-time
Polymerase Chain Reaction.

Frontiers in Plant Science | www.frontiersin.org 2
cloning in rice (Oryza sativa L.) (Nishimura et al., 2005). Leafy
cotyledon 1 (LEC1), LEC2, and Baby Boom (BBM) were reported
to be involved in somatic embryogenesis (Zhang et al., 2011). The
regeneration in North American Lake Cress, Rorippa aquatica
(Brassicaceae), was determined, like auxin, gibberellin, and
cytokinin, to be important for root regeneration and shoot
regeneration (Amano et al., 2020).

The tailless complex polypeptide 1 (TCP-1) protein is a subunit
of the hetero-oligomeric chaperonin containing TCP- 1 (CCT).
TCP-1 is a member of the chaperonin family that includes GroEL, a
60 kDa heat shock protein (Hsp60), Rubisco subunit binding
protein (RBP), and thermophilic factor 55 (TF55) (Kubota et al.,
1995). The TCP-1 protein is expressed in all cell types but is
abundant in the testis, and was first identified in mice (Ellis, 1992;
Nelson and Craig, 1992). Since then, this protein has been identified
and characterized in many other animal species, yeast, plants, and
protists. The TCP-1 is a component of a hetero-oligomeric 900 kDa
double-torus shaped particle with 6-8 different but homologous
subunits. It is a highly conserved protein with a molecular weight of
approximately 60 kDa (556 to 560 residues). The CCT subunits,
beta, gamma, delta, epsilon, zeta, and eta, are evolutionarily related
to TCP-1 (Kim et al., 1994; Kubota et al., 1994). In plants, TCP-1
plays an important role in cytoskeletal organization and cell
division. Further, TCP-1 also acts as a transcriptional regulator,
thereby playing an important role in plant growth and regeneration
(Feng et al., 2011). TCP proteins were also regulated through
growth and developmental processes including branching, floral
organ morphogenesis, and leaf growth (Il̇han et al., 2018).

Despite being involved in a multitude of processes involved
with plant growth and development, the role of TCP-1 has not
been elucidated in wheat regeneration. The present study aimed
to establish an efficient regeneration system in wheat by cloning
and transferring specific genes involved in the molecular
regulation of somatic embryogenesis. The TaTCP-1 gene was
characterized in wheat and its function was analyzed. Further, we
analyzed the expression of TaTCP-1 in transgenic wheat plants
to explore its biological role in regeneration.
MATERIALS AND METHODS

Plant Materials
Two winter wheat (Triticum aestivum L.) cultivars Lunxuan 987
(with high regeneration potential) and Jimai 22 (with low
regeneration efficiency) were used as in this study. The seeds
were provided by the State Key Laboratory of Crop Stress Biology
for Arid Areas and the College of Agronomy, Northwest A&F
University, Yangling, China. The seeds were sown in an
experimental field (Northwest A&F University, Yangling, China)
in early October of 2012.
Culture Conditions and Treatments
Fresh intact roots, stems, and, leaves were collected from 3-week-
old field-grown wheat. Pistils, stamens, and, glumes were
collected at the heading stage. Immature embryos were isolated
September 2020 | Volume 11 | Article 1004
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from seeds 13-14 days after pollination. The immature embryos
were sterilized with 70% ethanol for 1 min, dipped in a 20%
bleach solution for 15 min, and rinsed three times with the
sterilized water. After excising the embryo axis, the immature
embryos (1.0-1.2 mm) were removed and inoculated into the
SD2 induction medium and cultured for 2 weeks in the dark at
25°C (Tao et al., 2011). The components of the culture medium
used in this study are listed in Table S1. Induced calli were
collected at different stages. All collected samples were
immediately frozen in liquid N2 and stored at -80 °C.

TaTCP-1 Gene Cloning and Sequencing
Regeneration-related candidate gene sequences were analyzed
using BLAST. The TCP/cpn60 protein (ACJ54925) from the rice
was taken as the query sequence and the wheat EST database
(http://www.ncbi.nlm.nih.gov) was searched. The output
sequences were assembled by DNAMAN (version 6.0) software.
The identified gene was named TaTCP-1 after identifying the
presence of the conserved domain of TCP-1/cpn60.

