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Photomorphogenesis refers to photoreceptor-mediated morphological changes in plant
development that are triggered by light. Multiple photoreceptors and transcription
factors (TFs) are involved in the molecular regulation of photomorphogenesis.
Likewise, light can also modulate the outcome of plant–virus interactions since both
photosynthesis and many viral infection events occur in the chloroplast. Despite
the apparent association between photosynthesis and virus infection, little is known
about whether there are also interplays between photomorphogenesis and plant
virus resistance. Recent research suggests that plant–virus interactions are potentially
regulated by several photoreceptors and photomorphogenesis regulators, including
phytochromes A and B (PHYA and PHYB), cryptochromes 2 (CRY2), phototropin
2 (PHOT2), the photomorphogenesis repressor constitutive photomorphogenesis 1
(COP1), the NAM, ATAF, and CUC (NAC)-family TF ATAF2, the Aux/IAA protein
phytochrome-associated protein 1 (PAP1), the homeodomain-leucine zipper (HD-Zip)
TF HAT1, and the core circadian clock component circadian clock associated 1 (CCA1).
Particularly, the plant growth promoting brassinosteroid (BR) hormones play critical
roles in integrating the regulatory pathways of plant photomorphogenesis and viral
defense. Here, we summarize the current understanding of molecular mechanisms
linking plant photomorphogenesis and defense against viruses, which represents an
emerging interdisciplinary research topic in both molecular plant biology and virology.

Keywords: ATAF2, brassinosteroid, COP1, photomorphogenesis, photoreceptor, transcription factor, virus
resistance

INTRODUCTION

Light is a critical environmental factor for both plant growth (Wang et al., 2019) and virus
infection (Paudel and Sanfaçon, 2018). On the plant side, light is the major environmental
input for photosynthesis (Liu et al., 2019) as well as photomorphogenesis (Montgomery, 2016).
Photomorphogenesis refers to a series of morphological changes in plant development when
dark-grown seedlings are exposed to light (Paik and Huq, 2019). In the model plant Arabidopsis
thaliana, seedling photomorphogenic changes include the cessation of hypocotyl elongation and
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the opening of cotyledons (von Arnim and Deng, 1996). There
are also significant changes in gene expression underlying
photomorphogenesis, which are regulated by multiple
photoreceptors, phytochrome interacting factors (PIFs),
and phytohormones (Wu, 2014). The light signal is overall an
indicator of time and space for governing seedling development
(Neff et al., 2000).

On the virus side, light intensity can modulate the outcome
of plant–virus interactions since both photosynthesis and many
viral infection events occur in the chloroplast (Li et al., 2016;
Zhao et al., 2016; Bhattacharyya and Chakraborty, 2018). For
example, high light intensity promotes the infection of clover
by Subterranean clover red leaf virus (SCRLV) (Helms et al.,
1987). Arabidopsis plants exhibit light-dependent hypersensitive
response (HR) and resistance signaling against Turnip crinkle
virus (TCV) (Chandra-Shekara et al., 2006). Both light deficiency
and photosystem impairment can increase the susceptibility of
Nicotiana benthamiana to Turnip mosaic virus (TuMV) infection
(Manfre et al., 2011).

