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Biodiversity Research Center, Academia Sinica, Taipei, Taiwan

Plastome downsizing is rare in photosynthetic seed plants. However, a large-scale
study of five cupressophyte families (conifers II) indicated that the plastomes of some
Cupressaceous genera are notably reduced and compact. Here, we enriched taxon
sampling in Cupressaceae by adding plastomes of ten previously unreported genera
to determine the origin, evolution, and consequences of plastome reduction in this
family. We discovered that plastome downsizing is specific to Callitroideae (a Southern
Hemispheric subfamily). Their plastomes are the smallest, encode the fewest plastid
genes, and contain the fewest GC-end codons among Cupressaceae. We show that
repeated tRNA losses and shrinkage of intergenic spacers together contributed to the
plastome downsizing in Callitroideae. Moreover, our absolute nucleotide substitution rate
analyses suggest relaxed functional constraints in translation-related plastid genes (clpP,
infA, rpl, and rps), but not in photosynthesis- or transcription-related ones, of Callitris
(the most diverse genus in Callitroideae). We hypothesize that the small and low-GC
plastomes of Callitroideae emerged ca. 112–75 million years ago as an adaptation to
increased competition with angiosperms on the Gondwana supercontinent. Our findings
highlight Callitroideae as another case of plastome downsizing in photosynthetic seed
plant lineages.

Keywords: callitroids, Callitroideae, cupressophytes, plastid genome, genome downsizing, Southern Hemisphere

INTRODUCTION

Cupressaceae (cypress family) is the most widely distributed family in cupressophytes (conifers
II), comprising 30–32 genera and ca. 133 species. Many members of the family are economically
and ecologically important. For example, bald cypress (Taxodium), China fir (Cunninghamia),
cordilleran cypress (Austrocedrus), and cypress pine (Callitris) are important sources of timber,
furniture, and ornamentals (Farjon, 2005). They are distributed across all continents except
Antarctica (Farjon, 2005; Brodribb et al., 2012). Cypress genera have been classified into seven (or
six) subfamilies (Mao et al., 2012; Yang et al., 2012). Two of the seven subfamilies, Athrotaxidoideae
and Callitroideae, are mainly restricted to the Southern Hemisphere, while the other five
(Cupressoideae, Cunninghamioideae, Sequoioideae, Taiwanioideae, and Taxodioideae) are mostly
distributed in the Northern Hemisphere (Gadek et al., 2000; Farjon and Filer, 2013).
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Farjon (2005) maintained that there are only six
Cupressaceous subfamilies. He merged Callitroideae into
Cupressoideae and ranked the Southern Hemispheric clade as
the Callitrideae tribe. However, most molecular phylogenetic
studies consider the subfamily Callitroideae as separate from
Cupressoideae (Leslie et al., 2012; Mao et al., 2012; Yang et al.,
2012). Callitroideae is the least abundant conifer group (Leslie
et al., 2012); most (ca. 60%) of its genera are monotypic,
except for Callitris, which has more than 10 recognized
species (Farjon, 2005). In addition, previous studies on the
phylogenetic positions of early-diverging Callitroideae genera
(e.g., Austrocedrus, Pilgerodendron, and Libocedrus) have been
inconsistent and require further scrutiny (Mao et al., 2012; Yang
et al., 2012; Crisp et al., 2019).

Plastid genomes (plastomes) of seed plants are generally
conserved in both gene order and content. The average size
of photosynthetic seed plant plastomes is ∼145 kb (Jansen
and Ruhlman, 2012), but exceptions have been reported in
gnetophytes (109–119 kb; Wu et al., 2009), pines (107–122 kb;
Lin et al., 2010; Sudianto et al., 2016), saguaro cactus (∼113 kb;
Sanderson et al., 2015), cupressophytes (121–136 kb; Wu and
Chaw, 2016), and legumes (∼121 kb; Choi et al., 2019). Most
of these size reductions were caused by the loss of one copy
of inverted repeats (IRs), non-coding DNA, or non-essential
plastid genes. Some commonly lost plastid genes are the
NADH dehydrogenase-like complex (ndh), various small and
large ribosomal proteins (rps and rpl), and several transfer
RNA (tRNA) genes (Wu et al., 2009; Sanderson et al., 2015;
Chaw et al., 2018).