Total RNA was extracted from 17-day-old calli of cultivar
Lunxuan 987 following the manufacturer’s instructions for the
EasyPureTM Plant RNA Kit. After treatment with DNase I, a total
of 5 µg of RNA was used as a template to synthesize single-strand
cDNA using an oligo (dT15) primer following the manufacturer’s
protocol (TIAN Script RT Kit, Tiangen, China). The 3’ end of the
TaTCP-1 gene was isolated by using a 3’ Full RACE Core Set
Ver.2.0 kit (Takara, Japan) and gene-specific primer GSP TaTCP
(Table S2A). The partial cDNA of TaTCP-1was isolated using a 5’
Full RACE kit (Takara, Japan) and gene-specific primers TaTCP-
1GSP1 and TaTCP-1GSP2 (Table S2A). The full-length cDNA
sequence of TaTCP-1 was amplified by PCR using TaTCP-1F and
TaTCP-1R primers and PrimeSTAR® HS DNA Polymerase
(Takara, Japan). The PCR products were purified from 1%
agarose gel and ligated into the pZero vector (Tiangen, China).
The E. coli TOP10 competent cells (Tiangen, China) were
transformed with the constructed vector by heat shock
treatment and identified by sequencing (AuGCT Biological
Technology Co., Ltd., China). TaTCP-1 was cloned from wheat
gDNA using gene-specific primers listed in Table S2A.

The open reading frame (ORF) of TaTCP-1 was predicted
using the ORF Finder program from NCBI (https://www.ncbi.
nlm.nih.gov/orffinder/). Protein molecular weight (MW) and
isoelectric point (pI) were calculated by Compute pI/Mw
(http://web.expasy.org/compute_pi/). Deduced amino acid
sequences of TaTCP-1 were analyzed by BLAST software.
TCP-1 proteins from different species were selected and
aligned by DNAMAN 6.0 to construct a phylogenetic tree by
the neighbor-joining method using MEGA5 (Tamura
et al., 2011).
Gene Expression Analysis by qRT-PCR
Total RNA was extracted and cDNA was synthesized from
embryonic (E) and non-embryonic (NE) calli at different stages
of induction as previously described. Expression of the TaTCP-1
gene was analyzed by quantitative real-time PCR (qRT-PCR).
Frontiers in Plant Science | www.frontiersin.org 3
The b-actin (GenBank: AB181991) was selected as the endogenous
control. The sequences of the primers used for the gene expression
analysis are listed in Table S2B. PCR amplification was performed
using the SuperReal PreMix Plus (SYBRGreen) kit (Tiangen, China)
following the manufacturer’s instructions. Real-time PCR was
carried out on a CFX 96 Real-Time PCR Detection System (Bio-
Rad, USA) with the following reaction steps: an initial denaturation
at 95°C for 15 min, followed by 40 cycles of amplification (95°C for
10 s, 56°C for 20 s, and 72°C for 30 s) and a final dissociation stage
with the temperature increasing from 65°C to 95°C. All reactions
were carried out in three independent replicates and the relative gene
expression was calculated using the 2-DDCt method (Livak and
Schmittgen, 2001).

Subcellular Localization of TaTCP-1
Full-length TaTCP-1 ORF lacking the termination codon was
cloned into a p16318:GFP vector in the sense orientation using the
PstI and SalI restriction enzymes. Protoplasts were prepared from
2-week seedlings according to an earlier reported method by Yoo
et al., 2007. The fusion expression vector pGFP-TaTCP-1 and
empty control vector p16318:GFP were transferred into prepared
protoplasts according to the polyethylene glycol-induced method
(Klebe et al., 1983). Transformed protoplasts were cultured in the
dark for 16-24 h and gene expression was detected by using a
confocal laser-scanning microscope (ZEISS LSM 700; Germany)
with an argon laser (488 nm excitation wavelength).

Heterologous Expression and Purification
of TaTCP-1
The fusion expression vector pEASY-E1-TaTCP-1 with His-tag was
constructed by cloning the TaTCP-1 gene lacking the termination
codon in the pEASY-E1 expression vector (TransGen Biotech Co.,
Ltd., China). The E. coli BL21 (DE3) cells were transformed by the
fusion expression vector (pEASY-E1-TaTCP-1) and an empty
vector using the heat shock method and cultivated in LB medium
containing ampicillin (60 µg/ml). The culture was incubated in a
shaker incubator (250 rpm, 37°C) until the OD600 reached ~0.5. The
expression of the recombinant protein was induced with 0-1 mM b-
D-1-thiogalactopyranoside (IPTG) at 37°C for 4, 6, 8, and 10 h.
Subsequently, the cells were harvested by centrifugation (7000 rpm)
for 3 min and analyzed by SDS-PAGE. The TaTCP-1 protein was
purified by ProteinIsoTM Ni-NTA Resin (TransGen Biotech,
China) according to the manufacturer’s instructions.