Despite the elucidation of multiple lines of evidence
connecting photosynthesis and viral infection, the links between
photomorphogenesis and plant–virus interactions have been
elusive. Since photomorphogenesis also involves major changes
in the ultrastructure of the plastids (Hills et al., 2015), the
conversion from etioplasts to chloroplasts (Plöscher et al.,
2011) would facilitate the replication of many viruses. Recently,
there are reports that attribute several photoreceptors and
photomorphogenesis regulators to the regulation of host–virus
interactions, including phytochromes A and B (PHYA and
PHYB); cryptochromes 2 (CRY2); phototropin 2 (PHOT2);
the E3 ubiquitin ligase constitutive photomorphogenesis 1
(COP1) (Deng et al., 1992; Lim et al., 2018); the NAM,
ATAF, and CUC (NAC)-family transcription factor (TF) ATAF2
(ANAC081) (Wang et al., 2009; Peng et al., 2015; Peng
and Neff, 2020); the Aux/IAA protein phytochrome-associated
protein 1 (PAP1) (Choi et al., 1999; Padmanabhan et al.,
2005); the homeodomain-leucine zipper (HD-Zip) TF HAT1
(Sawa et al., 2002; Ciarbelli et al., 2008; Sorin et al., 2009;
Zhang et al., 2014; Zou et al., 2016); and the MYB TF
circadian clock associated 1 (CCA1) (Wang and Tobin, 1998;
Zhai et al., 2019). Particularly, the plant growth promoting
brassinosteroid (BR) hormones play critical roles in integrating
photomorphogenesis and virus resistance. These findings suggest
an overlap between plant photomorphogenesis and viral defense
regulatory pathways.

PHOTORECEPTORS PHYA, PHYB, CRY2,
AND PHOT2 CONFER VIRUS
RESISTANCE

As two major phytochromes for photomorphogenesis induction,
both PHYA and PHYB positively regulate plant defense against
pathogens (Xie et al., 2011). In Nicotiana tabacum, PHYA
and PHYB are essential for conferring resistance to Cucumber
mosaic virus (CMV) (Li et al., 2015; Chen et al., 2018) and
Chilli veinal mottle virus (ChiVMV) (Fei et al., 2019). The

CMV genome consists of three single-stranded (ss) positive-
sense (+) RNAs (Jacquemond, 2012). CMV replicates in the
cytoplasm. Its three ss (+) RNAs have five open reading
frames (ORFs) that encode a coat protein (CP), a movement
protein (MP), and replication-relevant proteins such as the RNA-
dependent RNA polymerase (RdRP), and serve as templates
for the generation of complementary minus-sense (−) RNAs.
These ss (−) RNAs are used to produce the ss (+) RNA
CMV genome (Jacquemond, 2012). Belonging to the family
Potyviridae, ChiVMV has an ss (+) RNA genome and also
replicates in the cytoplasm following the (+) RNA virus
replication model (Nigam et al., 2019).

In Arabidopsis, two blue light photoreceptors CRY2 and
PHOT2 are indispensable for TCV resistance signaling mediated
by hypersensitive response to TCV (HRT) (Jeong et al., 2010).
The TCV ss (+) RNA genome has five ORFs, which encode
two replication-related proteins p28 and p88, two MPs p8 and
p9, and a CP (Carrington et al., 1989). TCV replication begins
with the migration of p28 to the mitochondrial membrane
and the binding of its ss (+) RNA genome to p28 (Hacker
et al., 1992). Complementary ss (−) RNA and progeny ss (+)
RNA production are similar to those of CMV and ChiVMV.
HRT contains a coiled-coil nucleotide-binding site leucine-rich
repeat (CC-NBS-LRR) motif (Cooley et al., 2000; Zhao et al.,
2000), with its post-translational stability being maintained
by double-stranded RNA binding proteins (DRBs) DRB1 and
DRB4 (Zhu et al., 2013). The virus suppression activity of
HRT is activated by TCV CP (Jeong et al., 2010). HRT is
also named resistant to CMV(Y) 1 (RCY1) as it has another
function in conferring CMV resistance (Takahashi et al., 2002;
Sekine et al., 2008).