Photosynthetic seed plant plastomes typically encode 29–32
tRNA genes (Jansen and Ruhlman, 2012), far fewer than the
61 standard sense codons. To account for this disparity, Crick
(1966) proposed the “wobble hypothesis,” which posits that a
minimum of 32 tRNA species is needed to read all codons. This
hypothesis suggests that the third codon position can have a
non-Watson-Crick base-pair interaction with the first position
of the tRNA anticodon (Crick, 1966). More recently, however,
studies on tobacco plastomes further narrowed the minimum set
of essential tRNA genes down to 25 tRNA species, calling it the
“superwobble hypothesis” (Alkatib et al., 2012a,b).

Yet, Callitris has been documented to have lost some of
the essential tRNA genes, including trnG-UCC, trnT-UGU, and
trnV-UAC (Wu and Chaw, 2016). The Callitris plastome –
the smallest, most compact, and most rearranged plastome in
the Cupressaceae (Wu and Chaw, 2016; Chaw et al., 2018) –
also shows several unique characteristics that highlight major
evolutionary events occurring after Callitris diverged from
its sister clade. However, it remains unknown whether these
features are specific to Callitris or common to all Southern
Hemispheric Cupressaceous genera. Thus, extending taxon
sampling to include more Callitroideae genera will offer critical
information on the origin, evolution, and implications of the
above-mentioned features.

Here, we increase sampling of Cupressaceous plastomes
by adding ten previously unreported genera, including
six from Callitroideae (8–10 recognized genera), two from
Cupressoideae (11–13 recognized genera), and one each from

Athrotaxidoideae (one recognized genus) and Sequoioideae
(three recognized genera). These new sequences fill in
the gaps in our understanding of plastomic variation in
Cupressaceae, especially among the Southern Hemispheric
lineages. Specifically, we address the following questions: (1) Do
all Southern Hemispheric Cupressaceous genera commonly have
reduced plastomes and fewer plastid tRNAs? and (2) Do losses
of many tRNAs influence the codon compositions or nucleotide
substitution rates in the plastomes of Callitroideae?

MATERIALS AND METHODS

Sample Collection and DNA Extraction
Studied samples were collected from trees growing in
the University of California Botanical Garden (Berkeley,
United States) and Botanischer Garten der Heinrich-Heine-
Universität (Düsseldorf, Germany). The specimens were
deposited into the Herbarium of Academia Sinica, Taipei,
Taiwan (HAST). Collection information, voucher numbers,
and GenBank accession numbers are listed in Supplementary
Table S1. We extracted total genomic DNA from each sample
following a modified CTAB method (Stewart and Via, 1993).

Sequencing, Assembly, and Annotation
Total DNA was sequenced on an Illumina NextSeq500 platform
at Genomics BioSci & Tech (New Taipei City) or Tri-I
Biotech (New Taipei City), generating ∼2–4 Gb of paired-end
(2 × 150 bp) reads for each species. Trimmomatic 0.36 (Bolger
et al., 2014) and FastQC 0.11.5 (Andrew, 2011) were used to
trim and check the quality of the reads, respectively. Plastomes
were de novo assembled using Ray 2.3.1 (Boisvert et al., 2010)
and plastid contigs/scaffolds were BLAST-searched using the
Taiwania flousiana plastome (NC_021441) as the reference with
an E-value of <10−10. We obtained complete plastomes for
most of the sampled taxa using this method. However, plastomic
assemblies were fragmented in a few taxa. We therefore used
these fragmented assemblies and NOVOPlasty 2.7.2 (Dierckxsens
et al., 2017) to generate complete plastomes. Plastome annotation
was conducted using the “Transfer Annotation” function in
Geneious 11.0.5 (Kearse et al., 2012) with the T. flousiana
plastome as the reference, followed by manual corrections.
Transfer RNA (tRNA) genes were further confirmed using
tRNAscan-SE 2.0 (Lowe and Chan, 2016). Repetitive sequences
were identified using REPuter (Kurtz et al., 2001) with a
minimum size of 8 bp.