Overexpression and Silencing of TaTCP-1
Using Expression Vectors and RNAi
The coding sequences (CDS) of TaTCP-1 were amplified from
the pZero vector and cloned in the expression vector pWMB003
under promoter pUb by using the restriction enzymes SmaI and
KpnI. The vector was used to overexpress TaTCP-1 in Jimai 22.

A 303 bp specific cDNA sequence of TaTCP-1 was used as the
interference fragment to construct an RNAi vector. The specific
sequence was inserted into the vector pHMW-Adh-Nos
in forward and reverse orientations using SalI, BglII, EcoRI,
and BamHI restriction enzymes to form a hairpin structure
September 2020 | Volume 11 | Article 1004
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(pHMW-Adh-5’F-3’R). The interference fragment was cloned into
the expression vector pAHC25 with SmaI and SacI restriction
enzymes to construct the RNAi vector pAHC25-TaTCP-1-RNAi.
The vector was transferred in Lunxuan 987 to silence the expression
of TaTCP-1. Herbicide resistance gene (bar gene) was used as a
selection marker. The schematic diagram showing the protocol used
for vector construction is shown in Figures S1A, B.

Transformation, Regeneration, Selection,
and Identification of Transgenic Wheat
Plants
Immature seeds were collected 13-14 days after pollination from
Lunxuan 987 and Jimai 22 wheat and inoculated into the SD2
induction medium. The seeds were cultured for 2 weeks for callus
induction. The well-growing calli were transferred into Mo medium
for 4-6 h followed by particle bombardment. Empty vectors of
pWMB003-TaTCP-1 and pWMB003 were inoculated into Jimai 22,
and pAHC25-TaTCP-1-RNAi and pAHC25 empty vectors were
inoculated into Lunxuan 987. Following the particle bombardment,
the calli were cultured inMomedium for 16-18 h. The T0 transgenic
wheat calli were cultured in the SD2 medium for one week and then
transferred to the SD0 medium (auxin free) for another week. The
culture process described above was performed in the dark at 25°C.
Subsequently, the embryonic calli were transferred into plant
regeneration medium and subjected to herbicide selection. The
calli were grown at 25 °C with a photoperiod of 16/8 h light/dark.
Transgenic plants were transplanted to 25 cm pots and grown in a
greenhouse. DNA was extracted from the leaves of the transgenic
wheat seedlings to identify plants carrying the specific gene. The
transformation procedure is shown in Figure S2.

In every generation, the number of inoculated calli, calli with
green shoots, green plantlets, and regenerated plants were counted
from various types of transformed calli. T3 generation transgenic
plants were generated by selection on medium supplemented with
herbicide and regenerated by tissue culture technology. T4 immature
embryos were used as the explants for further evaluation of the
regeneration levels of various types of transgenic wheat plants. One
hundred calli from three positive wheat transgene lines were used as
the samples for every type of wheat transgene plant. The frequency of
embryonic calli was the number of calli with green shoots divided by
the total inoculated calli. Regeneration frequency was the number of
regenerated plants divided by the total inoculated calli.

Statistical Analysis
One hundred calli from three positive wheat transgene lines were
used as the samples for every type of wheat transgene plant. The
data in this study were analyzed using Office 2010 and the
variance analysis was performed using SAS software.
RESULTS

Cloning and Sequencing of the Wheat
Regeneration-Related Gene TaTCP-1
The TaTCP-1 , a candidate gene (accession number
KC808517.1), related to wheat regeneration was isolated
Frontiers in Plant Science | www.frontiersin.org 4
from wheat cultivar Lunxuan 987. Sequence analysis
indicated the length of cDNA was 2163 bp, while the ORF
was 1623 bp long. It encoded 540 amino acids of the TaTCP-1
protein. The full-length gDNA of TaTCP-1 was 5909 bp with
13 exons and 12 introns. The TaTCP-1 protein contained TCP/
cpn60 conserved domain and some special sites, such as ATP
binding sites and interaction sites that belonged to the
chaperonin-like superfamily (Figure 1A). Chaperonins are
required for normal cell growth and work as ‘helpers’ for the
correct folding and assembly of proteins. The MW of TaTCP-1
was determined to be 58 kDa and the theoretical isoelectric
point (pI) was 5.4. The protein showed high homology with
HvTCP-1, BdTCP-1, SbTCP-1, SiTCP-1, AtTCP-1, and
ZmTCP-1 (Figure 1B). The phylogenetic analysis revealed
that TaTCP-1 had the highest homology with Brachypodium
distachyon and Hordeum (Figure S1).