THE PHOTOMORPHOGENESIS
REPRESSOR COP1 POSITIVELY
REGULATES PLANT VIRUS RESISTANCE

Constitutive photomorphogenesis 1 was initially identified as
a repressor of Arabidopsis photomorphogenesis in darkness,
while its suppressing activity is reversed by light (Deng et al.,
1992). Multiple light-activated photoreceptors, including PHYA,
PHYB, CRY1, CRY2, PHOT2, and UVR8, interact with COP1
to suppress its function (Podolec and Ulm, 2018). As an
E3 ubiquitin ligase, COP1 forms complexes with one of the
four suppressor of phytochrome A-105 (SPA) proteins and
ubiquitinates downstream TFs to mark them for degradation,
which results in the suppression of photomorphogenesis
(Hoecker, 2017). The degradation targets of COP1/SPA include
two TFs HY5 (Osterlund et al., 2000) and LAF1 (Seo
et al., 2003), both of which induce seedling de-etiolation
and photomorphogenesis. In addition to photomorphogenesis,
COP1 is also involved in the signaling pathways of major
plant hormones, including auxin, ethylene, BR, gibberellin,
jasmonic acid, abscisic acid, cytokinin, and strigolactone
(Wang et al., 2019).

In contrast to its negative regulatory role in
photomorphogenesis, COP1 positively regulates Arabidopsis
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resistance against TCV via modulating HRT activity and stability
(Lim et al., 2018). Instead of directly interacting with CRY2 or
PHOT2, HRT physically interacts with their interactor COP1
(Jeong et al., 2010). COP1 is an indispensable component in
HRT-mediated resistance to TCV (Lim et al., 2018). COP1
also helps to stabilize DRB1 and DRB4, which are required
for HRT stability (Lim et al., 2018). These results suggest that
COP1 positively regulates TCV resistance in plants, which is
consistent with an earlier observation that Arabidopsis exhibits
light-dependent HR and resistance signaling against TCV
(Chandra-Shekara et al., 2006).

ATAF2 AND PAP1 INTEGRATE
ARABIDOPSIS
PHOTOMORPHOGENESIS AND VIRUS
RESISTANCE

ATAF2 was originally characterized as a transcriptional repressor
of Arabidopsis pathogenesis-related genes (Delessert et al., 2005).
ATAF2 overexpression increases plant susceptibility to the
fungal pathogen Fusarium oxysporum (Delessert et al., 2005).
In addition to negatively regulating fungal resistance, ATAF2
is also involved in plant defense against Tobacco mosaic virus
(TMV). The ss (+) RNA TMV was the first virus described
(Scholthof, 2004). Its genome consists of four ORFs, which
encode a replicase, an RdRP, a MP, and a CP (Lomonossoff and
Wege, 2018). Similar to most (+) RNA viruses, TMV replicates
in host cytoplasm via a (−) RNA intermediate (Scholthof, 2004).
Transcriptionally induced by TMV infection, ATAF2 directly
interacts with TMV replicase to induce resistance responses
(Wang et al., 2009). Consistently, ATAF2 overexpression can
significantly reduce TMV accumulation in plants (Wang et al.,
2009). As a counteraction, TMV replicase protein can physically
interact with ATAF2 via its helicase domain and consequently
promote virus accumulation (Wang et al., 2009). The interaction
may also facilitate targeted degradation of ATAF2 during TMV
infection (Wang et al., 2009).

ATAF2 is a repressor of Arabidopsis seedling
photomorphogenesis (Peng et al., 2015). When grown in
low-intensity white light, ATAF2 loss- and gain-of-function
seedlings exhibit hypocotyl lengths that are shorter and
longer than those of the wild type, respectively (Peng et al.,
2015). The far-red photoreceptor PHYA plays a major role in
ATAF2-regulated photomorphogenesis and is required for the
suppression of ATAF2 expression in continuous light (Peng et al.,
2015). PHYA also physically interacts with an Aux/IAA protein
PAP1 (Choi et al., 1999), but the impact of this interaction on
photomorphogenesis is still unclear. Also known as IAA26,
PAP1 is thought to heterodimerize with auxin response factors
(ARFs) and act as a repressor of auxin-induced gene expression
(Padmanabhan et al., 2005). Like ATAF2, PAP1 also physically
interacts with TMV replicase (Padmanabhan et al., 2005). The
interaction disrupts PAP1 localization, disturbs the Arabidopsis
auxin response system, and thereby facilitates TMV infection
(Padmanabhan et al., 2005).

