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The endophytic microbiome plays an important role in plant health and pathogenesis.
However, little is known about its relationship with bacterial blight (BB) of rice caused by
Xanthomonas oryzae pv. oryzae (Xoo). The current study compared the community
compositional structure of the endophytic microbiota in healthy and BB symptomatic
leaves of rice through a metabarcoding approach, which revealed BB induced a decrease
in the alpha-diversity of the fungal communities and an increase in the bacterial
communities. BB-diseased rice leaves were enriched with saprophytic fungi that are
capable of decomposing plant cell walls (e.g. Khuskia spp. and Leptosphaerulina spp.),
while healthy rice leaves were found to be significantly more abundant with plant
pathogens or mycotoxin-producing fungi (e.g. Fusarium, Magnaporthe, and
Aspergillus). The endophytic bacterial communities of BB-diseased leaves were
significantly enriched with Pantoea, Pseudomonas, and Curtobacterium, strains.
Pantoea sp. isolates from BB leaves are identified as promising candidates for the
biocontrol of BB for their ability to inhibit in vitro growth of Xoo, suppress the
development of rice BB disease, and possess multiple PGP characteristics. Our study
revealed BB-induced complexed changes in the endophytic fungal and bacterial
communities of rice leaves and demonstrated that BB-associated enrichment of some
endophytic bacterial taxa, e.g. Pantoea sp. isolates, may play important roles in
suppressing the development of BB disease in rice.
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INTRODUCTION

Rice (Oryza sativa L.) is an important cereal crop consumed as a
staple food by half of the world’s population (Fairhurst and
Dobermann, 2002). Rice disease epidemics not only directly
result in yield reduction and thus threaten local and global food
security, but also substantially increase the cost of disease
management and overall rice production. Bacterial leaf blight of
rice (BB) is a disease caused by the Gram-negative bacterium
Xanthomonas oryzae pv. oryzae (Xoo), which typically invades the
rice plant through wounds or hydathode water pores, moves and
colonizes the xylem vessels of leaves, and results in tannish-gray to
white lesions along the veins (Nino-Liu et al., 2006). BB may lead
to 20–50% yield loss and up to 100% during an epidemic. Bacterial
blight has become one of the most severe and prevalent rice
diseases globally (Leach et al., 1992; Adhikari et al., 1995).
Strategies for managing this disease include cultivating disease-
resistant rice varieties, application of chemical pesticides, and the
use of antagonistic bacteria, many of which were recovered from
the rhizosphere, phyloplane, or endophytic tissues of rice or other
plant sources (Gnanamanickam, 2009; Gangwar, 2013; Krishnan
et al., 2014; Chung et al., 2015).

Plant endophytic microorganisms, e.g. bacteria, archaea and
fungi, can colonize their hosts internally, with some being inherited
through generations (vertically transmitted), while most are
acquired from the environment (horizontally transmitted) (Leach
et al., 2017). Therefore, the endophytic microbiota are plant
genotype-specific and reflect the adaptation of the host to habitat
conditions relevant to, for example, the presence of phytopathogens
or accessibility of nutrients (Frank et al., 2017). However, distinct
endophytic microbiota of different plant species, often harbor
microorganisms with similar functional traits yet phylogenetically
distant. For instance, the nitrogen-fixing bacteria revealed from rice
plantswereAzoarcus spp. (in Betaproteobacteria), while those from
maize were Azospirillum spp. (in Alphaproteobacteria) (Kandel
et al., 2017). Previous studies have indicated that the diversity and
compositional structure of rice endophytic microbiome vary with
plant genotype, tissue type, growth stage, and environmental
conditions (Wang et al., 2016a; Walitang et al., 2018; Qin et al.,
2019). In vitro experiments have shown that endophytic isolates
(e.g. bacterial strains of Bacillus, Klebsiella, and Streptomyces, and
fungal strains of Chaetomium globosum, Penicillium chrysogenum,
andAzospirillum sp. B510) could effectively suppress the growth of
some phytopathogenic bacteria and/or fungi (such as Xoo,
Burkholderia glumae, F. oxysporum, Rhizoctonia solani,
Magnaporthe grisea) (Naik et al., 2009; Ikeda et al., 2010; Ji et al.,
2014;Chunget al., 2015). Inaddition, endophyteswithplantgrowth
promoting (PGP) attributes may induce broad spectrum resistance
to phytopathogens by stimulating induced systemic resistance,
competing for nutrients, and producing phytohormones or
antagonistic allelochemicals (Compant et al., 2005). Rice
endophytes, such as the strains of Burkholderia sp., Enterobacter
sp., Pantoea sp., Pseudomonas sp., and Sphingomonas sp., have
exhibited the ability to produce phytohormones such as indole-3-
acetic acid (IAA) and siderophore (Wang et al., 2016b).

There is an increased attention for the interactions between
pathogens and the residential microbiota as well as interactions of
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different plant pathogens. Previous studies have indicated that the
invasion of phytopathogens induces changes in the composition
and the associations of the internal microbial habitants and affects
the behavior of other plant pathogens (Wang et al., 2017; Li et al.,
2019). For example, the microbiome of the Huanglongbing (HLB)-
diseased citrus was depleted of beneficial bacteria with PGP traits,
while the infected host plants were more susceptible to infection by
Phytophthora, Colletotrichum acutatum, and X. citri (Yang et al.,
2016; Wang et al., 2017; Zhang et al., 2017). It was also found that
potato common scab could modulate the composition and function
of the geocaulosphere microbiome; severe infection resulted in low
diversity, sparse co-occurrence network and high scab phytotoxin
biosynthetic gene copies (Shi et al., 2019). These studies thus open
the avenue for studying the roles of phytomicrobiome during plant
disease development, for identifying synergistic interactions
between pathogens and host endophytes, and for revealing
naturally occurring biocontrol agents for plant diseases.