Expression Pattern of TaTCP-1
The expression level of TaTCP-1 was higher in developing
tissues, particularly in actively dividing calli, immature
embryos, pistils, and stamens than in glumes and leaves
(Figure 2A). The expression of TaTCP-1 was highest in the
callus tissue. It was induced in a time-dependent manner
(Figure 2B) and the expression level reached its highest after 11
days of induction (Figure 2B). Significantly, the expression level of
TaTCP-1 was higher in embryonic calli than the non-embryonic
calli, which indicated that TaTCP-1 expression might be
associated with wheat regeneration (Figure 2C).

Prokaryotic Expression and Protein
Purification of TaTCP-1
The recombinant TaTCP-1 protein was ectopically expressed in
E.coli following transformation with the pEASY-E1-TaTCP-1
and the control plasmid pEASY. Crude lysates were prepared
from transformed bacteria following induction and analyzed by
SDS-PAGE. The protein band of ~64 kDa, conforming to the
theoretical size of TaTCP-1 (58 kDa + His-tag (6 kDa)) (Figure 3),
was extracted.

Subcellular Localization of TaTCP-1
Fusion expression vector pGFP-TaTCP-1 and control vector
p16318:GFP were transferred to prepared protoplasts to analyze
the subcellular localization of the TaTCP-1 protein. Our results
showed that the expressed TaTCP-1 was mainly located on the
cytomembrane and cell nucleus, and a small amount was present in
cytoplasm similar to the free GFP protein (Figure 4).

Identification and Expression of TaTCP-1
in Transgenic Wheat
Positive transgenic wheat plants were identified by herbicide
selection and genotyping analysis. A total of 720 resistant
plants were obtained in T0 including 29 regenerated plants
with the PWMB003 empty vector, 146 regenerated plants with
the pWMB003-TaTCP-1 vector, 195 regenerated plants with the
pAHC25 empty vector, and 350 regenerated plants with the
pAHC25-TaTCP-1-RNAi vector (Table 1). Results of PCR
September 2020 | Volume 11 | Article 1004
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analysis confirmed 74 positive transgenic wheat plants (Figures
5A, B). The transformation rates of wheat plants with the
PWMB003 vector, pWMB003-TaTCP-1 vector, pAHC25
vector, and the pAHC25-TaTCP-1-RNAi vector were 0.79%,
0.84%, 1.32%, and 1.21%, respectively (Table 1). The expression
level of the TaTCP-1 gene in transgenic plants was analyzed by
qRT-PCR (Figure 5C). The results from the expression analysis
showed that the TaTCP-1 gene was successfully expressed in
Jimai 22 and silenced in Lunxuan 987.

The percentage of embryonic calli and regeneration rate of calli
were used to evaluate the regeneration level of wheat. After 8 days, the
calli reached 2-3 mm3 in volume and embryogenic (E) and non-
embryogenic (NE) calli were observed. Embryogenic calli were yellow
to yellow-green in color and had a smooth or nodular texture. In
contrast, the non-embryogenic calli were white in color and had
limpid, watery, and friable structures (Figure 6). In T3 transgenic
Frontiers in Plant Science | www.frontiersin.org 5
wheat overexpressing TaTCP-1 over-expression (OE), the percentage
of embryonic calli and callus regeneration efficiency increased by 12%
and 18% compared to the wheat transformed with the pWMB003
empty vector (control 1) (Table 2). After 25 days of culture in
regeneration medium, embryonic calli of green spots were visible in
approximately 79% of calli in the control transgenic wheat plants
transformed with the pAHC25 empty vector; however, these spots
were visible in only 59% of calli from transgenic wheat plants
transformed with TaTCP-1 silencing RNAi (Table 3). Further, the
frequency of embryonic callus induction and plantlet regeneration
decreased significantly (by 20% and 97%, respectively) in transgenic
wheat transformed with TaTCP-1 RNAi when compared to the
wheat transformed with the pAHC25 empty vector (control 2)
(Table 3). Moreover, the ability of embryogenic callus induction
and regeneration of immature embryos in the transgene-
overexpressing and silenced plants showed a statistically significant
September 2020 | Volume 11 | Article 1004
A