INTEGRATION OF
PHOTOMORPHOGENESIS AND VIRUS
RESISTANCE VIA THE PLANT
GROWTH-PROMOTING
BRASSINOSTEROID HORMONES

ATAF2-regulated hypocotyl growth phenotypes are closely
related to BR homeostasis (Peng et al., 2015). BRs modulate
Arabidopsis seedling photomorphogenesis via promoting
hypocotyl growth under light but inhibiting its elongation in the
dark (Turk et al., 2003). ATAF2 promotes BR accumulation via
suppressing the expression of two BR-inactivating cytochrome
P450 genes BAS1 (CYP734A1, formerly CYP72B1) and SOB7
(CYP72C1) (Neff et al., 1999; Turk et al., 2005), and therefore
plays a critical role in BR-regulated photomorphogenesis
(Peng et al., 2015).

Brassinosteroids themselves actually function in a broad range
of plant disease resistance (Nakashita et al., 2003), including
defense responses against multiple viral pathogens such as TMV
in N. benthamiana (Deng et al., 2016), CMV in Arabidopsis
(Zhang et al., 2015; Zou et al., 2018), Sweet potato leaf curl
virus (SPLCV) in Arabidopsis (Bi et al., 2017), Rice black-streaked
dwarf virus (RBSDV) in rice (He et al., 2017; Zhang et al., 2019),
Maize chlorotic mottle virus (MCMV) in maize (Cao et al., 2019),
and Tomato yellow leaf curl virus (TYLCV) in Arabidopsis and
N. benthamiana (Garnelo Gómez et al., 2019). BRs may play
either positive or negative roles in plant viral defense depending
on virus species. As a modulator of BR homeostasis, ATAF2
may be indirectly involved in BR-regulated virus defense in
Arabidopsis.

The photomorphogenesis and TCV repressor COP1 is
reported to physically interact and suppress core BR signaling
proteins, including brassinosteroid-insensitive 2 (BIN2) (Ling
et al., 2017), phosphorylated brassinazole-resistant 1 (pBZR1)
(Kim et al., 2014), and GATA transcription factor 2 (GATA2)
(Luo et al., 2010).

Arabidopsis HD-Zip TF HAT1 is another molecular link
connecting BRs, the phytochrome system, and plant virus
resistance. HAT1 is directly regulated by phytochromes (Sawa
et al., 2002) and plays a positive role in shade avoidance (Sorin
et al., 2009). Consistently, HAT1 transcript accumulation is
induced by low red/far-red (R/FR) ratio light and suppressed
in high R/FR (Ciarbelli et al., 2008). HAT1 interacts with BRI1-
EMS-suppressor 1 (BES1) to cooperatively inhibit BR-repressed
gene expression via direct promoter binding (Zhang et al.,
2014). In another report, HAT1 negatively regulates Arabidopsis
response to CMV with its gain- and loss-of-function mutants
exhibiting susceptible and resistant phenotypes, respectively
(Zou et al., 2016).

ATAF2 also interacts with the core circadian regulator CCA1
both physically and genetically to suppress BAS1 and SOB7
expression (Peng and Neff, 2020). CCA1 is a MYB-family TF
that regulates Arabidopsis circadian rhythms (Wang and Tobin,
1998) together with its partially redundant paralog late elongated
hypocotyl (LHY) (Schaffer et al., 1998; Mizoguchi et al., 2002).
CCA1 binds to the promoters of its target genes via recognizing
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the evening element (EE) or the CCA1-binding site (CBS)
motifs (Michael and McClung, 2002). CCA1 can bind to the
CBS-containing promoter of ATAF2 and suppress its transcript
accumulation in the light, whereas CCA1 acts as an activator of
ATAF2 transcription in the dark (Peng and Neff, 2020). CCA1
and ATAF2 physically interact with each other and both bind
the EE/CBS motifs of BAS1 and SOB7 promoters to suppress
their expression (Peng and Neff, 2020). In addition to these two
BR catabolic genes, CCA1 can activate the expression of the key
BR biosynthetic gene DWF4 (CYP90B1) via direct binding to
its promoter (Zheng et al., 2018). Taken together, CCA1 is a
positive regulator of BR accumulation, indicating its similar role
as ATAF2 in BR-regulated virus defense.