While the composition and some functions of the endophytic
microbiota of rice have been studied in great detail, little is known
about how it is affected by the occurrence of diseases, especially the
economically important BB. The objective of this study was to
compare the endophytic microbiota of healthy and BB leaves of
rice, through which to identify microbial indicators that potentially
facilitate or suppress the development of BB in rice. The endophytic
microbiota in healthy and BB leaves of rice was comparatively
profiled through metabarcoding the bacterial 16S rRNA gene and
the fungal internal transcribed spacer (ITS) region. The BB induced
enrichment of endophytic strains of Pantoea, which were isolated
and assessed for their putative roles in BB development. Our study
provides novel insights into the BB-induced changes in rice
endophytic microbiome and the potential roles of enriched
endophytes in suppressing the disease in BB occurrence.
MATERIALS AND METHODS

Sampling of Rice Leaves
The purpose of this study was to investigate the generalized
impact of BB on rice endophytic microbiota, and therefore, we
selected nine different rice cultivars (n = 9) with different BB-
resistance levels for this study. Among these cultivars, four O.
sativa L. ssp. japonica cultivars and two hybrid cultivars (Table 1)
were planted in March 2017 in an experimental farm (Field1, (N
24.4°, E 98.5°)) that was managed by the Plant Protection Station
in Mangshi, Yunnan province, China. When the rice plants of
each cultivar had reached the tillering stage (August 6, 2017), the
leaves of half of the plants were artificially inoculated with Xoo by
pricking with a needle, while the other half of the plants were un-
inoculated. Three hybrid cultivars (Table 1) were planted and
managed by the local farmers in Mangshi [Field2–4, (N 24.4°, E
98.5°)]. Rice plants in Fields 2, 3, and 4 were naturally infected
with BB pathogen. The healthy leaves without the BB symptoms
and BB-diseased rice leaves of each rice cultivar were collected on
August 20, 2017, which were used for the extraction of
endophytic microbiome genomic DNA and for the isolation of
Xoo strains. For isolating the endophytic bacterial strains, eight
BB leaves of rice were harvested from the farmer fields of the
July 2020 | Volume 11 | Article 963
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Yunnan (N25°35′, E 100°13′) and Guangdong (N 23°13′, E 117°
19′) provinces, China, in October 2018.

Preparation of Rice Leaves
The surface of each leaf was sterilized with 70% ethanol for 1 min
and shaken in 1.2% (w/v) NaClO solution for 15 min. The leaf was
then washed three times with sterile distilled water with shaking
(15 min each time). The DNA of the surface microorganisms was
removed by ultrasonication for 10 min. The sample was then
washed with sterile distilled water three times. Each leaf sample
was stored individually at −80°C until further processing.

DNA Extraction and Metabarcoding
Total genomic DNA from each leaf sample was extracted using the
CTAB/SDS method (Lutz et al., 2011). DNA concentration and
puritywere assessedon1%agarose gels.TheDNApelletwasdiluted
to 1 ng/ml using sterile water. Sequencing library preparations and
Illumina HiSeq sequencing were conducted at Novogene Inc.
(Beijing, China). The V4–V5 regions of the bacterial 16S
ribosomal RNA gene were amplified using the 515F (5′-
GTGCCAGCMGCCGCGG-3 ′ ) /907R (5 ′ -CCGTCAA
TTCMTTTRAGTTT-3′) primer set, while the fungal ITS1 region
was ampl ified us ing the ITS1F (5 ′ -GCATCGATG
AAGAACGCAGC-3 ′ ) / ITS1R (5 ′ -TCCTCCGCTTAT
TGATATGC-3′) primer set. The high-throughput sequencing
was carried out on an Illumina HiSeq2500 platform and 250 bp
paired-end reads were generated.

Sequencing Data Processing
Demultiplexed raw paired-end sequences were trimmed by
Trimmomatic (version 0.32) (Bolger et al., 2014) to remove the
adapters, primer sequences, and low-quality reads. The remaining
reads were merged using FLASH (version 1.2.7) with a minimum
overlapof30bpand a3%maximumdifference in theoverlap region
(Magoč and Salzberg, 2011). Chimeric sequences were removed
using UCHIME (Edgar et al., 2011) against the “Gold” database
(version microbiomeutil-r20110519, drive5.com/uchime) for the
16S rRNA gene metabarcodes and against the UCHIME ITS1
database downloaded from https://unite.ut.ee/ (version 7.2,
release date 2017-06-28) for ITS1 metabarcodes. All remaining
metabarcodes were clustered into operational taxonomic units
(OTUs) at 97% identity cut-off using UPARSE (version 7.0.1001)
(Edgar, 2013). The sequence with the highest frequency in an OTU
was selected as the representative sequence, whichwas assigned to a
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taxonomic lineage using RDP classifier (version 2.2) by comparing
with the SILVA database (v13_5) (McDonald et al., 2012) for the
16S rRNA gene V4–V5 metabarcodes or with the UNITE fungal
ITS database (version 8.0, release date 2018-11-18) (Abarenkov
et al., 2010) for the fungal ITS1 metabarcodes. The singletons and
unassigned OTUs were removed from the OTU tables. Multiple
sequence alignments were performed using MUSCLE (version
3.8.31) to obtain the phylogenetic relationships of OTUs
(Edgar, 2004).

Statistical Analysis and Visualization
All statistical analyses were carried out in the R environment
(version 3.4.3) (R Core Team, 2017). The OTU tables were
rarefied to the same sample size. The OTUs or taxonomic
abundance matrices were transformed to relative abundances
when required. Alpha diversity indices were calculated using the
“OTU diversity” function from the “RAM” package (Chen et al.,
2017). The Shannon (SH) and Simpson (S) indices were converted
to true diversities (SH-TD, S-TD) as suggested by Jost (2006). The
FAPROTAX (Script version 1.1) (Louca et al., 2016) andFUNGuild
v1.0 database (Nguyen et al., 2016) were used to predict the
functional guilds of the bacterial or fungi communities,
respectively. The alpha-diversity indices and community data
were subjected to centered log-ratio transformation (CLR) (Gloor
et al., 2017) prior to statistical analysis. The impactsofBB-resistance
level of rice varieties and leaf health status (healthy vs. diseased) on
the alpha-diversity of microbial communities were evaluated by
multiple linear regressionmodels (MLR),while their impacts on the
community compositional structure were evaluated by ANOSIM
and redundancy analysis (RDA) in vegan package (Preacher et al.,
2006; Oksanen et al., 2018). Function compare_means (“anova” for
global assessment and “t.test” for pairwise comparison) in R
package ggpubr was used to perform multiple mean comparisons
of the abundance of microbial taxa between treatment groups.
Heatmaps were created using the pheatmap function in the
pheatmap R package (Kolde, 2015).