B

FIGURE 1 | (A) The conserved domain and binding site of the TaTCP-1 protein. (B) Alignment of protein sequences of TCP-1 from Triticum aestivum, Oryza sativa,
Zea mays, Brachypodium distachyon, Sorghum bicolor, Setaria italica, Hordeum vulgare, and Arabidopsis. A neighbor-joining tree (Jones-Taylor-Thornton model)
was generated by MEGA6. A bootstrap analysis with 1000 replicates was performed to assess the statistical reliability of the tree topology.
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difference when compared to plants transformed with control
(Figure 7 and Table S3). Significantly, wheat transformed with
TaTCP-1-RNAi cassette showed negative effects on regeneration
efficiency, while TaTCP-1 overexpression had positive effects on
regeneration efficiency. Collectively, these results indicated that the
TaTCP-1 gene plays a vital role in promoting wheat regeneration.
DISCUSSION

Earlier studies have shown that the explant type and genotype,
hormonal and sugar composition of medium, induction by sugar
alcohols (mannitol or sorbitol), the number of steps, and explant
exposure times during a particular stage were the main factors to
influence successful culture of plant cells and tissues in vitro (Li
et al., 2004; Vunsh et al., 2007). The regenerative ability of different
plants depends on different genotypes (Bregitzer, 1992; Filippov
et al., 2006). Therefore, identification of regeneration-related genes
is an important step in the development of effective methods for
Frontiers in Plant Science | www.frontiersin.org 6
facilitating plant regeneration. Genes such as SERK have been
successfully cloned from Arabidopsis thaliana (Banno et al., 2001;
Hecht et al., 2001), rice (Hu et al., 2005), wheat (Singla et al., 2008;
Yakandawala and Jordan, 2008), rye (Gruszczynska and Rakoczy-
Trojanowska, 2011), and maize (Zhang et al., 2011). The TCP-1was
proved to play an important role in plant growth and regeneration
(Feng et al., 2011). In the present study, we cloned the TaTCP-1
gene in common wheat and performed its functional analysis to
elucidate its role in wheat plant regeneration. The TaTCP-1 gene is
located on the long arm of the 4B chromosome (4BL) of the wheat
genome. We identified five highly homologous TaTCP-1-encoding
genes in wheat that were localized on 4AL, 4DL, 6AS, 6BS, and 6DS
chromosomes and had 90% homology (Figure 1B). Our results
showed that the TaTCP-1 gene was mainly expressed in actively
dividing tissues and organs. Significantly, the expression pattern of
the TaTCP-1 was different from another regeneration-related gene,
NiR, reported earlier (Nishimura et al., 2005).

The regeneration rateofmostT3generation transgenicplantswas
higher than that of the T1 and T2 generation plants except those
A B

C

FIGURE 2 | Expression patterns of TaTCP-1 in eight tissues of wheat (A), different stages of callus induction (B), in embryonic, and non-embryonic calli at different
induction stages (C). ** of 0.01 significant.
September 2020 | Volume 11 | Article 1004
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transformed with the RNAi transgene. The higher regeneration rate
ofT3 transgenicplantsmaybecausedbybetter regulatory conditions.
Our results showed that the regeneration rate of transgenic
wheat plants, transformed with the TaTCP-1-RNAi, decreased
with increasing generations, indicating that the genotype played a
more important role than the environmental conditions on
Frontiers in Plant Science | www.frontiersin.org 7
the regeneration ability of wheat. Moreover, the influence
of TaTCP-1 silencing was more obvious on the plant regeneration
than its overexpression. This could be explained by the complexity
of the wheat genome. There are six highly homologous TaTCP-1-
related genes in wheat, and therefore, transformation with the
FIGURE 3 | Induction and purification of TaTCP-1. M: Protein ladder;
1: Uninduced pEASY-E1; 2: Induced pEASY-E1; 3: Uninduced pEASY-E1-
TaTCP-1; 4: Induced pEASY-E1-TaTCP-1; 5, 6: Purified TaTCP-1.
FIGURE 4 | Subcellular localization of TaTCP-1.
TABLE 1 | Statistics analysis of transformation rate and regeneration ability in
transgenic wheat.