THE CORE CIRCADIAN CLOCK
COMPONENT CCA1 SUPPRESSES
PHOTOMORPHOGENESIS AND MAY
BIND VIRUS-DERIVED SEQUENCE
DIRECTLY

As a core regulatory component of circadian oscillation, CCA1
is also involved in the photomorphogenic pathways, which
was initially proposed from the genetic observation that the
cca1 lhy double mutant displays hypersensitivity to red light
during early photomorphogenesis (Ito et al., 2007). Subsequent
biochemical evidence demonstrated the physical interactions
between CCA1 and core photomorphogenic proteins such as de-
etiolated 1 (DET1) (Chory et al., 1989) and COP1 suppressor
4 (CSU4) (Zhao et al., 2018). The COP10-DET1-DDB1 (CDD)
complex is an evolutionarily conserved protein complex that
suppresses photomorphogenesis in Arabidopsis (Lau et al., 2011).
Additionally, DET1 can physically interact with CCA1 and LHY
to co-suppress their target genes (Lau et al., 2011). The recently
identified CSU4 is a genetic suppressor of photomorphogenic
repressors COP1 and DET1 (Zhao et al., 2018). CSU4 can
suppress the transcriptional repression activity of CCA1 via
physical interaction and negatively regulates the transcriptional
expression of CCA1 in the early morning (Zhao et al., 2018).

In additional to its indirect role in virus defense via interacting
with ATAF2/COP1 and modulating BR homeostasis, CCA1 may
bind virus-derived sequences directly (Zhai et al., 2019). CCA1
binds more than 1000 EE/CBS motifs in the Arabidopsis genome
(Nagel et al., 2015; Kamioka et al., 2016). It is possible that CCA1
may bind not only the EE/CBS-containing promoters of plant
genes but also similar sequences from invading pathogens. Recent
evidence suggests that CCA1 may interact with the DNA form
of Tomato spotted wilt tospovirus (TSWV) genome (Zhai et al.,
2019). TSWV has three ssRNAs designated as large (L), medium
(M), and small (S) RNAs. The L RNA is (−) while both M and
S RNAs are ambisense. The 5′-upstream region of the TSWV
GN/GC gene in M RNA harbors a CBS motif that can directly bind
CCA1 when expressed as cDNA (Zhai et al., 2019). Disruption
of this CBS motif is sufficient to switch the promoter activity
from light suppressive to light inducible (Zhai et al., 2019). Since
the whole life cycle of TSWV is completed in the cytoplasm

(Zhai et al., 2014), whether CCA1 can bind the native RNA form
of GN/GC is questionable. The observation that CCA1 can be
detected in both cytoplasm and nucleus (Yakir et al., 2009) makes
CCA1-TSWV interaction spatially possible. However, there is still
no evidence that CCA1 influences TSWV infectivity. The first
report of an infectious TSWV clone (Feng et al., 2020) may help
to elucidate whether CCA1 can interact with the native TSWV M
RNA in planta.