Isolation and Identification of Endophytic
Bacteria
The Xoo strains were isolated from the BB-diseased leaves of rice
plants (Supplementary Figure S1) grown in Mangshi, while the
other bacterial endophytes were isolated from Xoo-infected leaves
of rice collected from Yunnan and Guangdong provinces. All rice
leaves were surface-sterilized with 70% ethanol for 1 min and
TABLE 1 | Rice cultivars used in this study.

Samples Variety Origin Resistance to BB Location

A O. sativa ssp. japonica O. sativa ssp. japonica Sensitive to BB Field1
B ‘IR24’ O. sativa ssp. japonica Sensitive to BB Field1
C ‘IRBB4’ O. sativa ssp. japonica Resistant: Xa4 gene Field1
D ‘IRBB5’ O. sativa ssp. Japonica Resistant: Xa5 gene Field1
E ‘DianShan 2’ Chinese hybrid rice unknown Field1
F ‘DianLong201’ Chinese hybrid rice unknown Field1
G ‘Tianyouhuazhan’ Chinese hybrid rice unknown Field2
H ‘Yiyou673’ Chinese hybrid rice unknown Field3
I ‘Jingliangyou’ Chinese hybrid rice unknown Field4
July 2020 | Volume 11 |
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shaken in 1.2% (w/v) NaClO solution for 15 min. The leaves were
thenwashed three timeswith sterile distilledwaterwith shaking (15
min each). Thewater collected from the final washing stepwas used
as the negative control. The leaf tissues were then homogenized
using a plastic drill. For isolating endophytic bacterial strains, the
suspension of the leaf tissues and the ‘washed’ water (negative
control) were spread onto LB plates, which were incubated at 37°C
for up to one week. For the isolation of Xoo, the leaf tissue
suspension was spread on peptone sucrose agar (PSA) medium
plates (Yang et al., 2012) and incubated at 28°C for one week. The
colonies on the plates were picked and re-streaked several times to
obtain pure isolates. Bacterial strains were stored at −80°C for
further analysis. The identification of isolated bacterial strains was
conducted by amplifying the16S rRNA gene of the pure cultures
using the primer pairs 27f/1492R (Morontabarrios et al., 2018) or
the primer OSF1/OSR1 for Xoo (Tian et al., 2014). The PCR
products were purified and then sequenced. The sequences were
searchedbyBLASTnagainst theGenBankNucleotide (nt) database
for the identification of the isolates. Multiple-sequence alignments
were carried out using the DNAMAN software (version 6.0;
LynnonBioSoft, Canada). The neighbor-joining tree was
reconstructed using MEGA7 (v3.1/3.0 aLRT) (Saitou and Nei,
1987; Kumar et al., 2016). The full-length 16S rRNA gene
sequences have been deposited in the GenBank with the accession
numbers listed in Table 2.

Inhibition of Xoo by Endophytic
Bacterial Isolates
The antimicrobial activities of the endophytic bacteria were
evaluated through zone of inhibition tests. The Xoo strain
PXO99A (Hopkins et al., 1992) cells grown in liquid M210
media (Yang et al., 2012) were re-suspended in sterile distilled
water at OD600 = 0.8 and then inoculated on solid PSA plates by
sterilized spreaders. The endophytic bacterial isolates were
grown for 72 h at 37°C on LB plates. The agar blocks with
endophytic bacteria were placed inversely on the PSA plate with
Xoo. The Xoo-plate inoculated with blank agar blocks was used
as the negative control. The plates were incubated for 48–72 h at
28°C. The inhibition zones of endophytic bacteria were measured
and recorded. Each screening test was repeated three times.

In Vitro Assessment of Plant
Growth-Promotion Attributes
The plant growth-promoting traits of bacterial endophytic strains
were tested by carrying out the following bioassays as described
previously: the production of 1) indole acetic acid (IAA) (Bric et al.,
1991), 2) hydrogen cyanide (HCN) (Mehnaz et al., 2010), and 3)
exopolysaccharide (EPS); 4) solubilization of inorganic phosphate
(Andreolli et al., 2016); 5) 1-aminocyclopropane-1-carboxylic acid
(ACC) deaminase activity (Lacava et al., 2004; Glick, 2014); and 6)
cell motility (Yang et al., 2012). All experiments were repeated at
least three times.

In Planta Evaluation of Pantoea sp.
Isolates on the Development of BB Disease
Rice cultivar Oryza sativa L. ssp. indica ‘IR24’ was used for
pathogenicity assays. First, Xoo PXO99A was cultured in M210
Frontiers in Plant Science | www.frontiersin.org 4
media, while endophytic bacterial strains (Pantoea sp. ZFZa,
GDYCa, MSMHa, and Curtobacterium sp. GDYCb) isolated
from the current study were cultured in LB at 28°C until
OD600 = 0.8. The cells of each bacterial strain were re-
suspended in sterile distilled water. Each endophytic bacterial
strain was mixed with Xoo PXO99A at a concentration of 1:10,
respectively. Each mixed inoculant was inoculated on to ≥10 rice
leaves using the leaf clipping method (Ray et al., 2000). The
lesion length of the leaves was scored on the fourteenth day post-
inoculation (dpi). At least ten rice leaves on three plants were
used for each endophytic bacterial strain, and all experiments
were repeated three times.
Sequencing Data Accessibility
The raw IlluminaHiSeq paired-end sequences have been deposited
at the NCBI’s sequence read archive (SRA) in BioProject ID
PRJNA534010 with accession numbers SRR8948950–
SRR8949003 and PRJNA533998 with accession numbers
SRR8953241–SRR8953294.
RESULTS