Sequence Alignment and Phylogenetic
Tree Reconstruction
We extracted 79 common plastid protein-coding genes from
29 Cupressaceous genera (including 10 newly sequenced in
this study) and five closely related genera (one Sciadopityaceae
and four Taxaceae). Each gene was aligned using MUSCLE
(Edgar, 2004) implemented in MEGA 7.0 (Kumar et al.,
2016) with the “Align Codon” option. SequenceMatrix
(Vaidya et al., 2011) was used to concatenate the alignment.
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A matrix with 64,185 nucleotide sites was obtained and
used to reconstruct the maximum likelihood (ML) and
Bayesian inference (BI) trees using RAxML 8.2.10 (Stamatakis,
2014) and MrBayes 3.2.6 (Huelsenbeck and Ronquist, 2001),
respectively, using the GTR + G + I model, as suggested by
jModelTest 2.1.10 (Darriba et al., 2012) and MrModelTest
2.4 (Nylander, 2004). The ML tree was assessed from 1,000
bootstrap replicates, and we ran two independent analyses
for the BI tree, using 6,000,000 generations for each run and
sampling every 300 generations. We discarded the first 25%
of the samples as burn-in, assessed the level of convergence
(convergence level increases as the Potential Scale Reduction
Factor score approaches 1), and ensured that the average
standard deviation of split frequencies was below 0.01. To
infer the tRNA gene gain/loss history, we performed Dollo’s
parsimony using Count (Csurös, 2010) and topology inferred
from phylogenetic analyses.

Ancestral Plastome Reconstruction
We identified the locally collinear blocks (LCBs) between the
34 sampled genera and Cycas taitungensis (AP009339) plastomes
using progressiveMauve (Darling et al., 2010). The IRA region of
the Cycas plastome was removed prior to the analysis because
previous studies indicated that cupressophyte plastomes lost their
IRA (Wu et al., 2011). The ancestral plastomes were reconstructed
based on the LCB order matrices and ML tree topology in MLGO
(Hu et al., 2014). Subsequently, the reconstructed ancestral
plastomes were compared with their close descendants to infer
the plastomic inversion history across the phylogeny in GRIMM
(Tesler, 2002).

Codon Usage Bias Calculation
We calculated relative synonymous codon usage (RSCU) scores
from 61 non-stop codons in the 79 common plastid protein-
coding genes of 29 Cupressaceous, one Sciadopityaceous, and
four Taxaceous genera using DAMBE 7.0.58 (Xia, 2018). Next,
we performed correspondence analyses on the RSCU values using
the FactoMineR package (Lê et al., 2008) in R 3.6.1 (R Core Team,
2019). The 34 genera were further classified into five groups based
on the hierarchical clustering of the 61 RSCU values.

Estimation of Nucleotide Substitution
Rates and Molecular Dating
Non-synonymous (dN) and synonymous substitution rates
(dS) of the plastid genes were estimated using the CODEML
program in PAML 4.9i (Yang, 2007) with the following
parameters: runmode = 0, seqtype = 1, CodonFreq = 2,
estFreq = 0, model = 1, and cleandata = 1. The constrained
tree topology was obtained from the ML analysis (Figure 1).
Divergence times were estimated using the approximate
likelihood method in MCMCTREE (dos Reis and Yang, 2011)
in PAML 4.9i. We used six estimated points from TimeTree
(Hedges et al., 2015) as the calibrated ages of six specific
nodes (Supplementary Figure S4). MCMC sampling was
run for 2,500,000 generations and samples were drawn every
500 generations, with a burn-in of 200,000. We performed

two independent runs to evaluate convergence. Tracer 1.7
(Rambaut et al., 2018) was used to confirm that the effective
sample sizes of all parameters were above 200. Absolute
substitution rates were calculated by dividing the dN and dS
branch lengths over their respective divergence times. Only
terminal branch lengths were considered in this study. The
branch-site model test was performed using EasyCodeML
(Gao et al., 2019).