SUMMARY OF CURRENT
UNDERSTANDING AND FUTURE
PERSPECTIVES

Our current understanding of the integration of
photomorphogenesis and virus resistance is shown in Figure 1.
Results of PHYA/PHYB-mediated resistance to CMV and
ChiVMV come from N. tabacum. All other findings are based
on investigations using Arabidopsis. Light activates multiple
photoreceptors, including two phytochromes PHYA and
PHYB, to induce plant photomorphogenesis. Both PHYA
and PHYB are essential for plant defense against CMV and
ChiVMV. The blue-light photoreceptors CRY2 and PHOT2
promote photomorphogenesis via interacting with COP1
to suppress its function. TCV-encoded CP protein activates
the HRT-mediated TCV-resistance signaling pathway with
the required participation of CRY2 and PHOT2. HRT also
confers CMV resistance. The COP1/SPA complex suppresses
photomorphogenesis via the ubiquitination and consequent
degradation of photomorphogenic activators such as HY5 and
LAF1. In the HRT-mediated virus-resistance signaling pathway,
COP1 stabilizes HRT via direct interaction as well as stabilizing
DRB1 and DRB4, which are required for the stabilization of
HRT. Transcriptionally induced by TMV infection, ATAF2
suppresses TMV accumulation. TMV-encoded replicase can
interact with ATAF2 and suppress its anti-TMV function. The
presence of PHYA is required for ATAF2-mediated suppression
of photomorphogenesis. PHYA physically interacts with auxin
response repressor PAP1. TMV replicase physically interacts
with PAP1 to interfere with its function. ATAF2 negatively
regulates photomorphogenesis via suppressing two BR-catabolic
genes BAS1 and SOB7. BRs suppress photomorphogenesis
under light and positively/negatively regulate viral resistance
depending on virus species. COP1 physically interacts with and
suppresses core BR signaling proteins BIN2, pBZR1, and GATA2.
Directly regulated by phytochromes in an R/FR-ratio dependent
manner, HAT1 induces shade avoidance and interacts with BES1
to cooperatively inhibit BR-repressed gene expression. HAT1
facilitates CMV infection. CCA1 physically interacts with ATAF2
protein and also regulate its transcription. CCA1 promotes
BR accumulation by suppressing BAS1/SOB7 and activating
the expression BR-biosynthetic gene DWF4. CCA1 suppresses
photomorphogenesis via the CSU4/COP1/COP10/DET1/DDB1
signaling network. CSU4 promotes photomorphogenesis
by genetically suppressing COP1 and DET1. DET1 forms
a photomorphogenesis-repressor complex with COP10 and
DDB1. DET1 can also interact with CCA1/LHY to co-suppress
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FIGURE 1 | Integration of photomorphogenesis and virus resistance. Results of PHYA/PHYB-mediated resistance to Cucumber mosaic virus (CMV) and Chilli veinal
mottle virus (ChiVMV) come from Nicotiana tabacum. All other findings are based on investigations using Arabidopsis.

downstream genes. CCA1 is suppressed by CSU4 at both
transcription and protein–protein interaction levels. It is
possible that CCA1 can bind the un-translated region of the
TSWV genome and suppress virus accumulation, but direct
evidence still lacks.

Photomorphogenesis is modulated by multiple
photoreceptors and TFs, which regulate a large number of
downstream genes to facilitate the plant’s transition from dark-
grown to light-grown status. Meanwhile, plant susceptibility
to virus infection may be affected by its developmental and
physiological changes during photomorphogenesis. Therefore,
it is not surprising that multiple photoreceptors and/or their
regulatory targets are involved in virus resistance. For example,
PHYA, PHYB, CRY2, and PHOT2 are all essential for plant
defense against certain viruses. Two photomorphogenesis
repressors, COP1 and ATAF2, are both virus suppressors
and involved in BR signaling/metabolic pathways. Due to
the diversity of plant virus species and the complexity of
photomorphogenesis regulatory network and virus resistance

signaling pathways, our knowledge on the links between plant
photomorphogenesis and interactions with viruses is still limited.
High-throughput screening of photomorphogenesis-related
genes and proteins that are responsive to virus infection may
reveal additional insights in the future.
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