BB Symptoms on Sampled Rice Leaves
To evaluate the generalized effect of BB on the endophytic
microbiota of rice leaves, we selected nine varieties of rice
grown in different paddy fields (Table S1). The tarnish-gray to
white lesions along leaf veins produced by BB were observable on
the diseased rice leaves (Supplementary Figure S1A). The leaves
of BB-susceptible rice varieties (A and B) developed longer
lesions (>20 cm in length) than those of the BB-resistant
varieties (C and D) (p ≤ 0.001) and the Chinese hybrid rice
varieties (E, F, G, H, and I) (nonsignificant, p > 0.05) did
(Supplementary Figure S1A). The bacterial strains isolated
from BB-diseased leaves formed yellow colonies on the PSA
plates (Supplementary Figure S1B), which were identified as
Xoo based on BLASTn search results of the full length 16S rRNA
gene (Supplementary Figure S1C), confirming that the proper
causal agent of BB, Xoo, caused the infection on sampled BB
leaves in this study.
Metabarcoding Sequencing Data
A total of 4,223,941 high quality bacterial 16S rRNA gene V4–V5
markers were clustered into 855 OTUs (MEAN ± SD = 90 ± 142
per sample) at 97% sequence identity cut-off. Each sample had
78,221 ± 5,691 reads. Approximately 74.7% of the sequences
were assigned to chloroplasts (2,776,979 reads in 18 OTUs) or
mitochondria (378,037 reads in 6 OTUs), which were removed.
The remaining 831 OTUs were subjected to the characterization
of the endophytic bacterial communities. For the fungal
communities, 3,814,684 ITS1 reads passed quality control
(70,642 ± 14,949 reads per sample), which were grouped into
1,408 OTUs (226 ± 114 per sample) at 97% similarity. Both OTU
tables were rarefied (sample size n = 61,415 reads for bacteria and
n = 25,549 reads for fungi) prior to subsequent analyses.
July 2020 | Volume 11 | Article 963
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Endophytic Microbiome Diversity
Influenced by Rice Variety, BB-Resistance
Level and BB Occurrence
We first determined if the endophytic microbiome of rice leaves
was variety-specific as previously described (Walitang et al.,
2018) and if it was impacted by BB occurrence. MLR analysis
(Supplementary Table S1) showed that rice variety had
significant impact on the alpha-diversity indices, including
Shannon and Simpson-based true diversities (Jost, 2006) and
Chao1, of both the bacterial and fungal communities (ANOVA
Frontiers in Plant Science | www.frontiersin.org 5
p < 0.05). However, at a significance level of alpha = 0.05,
pairwise comparison based on Tukey’s Honest test showed
little differences in these diversity indices between majority of
the rice genotypes (Supplementary Table S1). Interestingly, the
Shannon-based true diversity of fungal communities was
significantly lower in BB-diseased leaves (TukeyHSD adjusted
p < 0.05) (Supplementary Figure S2A), while the alpha-diversity
of the bacterial communities based on Chao1 index was
significantly higher in BB-diseased leaves (adjusted p < 0.001)
(Supplementary Figure S2B), irrespective of the BB-resistance
TABLE 2 | The bacterial endophytes isolated from the BB-diseased leaves of rice.

Bacteria
Isolates

Accession
NCBI A

Closest Type Strain C Reference
Sequence D

Reference Resource Taxonomy
(Phylum)

Identities
(%)

Zhefang Town, Mangshi, Yunnan Province, China
ZFZa MK578268 Pantoea ananatis strain PP1 KM675660.1 1 fruit, pathogen Proteobacteria 99.37%
ZFZb MK578271 Micrococcus sp. strain E4 MG963203.1 tomato seed, endophyte Actinobacteria 100%
ZFZc MK578270 Microbacterium testaceum StLB037 AP012052.1 potato leaf, endophyte (Morohoshi et al.,

2011)
Actinobacteria 99.90%

ZFZd MK578269 Pantoea ananatis strain PA MK578186.1 paddy, pathogen Proteobacteria 99.50%

Mangrui road side, Yunnan Province, China
MRDDa MK578272 Pantoea agglomerans strain S33 AY741162 rice, endophyte Proteobacteria 99.64%
MRDDb MK578273 Enterobacter mori strain YHBG16 MG516182.1 Tripterygium wilfordii root, endophyte Proteobacteria 99.80%
MRDDc MK578274 Curtobacterium luteum strain VRI6-A1, KY882069.1 groundnut leaf, endophyte (Krishnamoorthy

et al., 2018)
Actinobacteria 99.90%

MRDDd MK578275 Micrococcus luteus strain AU C5.2 KY775492.1 marine macroalgae (Leiva et al., 2015) Actinobacteria 100%
MRDDe MK578276 Pseudomonas sp. JXR26 KP980602.1 wild rice, endophyte Proteobacteria 99.90%
MRDDf MK578277 Microbacterium sp. strain

HBUM179310
KR906278.1 Gynura medicinal plant, endophyte Actinobacteria 100%

Manghe Village, Mangshi, Yunnan Province, China
MSMHa MK578278 Pantoea agglomerans strain

CFSAN047153
CP034469.1 ‘Rome’ apple cultivar leaf, endophyte Proteobacteria 99.40%

MSMHb MK578279 Micrococcus sp. strain HBUM179241 KR906506.1 Gynura medicinal plant, endophyte Actinobacteria 100%
MSMHc MK578280 Microbacterium sp. Fse46 KJ733898.1 wild rice seed, endophyte Actinobacteria 100%
MSMHe MK578281 Pantoea agglomerans strain

CFSAN047153
CP034469.1 ‘Rome’ apple cultivar leaf, endophyte Proteobacteria 99.20%

MSMHg MK578282 Pseudomonas sp strain JXR2 KP980602.1 rice, endophyte Proteobacteria 100%

Nanjian Village, Zhefang Town, Mangshi, Yunnan Province, China
MSZFNJa MK578283 Pantoea vagans strain