RESULTS

Support for Seven Distinct
Cupressaceous Subfamilies
Topologies of maximum likelihood (ML) and Bayesian inference
(BI) trees inferred from 79 concatenated protein-coding
genes have 100% bootstrap support (BS) and 1.0 posterior
probability (PP) at almost all nodes (Figure 1). Among
the seven subfamilies, Cunninghamioideae is the earliest
diverging clade, followed by Taiwanioideae, Athrotaxidoideae,
Sequoioideae, and Taxodioideae. Taxodioideae is sister to
a clade encompassing Cupressoideae and Callitroideae. In
Callitroideae, the genus Austrocedrus diverged first and the
Pilgerodendron–Libocedrus clade is sister to the clade containing
four genera: Fitzroya–Diselma, Widdringtonia, and Callitris.
Notably, the branch leading to Callitroideae is remarkably
long and contains a signature of positive selection (branch-
site model: P < 0.001), suggesting that positive selection
resulted in accelerated rates of plastid nucleotide substitutions
before the diversification of Callitroideae. Hence, the Southern
Hemispheric clade should be treated as a separate subfamily
from Cupressoideae.

Callitroideae Has the Smallest and Most
Rearranged Plastomes in Cupressaceae
Table 1 compares the newly sequenced plastomes from ten
Cupressaceous genera: one Athrotaxidoideae, six Callitroideae,
two Cupressoideae, and one Sequoioideae. Their GC contents
were similar (34.0–35.5%), but coding gene numbers varied,
particularly with tRNA. For example, we detected 28–31 plastid
tRNAs in Callitroideae but 33–34 in other Cupressaceous
subfamilies (Table 1). In addition, the monotypic species
Austrocedrus chilensis (Callitroideae) lacked psaM. This species
thus has fewer plastid protein-coding genes than any taxa studied
so far. Overall, plastomes of Callitroideae were relatively gene-
poor compared to other subfamilies (114–116 genes, compared
to 119–120 elsewhere).

Plastomes are generally smaller in Callitroideae (121,344–
124,251 bp) than other subfamilies (125,797–132,660 bp).
An analysis of their introns, intergenic spacers (IGS), and
repeats indicates that Callitroideae has lower IGS content
(25.2–26.4%) than other subfamilies (26.5–30.4%) but similar
intron and repeat content (Table 1). Thus, the shrinkage of
IGS resulted in the reduction of plastid non-coding regions
in Callitroideae. To create a better picture of the evolution
of plastome size in Cupressaceae, available taxa from all
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FIGURE 1 | Plastid phylogenomic trees of seven Cupressaceous subfamilies. Sciadopitys verticillata was designated as the outgroup. The tree framework is based
on the ML tree. All nodes received full 100% bootstrap support (BS) or 1.0 posterior probability (PP) from ML/BI analyses, except for the three with BS/PP values.
Newly sequenced species are in blue.

TABLE 1 | Plastomic features of the ten newly sequenced Cupressaceous species.

Plastome Total no. Non-genic
Species size (bp) GC (%) No. of genes of genes content (%) Repeat (%)

Protein-coding rRNA tRNA Intron IGS

Athrotaxidoideae Athrotaxis laxifolia 132,660 34.4 82 4 33 119 8.6 29.1 4.6

Sequoioideae Sequoiadendron giganteum 131,472 35.5 82 4 34 120 8.8 30.4 3.5

Callitroideae Austrocedrus chilensis 123,133 34.7 81 4 31 116 8.9 25.5 3.7

Diselma archeri 124,251 34.5 82 4 30 116 8.8 26.4 5.1

Fitzroya cupressoides 123,548 34.6 82 4 30 116 8.8 25.2 4.8

Libocedrus plumosa 121,344 34.1 82 4 28 114 8.3 25.4 4.3

Pilgerodendron uviferum 121,839 34.0 82 4 28 114 8.2 25.9 5.1

Widdringtonia schwarzii 123,190 34.3 82 4 30 116 8.3 25.4 7.4

Cupressoideae Microbiota decussata 127,230 34.8 82 4 33 119 9.0 26.5 3.3

Tetraclinis articulata 125,797 34.9 82 4 33 119 9.0 27.0 3.8

IGS, Intergenic spacers.

living subfamilies were included and compared. As shown in
Figure 2, Callitroideae plastomes are significantly smaller and
more compact (gene-dense) than those of other subfamilies
(Mann-Whitney test; all P < 0.01). Moreover, plastomic
rearrangements were the most extensive in Callitroideae
(Supplementary Figure S1). We detected three rearrangement
hotspots: seven in Callitris, five in the common ancestor of
Libocedrus and Pilgerodendron, and five rearrangements in the
common ancestor of all Callitroideae genera (Supplementary
Figure S1). Together, these results show that Callitroideae

plastomes are not only the smallest but also the most rearranged
among Cupressaceae.