Transformed
plasmid

PWMB003
(Control 1)

pWMB003-
TaTCP-1

(OE)

pAHC25
(Control 2)

pAHC25-
TaTCP-1 RNAi

(RNAi)

No. of bombardment
callus

505 2020 1439 2800

No. of T0 regenerate
plants

29 146 195 350

No. of T0 positive
plants

4 17 19 34

Transformation rate 0.79% 0.84% 1.32% 1.21%
No. of T0 callus 90 408 712 1248
No. of T0 regenerate
plants

19 145 1056 789

Regeneration rate of
T0

21.11% 35.54% 148.31 63.22%

No. of T1 positive
plants

3 8 39 26

No. of T1 callus 85 220 936 702
No. of T1 regenerate
plants

18 79 1401 436

Regeneration rate of T1 21.18% 35.91% 149.68% 62.11%
No. of T2 positive
plants

3 6 45 28

No. of T2 callus 90 216 942 758
No. of T2 regenerate
plants

20 85 1425 452

Regeneration rate of T2 22.22% 39.35% 151.27% 59.63%
No. of T3 positive
plants

6 22 625 186
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Regeneration rate: Number of resistant regeneration plantlets/Number of calli
culturedⅹ100.
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TaTCP-1-RNAimay not only silence theTaTCP-1 gene on 4BLbut
may also downregulate related genes. This may explain the
pronounced effects observed in plants transformed with the
TaTCP-1-RNAi than those transformed tooverexpress theTaTCP-1.
Frontiers in Plant Science | www.frontiersin.org 8
In summary, in the present study, we isolated TaTCP-1, a novel
gene related to regeneration, and demonstrated its ability to
influence the high regeneration abilities of transgenic explants.
The TaTCP-1 gene was also proved to play a key role in the
molecular regulation of the somatic embryogenesis of wheat.
Collectively, our results suggest that TaTCP-1 could be used as a
A

B

C

FIGURE 5 | PCR identification of transgenic plants of transgene-overexpressing (A) and silenced (B). M: DL2000 DNA marker; 1: Plasmid control; 2: H2O control; 3:
Wild-type plant; 4-7 or 12: Regenerated plants; (C) Comparative analysis of TaTCP-1 expression by qRT-PCR in transgenic plants. Control 1: Control transgenic
wheat plants with the pWMB003 empty vector, OE#1-3: Transgenic wheat plants overexpressing of TaTCP-1, Control 2: Control transgenic wheat plants with the
pAHC25 empty vector, RNAi#1-3: Transgenic wheat plants in which the expression of TaTCP-1 gene was silenced. ** of 0.01 significant.
A

B

FIGURE 6 | Comparative analysis of the regeneration ability of T3 transgenic
wheat lines. (A) Comparison between control transgenic wheat plants with
the pWMB003 empty vector (a) Transgenic wheat plants of overexpressing
TaTCP-1 gene (b); (B) Comparison between control transgenic wheat plants
with the pAHC25 empty vector (c) and transgenic wheat plants of silenced
TaTCP-1 gene.
TABLE 2 | The comparative analysis of regeneration ability in T3 transgenic
wheat plants.

Transgenic wheat
plants

No. of calli
cultured

Frequency of
embryonic calli

(%)1)

Regeneration
frequency

(%)2)

Control 1 100 19 25
OE 100 31 43
CK2 100 79 155
RNAi 100 59 58
Septemb
er 2020 | Volume 1
1) Number of embryonic calli/Number of calli cultured ⅹ 100.
TABLE 3 | The comparative analysis of regeneration ability in T0, T1, T2, and T3.

Transformed
plasmid

PWMB003
(Control 1)

(%)

pWMB003-
TaTCP-1 (OE)

(%)

pAHC25
(Control 2)

(%)

pAHC25-
TaTCP-1RNAi
(RNAi) (%)

Regeneration
rate of T0

21.11 35.54 148.31 63.22

Regeneration
rate of T1

21.18 35.91 149.68 62.11

Regeneration
rate of T2

22.22 39.35 151.27 59.63

Regeneration
rate of T3

25 43 155 58
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https://www.frontiersin.org/journals/plant-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


Li et al. TaTCP-1, Regeneration-Related Gene Wheat

Frontiers in Plant Science | www.frontiersin.org
novel selection marker to identify transformed wheat. It offers the
advantage of avoiding the use of antibiotics and herbicide selection,
thereby reducing the possibility of resistance development in such
plants. Therefore, our results not only suggest the possibilities of
advancing wheat transgenic technology but also facilitate the
construction of a safe transgenic wheat system.
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