Os_Ep_PSA_12
MN932345 rice panicle, endophyte Proteobacteria 99.93%

MSZFNJc MK578284 Micrococcus luteus strain AU C5.2 KY775492.1 macroalgae, endophyte Actinobacteria 100%
MSZFNJd MK578285 Microbacterium testaceum StLB037, AP012052.1 potato leaf, endophyte (Morohoshi et al.,

2011)
Actinobacteria 99.90%

Guangnong Village, Zhefang Town, Mangshi, Yunnan Province, China
MSZFGNa MK578289 Paenibacillus polymyxa strain CR9 KR780413.1 wild rice, endophyte Firmicutes 99.80%
MSZFGNb MK578297 Pseudomonas sp strain JXR2 KP980602.1 rice, endophyte Proteobacteria 99.90%
MSZFGNc MK578286 Pantoea ananatis strain EM2-53 MT212809 Rice leaf, endophyte Proteobacteria 99.42%
MSZFGNd MK578287 Curtobacterium citreum strain BAB-

7159
MF319766.1 cauliflower leaf, endophyte Actinobacteria 99.90%

MSZFGNf MK578288 Curtobacterium albidum strain RTO MK014287.1 rice, endophyte Actinobacteria 100%
Baiyun District, Guangzhou, Guangdong Province, China
GDGZBYa MK578290 Pantoea ananatis strain

Os_Ep_VSA_42
MN932327 rice panicle, endophyte Proteobacteria 99.93%

GDGZBYb MK578291 Microbacterium sp strain YNA115 JQ071519.1 rice root, endophyte Actinobacteria 99.90%
GDGZBYc MK578292 Agrobacterium larrymoorei strain

UCCB
MH198279.1 Ocimum Sanctum leaf, endophyte Proteobacteria 99.90%

Yangchun, Guangdong Province, China
GDYCa MK578293 Pantoea ananatis strain

OsEnb_PLM_L19.1
MN889261.1 rice leaf, endophyte Proteobacteria 99.93%

GDYCb MK578294 Curtobacterium luteum strain JXS1 KP980576.1 rice, endophyte Actinobacteria 100%
GDYCc MK578295 Microbacterium hydrothermale strain

BPSAC84
MK696251.1 medicinal plant, endophyte (Passari et al.,

2019)
Actinobacteria 100%

GDYCd MK578296 Paenibacillus hunanensis strain KT3 LC026005.1 rice seed, endophyte Firmicutes 99.80%
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level. This may suggest that BB triggered the requisition of
specific bacterial taxa during disease development.

ANOSIM analysis suggested that there was a significant shift
in the compositional structure of the bacterial (ANOSIM p =
0.001, R = 0.097) and the fungal (p = 0.001, R = 0.271)
communities between the healthy and the BB-diseased leaves.
Permutation test for homogeneity of group dispersions showed
that the fungal communities of BB-susceptible varieties were
more variable (p ≤ 0.01) than those of the resistant varieties. By
contrast, group dispersions of the bacterial communities were
homogeneous (p = 0.14). The RDA models built by stepwise
regression showed that the 52.9% variance in bacterial
community composition was explained collectively by rice
variety (25.7%), BB occurrence (4.5%), and their joint effect
(22.7%). The same set of factors explained 43.7% variance in
fungal community composition, with rice variety being the most
important factor. These results suggest that rice plant genotype
indeed played important roles in shaping the endophytic
bacterial and fungal communities. By including several
different rice varieties in this study, we were able to identify
microbial indicators associated specifically with BB occurrence
irrespective of the rice genotype or BB-resistance level.

Endophytic Bacterial Community
Composition
Among the 831 bacterial OTUs, 345 (41.5%) were assigned to
Proteobacteria (Healthy: 3.5 ± 2.7%; BB: 47 ± 11.8%, p ≤ 0.05)
(Figure 1A), including six belonging to Xanthomonas (Healthy:
3.3 ± 2.5%; BB: 46.3 ± 11.4%) (Figure 1B). Actinobacteria
(Healthy: 0.03 ± 0.03%; BB: 0.23 ± 0.23%) and Acidobacteria
Frontiers in Plant Science | www.frontiersin.org 6
(Healthy: 0.01 ± 0.03%; BB: 0.08 ± 0.08%) were also significantly
more abundant in BB than in healthy leaves (Figure 1A). Only
313 OTUs were assigned to known bacterial genera. In
particular, the representative sequence of OTU_2 (45.8% ±
11.5% in BB leaves), had 100% identity with several Xoo
strains, including Xoo PXO99A, Xoo PXO061 (CP033187.1),
Xoo PXO513 (CP033188.1), based on the result of a BLASTn
search against the GenBank nt database (Figure 1B;
Supplementary Table S2). The other five Xanthomonas OTUs
were low in abundance (<0.3%) and had 96–98% identity with
Xoo strain (Figure 1B and Supplementary Table S2). All six
Xanthomonas OTUs were also detected with low abundance
(<3.2%) in healthy rice leaves. Other abundant genera (>1%)
recovered included Bacillus, Pantoea, Curtobacterium,
Arenimonas, Paenarthrobacter, Pseudomonas, Paenibacillus,
Acidovorax, Thermomonas, and Gemmobacter (Figure 1C).
Among these genera, Pantoea , Curtobacterium, and
Pseudomonas were significantly more abundant in BB leaves
than in healthy leaves (p ≤ 0.05). We further identified 83
bacterial OTUs enriched significantly in BB than in healthy
leaves (p < 0.05) (Supplementary Table S3 and Figure S3A).
Interestingly, there no bacterial OTU was significantly enriched
in healthy leaves than in BB leaves (Supplementary Table S3).
These results further confirmed that BB induced an increase in
the diversity of endophytic bacterial community, as also
demonstrated by the MLR models (Supplementary Figure S1).