Callitroideae Plastomes Repeatedly Lost
tRNAs and Have Distinct Codon
Compositions
To better understand how the plastid tRNA gene repertoire
changes across the Cupressaceae, we compared 29 available
genera in the seven Cupressaceous subfamilies and found that
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FIGURE 2 | Boxplots for comparing plastome size and gene density among seven Cupressaceous subfamilies. The plastomes of Callitroideae are the smallest and
most compact. The black dots represent outliers. The phylogenetic backbone is based on Figure 1.

all genera had 30–31 tRNA species – except for the seven
Callitroideae genera, which had only 26–29 tRNA species
(Figure 3). Callitroideae genera lost various plastid tRNAs,
including trnG-UCC, trnM-CAU, trnP-GGG, trnS-GGA, trnT-
GGU, trnT-UGU, and trnV-UAC (Figure 3). Our analysis further
supports the assertion that 16 plastid tRNA loss events occurred
across Cupressaceae (Supplementary Figure S2). Several tRNAs
were repeatedly lost from different lineages. For example, during
the evolution of Cupressaceae, there were multiple independent
losses of trnG-UCC (2 times), trnM-CAU (2 times), trnP-GGG
(3 times), trnT-GGU (4 times), and trnV-UAC (2 times). The
majority (10) of these tRNA losses occurred within Callitroideae,
suggesting that some driving force differentiates Callitroideae
from other subfamilies in the retention of plastid tRNAs.

The loss of many plastid tRNA genes from the Callitroideae
prompted us to investigate whether this subfamily has a distinct
codon composition. We performed a correspondence analysis
(CA) using 61 non-stop relative synonymous codon usage
(RSCU) scores from 29 Cupressaceous genera and five genera
from two closely related families [Sciadopityaceae (1) and
Taxaceae (4)] as the outgroup for comparison. The first two
CA dimensions predicted about 59.2% of the RSCU variation.
Hierarchical clustering resolved five isolated groups in the
34 sampled genera (Figure 4). The first dimension (38.9%)
clearly distinguished Cupressaceae from Sciadopityaceae and
Taxaceae, with CGC, UGC, UUC, and AGG codons constituting
the largest contributions. The second dimension explained
about 20.3% of the RSCU variation and separated Callitroideae
from its sister subfamily, Cupressoideae. Our analyses further
indicate that this separation is mainly caused by nucleotides
at the 3rd codon position – i.e., Callitroideae plastomes
have more A/U-ending codons, while Cupressoideae plastomes
contain more C/G-ending codons (Figure 4). Moreover,
Callitroideae and Athrotaxidoideae plastomes contain the
lowest number of GC nucleotides, especially at the 3rd

codon position (Supplementary Figure S3). No evidence of
plastid codon reassignments was detected in Callitroideae
(Supplementary Table S3).

Relaxed Functional Constraints on
Plastid Translation-Related Genes in
Callitris
Figure 5A compares the absolute synonymous (RS) and non-
synonymous (RN) substitution rates estimated from the 29
sampled Cupressaceous genera. RS and RN are strongly and
positively correlated (R2 = 0.76; P < 0.001). Callitris exhibits the
highest values of both RS and RN , noticeably deviating from the
expected values based on the regression line. We also detected
elevated RN/RS ratios in some Callitris genes. For example, the
RN /RS ratios of plastid translation-related genes (clpP, infA, rpl,
and rps) and plastid translocon component genes (ycf1 and
ycf2) were greater than 0.5. Two genes, infA (1.38) and ycf2
(1.08), had RN /RS ratios greater than 1 (Figure 5B). In contrast,
the RN /RS ratio of other genes, such as photosynthesis- and
transcription-related genes, were generally lower than 0.4 in
Callitris. Collectively, these results may suggest that Callitris
encountered positive selection or relaxed functional constraints
in plastid genes related to translation and protein modification.

DISCUSSION

Filling the Gaps in Plastid
Phylogenomics of Cupressaceae
Prior plastid phylogenomics of Cupressaceae focused on the
taxa of Northern Hemispheric origin (Wu and Chaw, 2016;
Qu et al., 2017a,b; Zhu et al., 2018) and only investigated one
Southern Hemispheric taxon (Callitris rhomboidea; included
in Wu and Chaw, 2016). The present study adds ten newly
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FIGURE 3 | Comparison of plastid tRNA gene repertoires among seven Cupressaceous subfamilies. The functional copy, pseudogene copy, and gene loss are
denoted in blue, gray, and white, respectively. Arabic numerals within the boxes indicate the number of gene copies. The total number of distinct tRNA species for
each genus is listed in the bottom row. Newly sequenced plastomes are in dark blue font. Intron-containing genes are marked with an asterisk (*).

elucidated plastomes, including seven Southern Hemispheric
taxa (six Callitroideae and one Athrotaxidoideae) and three
Northern Hemispheric taxa (two Cupressoideae and one
Sequoioideae). The addition of these ten genera enabled
us to build the most comprehensive plastid phylogenomics
of Cupressaceae to date – amounting to 29 of the 30–32
Cupressaceous genera recognized worldwide.

Both our ML and BI trees (Figure 1) support the monophyly
of Callitroideae, with Austrocedrus sister to the remaining
genera. This agrees with the views of Mao et al. (2012);
Yang et al. (2012), and Leslie et al. (2018), but not Crisp
et al. (2019) who placed the Pilgerondendron–Libocedrus
clade as sister to the remaining Callitroideae genera. The
phylogenetic positions of other Callitroideae genera are
also congruent with the four above-mentioned studies.
The intergeneric relationships within Cupressoideae and
Sequoioideae agree well with those of Mao et al. (2012) and Leslie
et al. (2018). Athrotaxis, the sole genus of Athrotaxidoideae,
is supported as sister to a clade including Taxodioideae,
Sequoioideae, Callitroideae, and Cupressoideae (Figure 1).
This placement, however, contradicts those of Yang et al. (2012)

and Lu et al. (2014), which placed Athrotaxis as sister to the
Taxodioideae–Callitroideae–Cupressoideae clade and the
Sequoioideae subfamily, respectively.

Numerous tRNA Gene Losses and IGS
Reductions Contributed to Plastome
Downsizing in Callitroideae
We show that plastome downsizing is especially pronounced in
the Callitroideae genera. No plastome reduction was observed
in the other Southern Hemispheric clade, Athrotaxidoideae.
Callitroideae plastomes lost seven tRNA genes, several of
which are dispensable. For example, trnP-GGG is frequently
lost from the plastomes of major land plant lineages, such
as mosses (Physcomitrella patens and Tortula ruralis; Oliver
et al., 2010), liverworts (Marchantia polymorpha; Ohyama,
1996), lycophytes (Selaginella; Mower et al., 2019), gymnosperms
(Sciadopitys verticillata; Hsu et al., 2016), and all angiosperms
(Wicke et al., 2011). Two other genes (trnS-GGA and trnT-
GGU) have been experimentally verified as non-essential
plastid genes (Alkatib et al., 2012b). In contrast, the absence
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FIGURE 4 | Correspondence analysis of plastid relative synonymous codon usage (RSCU). Thirty-four genera were included in the analysis (29 Cupressaceae and
five closely related genera: one Sciadopityaceae and four Taxaceae). Hierarchical clustering clearly reveals five separate groups. The first two dimensions accounted
for 59.2% of the RSCU variation among the 34 sampled genera.