By comparing with the FAPROTAX database, 249 OTUs
were classified into 57 functional groups (Supplementary Table
S4). The members of Proteobacteria and Actinobacteria were
involved with diverse ecological functions (Supplementary
A C

B

FIGURE 1 | Compositional structure of the endophytic bacterial communities of rice leaves. (A) The hierarchical clustering of samples based on the relative
abundance of dominant bacterial phyla; (B) The abundance of the Xanthomonas OTUs in BB-diseased and healthy leaves; (C) The relative abundance of the
dominant bacterial genera recovered from BB-diseased or healthy leaves. AH-IH, healthy leaves of rice cultivars; AB-IB, BB leaves of rice cultivars used in this study.
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Figure S4A). A total of 39 bacterial functional groups were
significantly more abundant in BB than in healthy leaves (p <
0.05), such as those affiliated with chemoheterotrophy (including
aerobic chemoheterotrophy), fermentation, and nitrate
reduction, or being identified as plant pathogens. By contrast,
functional groups involved with hydrocarbon degradation,
ligninolysis, aromatic hydrocarbon degradation, and aliphatic
nonmethane hydrocarbon degradation were more abundant in
healthy leaves than in BB leaves (Supplementary Figure S4B;
Supplementary Table S4).

Endophytic Fungal Community
Composition
The 1,408 fungal ITS1 OTUs (healthy: 1,232; BB: 709) were
assigned to six phyla, 30 classes, 89 orders, 174 families, and 253
genera. Not surprisingly, Ascomycota (healthy: 94.1 ± 7.1%; BB:
96.3 ± 8%) and Basidiomycota (healthy: 4.3 ± 3.8%; BB: 3.6 ± 8%)
were most abundant in all samples; however, Ascomycota was
significantly more abundant in BB leaves while Basidiomycota was
significantly more abundant in healthy leaves (p < 0.05) (Figure
2A). Among the 20 most abundant genera (Figure 2B), Khuskia,
Pseudopithomyces, Cladosporium, Leptosphaerulina, Trichoglossum,
Aureobasidium, Myrothecium, and Paraphaeosphaeria were
significantly more abundant in BB than in healthy leaves, while
Fusarium, Meyerozyma, Magnaporthe, Phialemoniopsis,
Talaromyces, Aspergillus, Jahnula, and Candida showed the
opposite trend (p < 0.05). We further identified 376 fungal
OTUs that differed significantly in abundance between the BB
and healthy leaves (p < 0.05) (Supplementary Table S5), among
Frontiers in Plant Science | www.frontiersin.org 7
which, the OTUs with the relative abundance > 0.1% are shown
in Supplementary Figure S3B.

FUNGuild categorized 750 ITS1OTUs into four trophicmodes
(Supplementary Figure S5A) and 27 ecological guilds
(Supplementary Table S6). The saprotrophs were found to be
significantly more abundant in BB than in healthy leaves (healthy:
43.1% ± 22.6%, BB: 72.2% ± 19.6%; p < 0.05) (Supplementary
Figure S5B). Fungi categorized as endophytes, plant pathogens,
and/or lichen parasites were also abundant (>10%), however, did
not differ significantly in abundance between BB and healthy leaves
(Supplementary Figure S5B).

Bacterial Endophytes From Xoo-Infected
Rice Leaves
Although the functions of many endophytes in healthy plants have
been studied in detail, we still know little about the roles of the
endophytes in the occurrence of plant disease. The community
analysis has showedthatbacterial taxa are enriched inBBrice leaves.
To further investigate the potential function of BB-induced
accumulation of bacterial endophytes, we isolated bacterial strains
from BB-diseased leaves of rice grown in geographically distant
farmer’s fields in Yunnan and Guangdong provinces. In total, we
isolated 30 bacterial strains from surface-sterilized BB leaf tissues
(details inTable 2). Through BLASTn search of the full-length 16S
rRNA gene sequences against the GenBank nt database, 14 isolates
belong to the Actinobacteria, 12 to Proteobacteria, and four to the
Firmicutes phylum, including the strains of the bacterial genera
(Pantoea, Pseudomonas, and Curtobacterium) that were
significantly enriched in BB-diseased leaves (Table 2).
A B

FIGURE 2 | Compositional structure of the endophytic fungal communities of rice leaves. (A) The relative abundance of fungal phyla (top) and genera (bottom).
(B) Hierarchical clustering and annotation of the 20 most abundant fungal genera in healthy or symptomatic leaves, based on their relative abundance in healthy and
BB-diseased rice leaves. The annotation panel on the right indicated the functional guilds each genus being assigned to by FUNGuild.
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Previous studies have identified diverse bacterial endophytes
with PGP traits as potential antagonists to plant pathogens
(Compant et al., 2005; Vannier et al., 2019). Therefore, we first
screened bacterial endophytic isolates for antibacterial activity
against Xoo. The zone of inhibition tests showed that nine
Pantoea strains (ZFZa, ZFZd, MRDDa, MSMHa, MSMHe,
MSZFNJa, MSZFGNc, GDGZBYa, and GDYCa) and one
Pseudomonas strain (MSZFGNb) inhibited the growth of Xoo
in the PSA plates at different degrees (Figures 3A, B), while the
other endophytic bacterial strains did not show any inhibitory
effect against Xoo (data not shown). The NJ tree of the full-length
16S rRNA gene sequences clustered seven Pantoea sp. strains
together (group I), while the other two strains formed group II
(Table 2 and Figure 4A). All nine Pantoea sp. strains exhibited
activities in nitrogen fixation, ACC deaminase activity, EPS
production, and cell motility, but not in phosphate
solubilization and secretion of proteolytic enzyme (Figure 4B
and Supplementary Figure S6). In particular, three strains
(MSZFNJa, MSMHa, and MSMHe) produced IAA, while
another six strains secreted lipolytic enzymes. In addition, four
Pantoea sp. strains (ZFZa, ZFZd, MSZFNJa, and MSMHa)
showed inhibitory effects on Xanthomonas oryzae pv. oryzicola
(Xoc), which is the causal agent of bacterial leaf streak of rice
(Figure 4B and Supplementary Figure S6).