FIGURE 5 | Comparison of plastid absolute non-synonymous (RN ) and synonymous (RS) substitution rates across seven Cupressaceous subfamilies. (A) Regression
analysis showing a strong positive correlation between RS and RN among the 29 sampled genera. The solid line depicts the linear regression line with its equation,
R2, and P-value indicated. The dashed line indicates the expected pattern if RS = RN. (B) Bar plot showing RN vs. RS of plastid genes/groups in Callitris. RN/RS

ratios are in parentheses.

of any of the four remaining tRNA genes (trnG-UCC,
trnM-CAU, trnT-UGU, and trnV-UAC) is lethal for tobacco
(Alkatib et al., 2012a,b). It is interesting to note that some

parasitic plants still retain ∼30 plastid tRNA genes despite
having smaller plastomes than those of Callitroideae genera (see
Wicke and Naumann, 2018).
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Loss of these essential tRNA genes is unique to the
Callitroideae, as no other Cupressaceous subfamilies have lost
any of them (Figure 3). It was previously proposed that
losses of tRNA genes might be compensated either by: (1)
codon reassignment (Kollmar and Mühlhausen, 2017), (2)
wobbling or superwobbling mechanisms (Alkatib et al., 2012b),
or (3) cytosolic tRNA import (Maréchal-Drouard et al., 1999).
Although codon reassignment has evidently rectified the missing
tRNA in plastomes of several taxa (Su et al., 2019; Turmel et al.,
2019), it was not detected in our data (Supplementary Table S3).
Wobbling or superwobbling also could not compensate for these
tRNA losses since the four missing tRNA genes are part of
the minimum set of 25 tRNA species required to encode all
codons (Alkatib et al., 2012b). Instead, the Callitroideae plastids
may import cytosolic tRNAs to replace the tRNA defect, as
previously proposed in various parasitic plants (Wolfe et al.,
1992; Su et al., 2019). The exact mechanisms of essential tRNA
compensation in Callitroideae plastids will be an interesting topic
for further studies.

The mutational burden hypothesis posits that excess
non-coding DNA is a liability because any mutation at the
intronic splice sites, transcription factor binding sites, or
core promoters will be deleterious to the genome (Lynch,
2006). Lineages with low mutation rates tend to accumulate
non-coding DNA, leading to the assertion that elevated
mutation rates enhance the degree of genome compaction in
organelles (Lynch, 2006; Smith, 2016). Our results demonstrate
signatures of both accelerated substitution rates and positive
selection on the branch leading to Callitroideae (Figure 1).
Conforming to the mutational burden hypothesis, this
accelerated rate might have facilitated the removal of non-
functional sequences, contributing to the low IGS content
in Callitroideae (Table 1). Together, these data suggest that
the plastome downsizing in the Callitroideae occurred prior
to the subfamily diversification ca. 112–75 million years
ago (Cretaceous Period; Supplementary Figure S4). This
timeline coincides with the fragmentation of East and West
Gondwana into smaller continents and the transition period
from gymnosperm-dominated to angiosperm-dominated flora
on the Gondwana (McLoughlin, 2001).

Potential Implications of Reduced and
Compact Plastomes in Callitroideae
Given their small plastome size, Callitroideae genera might
have selective advantages over other subfamilies containing
larger plastomes. Streamlined genomes are hypothesized to
have shorter replication times and consume fewer resources
such as phosphorus and nitrogen (Hessen et al., 2010; Mann
and Chen, 2010). The saved resources can be reallocated to
RNA production and increasing the rate of protein synthesis,
eventually leading to a higher growth rate (Hessen et al.,
2010). Similarly, several studies also linked genome size to
cell size, arguing that smaller genomes may facilitate cell
size reduction, and consequently faster growth (Bennett, 1987;
Hessen et al., 2010; Simonin and Roddy, 2018). However,
the trend is less straightforward in algal plastomes, not all

of which have a strong positive correlation between plastome
size and cell size (Smith, 2017). As plastome downsizing has
been commonly found in various lineages, it may be worthy
to investigate the correlation among plastome size, cell size,
and growth rate.

Callitroideae plastomes also contain the fewest GC-end
codons among the Cupressaceae subfamilies (Figure 4
and Supplementary Figure S3). This bias in the base
composition might stem from the fact that GC nucleotides
are energetically more “expensive” than AT nucleotides (Rocha
and Danchin, 2002). The AT base-pair also uses one fewer
nitrogen atom than the GC base-pair (Dufresne et al., 2005).
Collectively, these imply that the downsized plastomes of
Callitroideae may have a competitive edge over other sympatric
plants. These characteristics closely resemble the plastomes
of another gymnosperm group, the gnetophytes, which
grow well in arid or angiosperm-dominated environments
(Wu et al., 2009).
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