Endophytic Pantoea sp. Strains
Suppressed BB Disease in Rice
Among the nine bacterial strains that inhibited the growth of BB
causal agent Xoo on plates, we selected two Pantoea strains
Frontiers in Plant Science | www.frontiersin.org 8
(ZFZa and GDYCa) from group I and one (MSMHa) from group
II (Table 2 and Figure 4A) to determine their suppressive effects
on BB of rice by co-inoculation of each strain with Xoo. We also
included an endophytic Curtobacterium sp. GDYCb which did
not inhibit the in vitro growth of Xoo as a negative control. No
visible phenotypic changes or lesions were observed when the
rice leaves were inoculated with endophytic bacterial strain only
(Figures 5A, B). When Xoo (strain PXO99A) was co-inoculated
with each Pantoea sp. strain, the lengths of the BB lesions were
significantly shorter than those of the leaves that were inoculated
with Xoo PXO99A only (p ≤ 0.01). Curtobacterium sp. GDYCb
(negative control) did not inhibit BB development caused by Xoo
PXO99A (Figure 5B). These results suggested that the
endophytic Pantoea sp. isolates were nonpathogenic to rice
and suppressed BB-disease development in rice.
DISCUSSION

Microbial endophytes form symbiotic associations with plants
and often promote the performance, growth, and/or health of the
host by suppressing disease, enhancing nutrient uptake and use,
or improving resistance to abiotic and biotic stresses (Lugtenberg
et al., 2016; Strobel, 2018). The effects of disease on the
phytomicrobiome have been studied in recent years (Yang
et al., 2016; Wang et al., 2017; Zhang et al., 2017; Shi et al.,
2019). However, few studies have investigated the effects of BB
disease on the endophytic bacterial and fungal communities of
rice. In this study, we evaluated the impact of rice genotype and
A

B

FIGURE 3 | Anti-Xoo activities of the endophytic strains isolated from BB-diseased rice leaves. (A) Representative results of zone of inhibition tests. (B) Diameter of
zone of inhibition. The error bar represents standard deviation for three independent replicates. NC, negative control. * indicates p < 0.05 by t-test.
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BB-resistance level on the endophytic bacterial and fungal
communities of rice leaves, revealed BB-induced shift in
community diversity and compositional structure, and
investigated the potential roles of endophytic bacterial isolates
for the control of BB in rice.

It has been reported that some plant diseases have led to a
reduction in host endophytic microbial community diversity,
including Huanglongbing (Citrus greening) disease on citrus and
Clubroot caused by Plasmodiophora brassicae on cruciferous
(Breidenbach et al., 2015; Venkatachalam et al., 2016)). We
observed a BB-associated increase in the diversity of the
endophytic bacterial communities through metabarcoding
approach and community analysis (Supplementary Figure
Frontiers in Plant Science | www.frontiersin.org 9
S2). The increase of the diversity of the endophytic bacteria
was found in pinewoods with pine wilt disease (Proenca et al.,
2017). The authors postulated that the causal nematode,
Bursaphelenchus xylophilus, might have repressed the host
defense system and therefore allowed excessive internal
colonization of soil microorganisms. It suggested that the
enrichment of some endophytes might be beneficial for the
host and acquired by the host in response to the infection of
the pathogen.

Here, we revealed that Pantoea, Curtobacterium, and
Pseudomonas are ubiquitous and significantly enriched in BB-
diseased leaves, irrespective of the rice genotype or BB-resistance
level. Pantoea spp., Curtobacterium spp., and Pseudomonas spp.
A B

FIGURE 4 | The NJ tree based on full-length 16S rRNA gene and the PGP traits of the endophytic Pantoea sp. isolates. (A) The NJ tree reconstructed based on
the full-length of 16S rRNA gene sequences of Pantoea sp. strains by MEGA (version 7.0.21). (B) Characterization of in vitro plant growth-promoting traits. IAA,
indole acetic acid production; N, nitrogen fixation; P, phosphorous solubilization; ACCD, ACC Deaminase activity; EPS, exopolysaccharide production. Swimming
and swarming motility, lipolytic and proteolytic activity, and antibacterial activity against Xoo and Xoc. Each experiment was performed with three biological replicates.
Positive detection (+), negative detection (−).
A B

FIGURE 5 | In-planta BB suppression assays. (A) Each leaf was inoculated with Xoo PXO99A, Pantoea sp. isolates, Curtobacterium sp. isolate, the mixture of
Pantoea sp. isolate or Curtobacterium sp. Isolate, and Xoo PXO99A at 1:10 ratio using the leaf clipping method. BB symptoms were observed on the 14th day after
inoculation. (B) The length of the disease lesion on each leaf. The error bar represents standard deviation of the lesion lengths recorded from ≥10 leaves. ** indicates
p < 0.01 by t-test.
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strains have been found inside healthy rice plants and have
shown beneficial activities for plant health and development
(Mano and Morisaki, 2008; Morontabarrios et al., 2018).
However, the roles of these endophytes in the occurrence of
BB remain unclear. Pantoea sp. isolates from BB leaves had
antagonistic activity towards Xoo in vitro and significantly
suppressed the lesion development in the occurrence of BB. In
addition, these Pantoea sp. strains were not able to initiate BB of
rice, although strains of P. agglomerans and P. ananatis isolated
from rice had previously been identified as pathogens causing
grain discoloration or leaf blight of rice (Lee et al., 2010; Mondal
et al., 2011). Therefore, we speculate that Pantoea sp. strains
function as antagonist of pathogen rather than the partner of
pathogen leading to serious disease in BB occurrence. Pantoea
sp. strains were isolated from BB-diseased leaves of different rice
varieties grown in different paddy fields, suggested that their
function in BB occurrence might be universal, and such
enrichment might be induced by BB development. However,
Pantoea sp. strains could not suppress the occurrence of BB in
the field possibly because of the lower concentration of these
strains compared with the pathogen in heavily infested BB leaves.
Further identification of these Pantoea spp. at higher taxonomic
resolution by sequencing their genome and increasing their
colonization in rice will promote Pantoea spp. as a biocontrol
measure for BB disease. The antagonism of Pseudomonas sp.
strains against BB of rice have been evaluated in vitro and in field
tests, while endophytic Curtobacterium sp. have been assessed
for their potential as biopesticides for disease control and plant
growth promotion (Velusamy et al., 2006; Yasmin et al., 2017).
Although Curtobacterium spp. and Pseudomonas spp. strains
from BB leaves did not show antagonistic activity towards Xoo,
they might perform unknown functions during BB occurrence.

Besides endophytic bacterial species, fungal endophytes also
play a key role in promoting plant performance and resistance/
tolerance to biotic and abiotic stresses (Lugtenberg et al., 2016;
Tetard-Jones and Edwards, 2016). Previous studies have revealed
a decrease in the overall diversity of endophytic fungal
community but an enrichment of potentially beneficial
antagonists in Fusarium-Head-Blight-diseased wheat spikes
(Rojas et al., 2019). The endophytic fungal communities in
Xoo-infected leaves were not only lower in diversity, but also,
perhaps more interestingly, enriched with some potential
pathogenic or mycotoxin-producing fungi, e.g. Fusarium sp.
(Desjardins et al., 2000; Lei et al., 2019), Magnaporthe sp.
(Pennisi, 2010), and Aspergillus sp. (Reddy et al., 2009). The
latter may suggest more competition between these fungal
pathogens and Xoo in healthy or asymptomatic leaves.
However, nonpathogenic strains of Fusarium, Aspergillus, and
Phialemoniopsis have been assessed for antagonistic activities
against plant pathogens including F. oxysporum, Colletotricum
gloeosporioides, and Sclerotium rolfsii (Tayung and Jha, 2010;
Waqas et al., 2015; Mastan et al., 2019). Therefore, it may be
worthwhile to further isolate and determine the identity and
virulence of these fungal strains. By contrast, Ascomycota spp. in
Aureobasidium, Epicoccum, Khuskia, Leptosphaerulin ,
Myrothecium, Paraphaeosphaeria, Pseudopithomyces, and
Frontiers in Plant Science | www.frontiersin.org 10
Trichoglossum were recovered more in BB symptomatic leaves
relative to asymptomatic or healthy leaves (Figure 2). Khuskia
spp. and Leptosphaerulina spp. are capable of producing
lingnases, xylanases, and/or Mn-peroxidase (Slavikova et al.,
2002; Wu et al., 2013; Sajben-Nagy et al., 2014). Therefore, the
infection of Xoo may create a microenvironment that is suitable
for some saprophytic Ascomycota spp. governing decomposition
of plant residue. It is noteworthy that some widely distributed
endophytic fungi, e.g. Epicoccum spp. (e.g. E. nigrum),
Aureobasidium spp. (e.g. A. pullulans), and Phaeosphaeria spp.,
have shown antagonistic activities against plant pathogens (e.g.
Botrytis cinerea, Rhizoctonia solani, Plasmopara viticola, and
Fusarium graminearum etc.) by competing for nutrients or
producing a wide array of secondary metabolites including
antimicrobials (Martini et al., 2009; Herrera et al., 2010; Lahlali
and Hijri, 2010; Brum et al., 2012; Varanda et al., 2016).

Xoo is a pathovar of Xanthomonas oryzae and is the causative
agent of BB on rice (Nino-Liu et al., 2006). Our study identified
six Xanthomonas OTUs (Supplementary Table S2), among
which, only one (OTU_2) was most abundant in BB-diseased
leaves and was classified as the BB causal agent based on 16S
rRNA gene sequence that shared 100% similarity with those of
Xoo type strains. The fact that OTU_2 was also recovered from
asymptomatic rice leaves at much lower abundance suggests an
association between the abundance of causal agents and the
symptom severity of plant diseases, as also has been addressed by
other studies (Manching et al., 2014; Blaustein et al., 2017; Shi
et al., 2019). All other five Xanthomonas OTUs recovered in this
study were in very low abundance (<0.3%) in BB leaves and
shared high (96–98%) identity with Xoo strains (Supplementary
Table S2). Many studies have shown that pathogens often do not
act alone during disease progression; the occurrence,
development, and severity of which are results of synergistic
interactions among multiple phytopathogens (Lamichhane and
Venturi, 2015). Moreover, the mechanisms for competitive or
complaisant interactions among microbes in plant disease
development are still under-studied, but evidence has
suggested that the host defenses and immunity may be
activated or suppressed by avirulent, beneficial, or pathogenic
microbial cohabitants (Lamichhane and Venturi, 2015). The
reasons for the existence of multiple Xoo strains in BB
occurrence are not clear, although some endophytic Xoo
strains that have been identified from rice seeds were
nonpathogenic (Walitang et al., 2018). If Xoo-related isolates
were nonpathogenic, they may act as “antigens” to induce plant
resistance responses and/or compete with pathogens, in this case
Xoo, for nutrients and/or space, as shown in a study on
Verticillium Wilt (Deketelaere et al., 2017).

We acknowledge that a large amount of metabarcodes
obtained in this study were classified to plant chloroplast and
mitochondria. This is because the 16S rRNA gene region was
amplified from the total genomic DNA of rice leaves using the
universal primer 515F/907R without blocking primers (Arenz
et al., 2015; Morontabarrios et al., 2018) to reduce the co-
amplification of plant mitochondrial and chloroplast rDNA
(Figure 2A). Considering the importance of chloroplasts and
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mitochondria in host immune defence during pathogen infection
(Caplan et al., 2015), the fact that we recovered significantly
more copies of plant-derived sequences in healthy leaves than in
BB leaves, perhaps reflects a decrease or dysfunction of these
organelles in discolored lesions where the genomic DNA was
extracted from symptomatic leaf samples.
CONCLUSION

Plants benefit from symbiotic relationships with an endophytic
microbiome, but how individual endophytes or the endophytic
microbial community as a whole respond to disease
development and confer pathogen resistance to the host plant
is still under-studied. The current study showed an array of
adverse effects of Xoo infection on the endophytic microbiota of
rice leaves, such as a decrease in the fungal community diversity.
However, Xoo invasion may also activate the immune response
of the plant by acquiring beneficial microbes, such as PGP
bacteria and nonpathogenic close relatives to the causal agents,
which in turn promote the health and disease suppression of the
host. Therefore, deciphering the changes in compositional
structure, function, and multilateral interactions of the
endophytes under pathogen attack paves the way for
identifying naturally occurring biocontrol agents for disease
management and control.
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