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Plant peroxisomes are organelles enclosed by a single membrane whose biochemical
composition has the capacity to adapt depending on the plant tissue, developmental
stage, as well as internal and external cellular stimuli. Apart from the peroxisomal
metabolism of reactive oxygen species (ROS), discovered several decades ago, new
molecules with signaling potential, including nitric oxide (NO) and hydrogen sulfide
(H2S), have been detected in these organelles in recent years. These molecules
generate a family of derived molecules, called reactive nitrogen species (RNS) and
reactive sulfur species (RSS), whose peroxisomal metabolism is autoregulated through
posttranslational modifications (PTMs) such as S-nitrosation, nitration and persulfidation.
The peroxisomal metabolism of these reactive species, which can be weaponized
against pathogens, is susceptible to modification in response to external stimuli. This
review aims to provide up-to-date information on crosstalk between these reactive
species families and peroxisomes, as well as on their cellular environment in light of
the well-recognized signaling properties of H2O2, NO and H2S.

Keywords: catalase, reactive oxygen, nitrogen and sulfur species, superoxide dismutase, nitric oxide,
S-nitrosation, persulfidation

INTRODUCTION

For many years, peroxisomes in higher plants have been given different names, such as glyoxysomes
during seed germination and leaf senescence, as well as leaf, root and fruit peroxisomes according
to their presence in different organs and at different physiological stages (Tolbert and Essner, 1981;
Palma et al., 2018). This is explained by the presence of metabolic pathways which appear to be
specific to each type of peroxisome. However, peroxisomes, which share a number of metabolites
and enzymes common to all types of peroxisome, is now the preferred term regardless of their
specific metabolic characteristics (Pracharoenwattana and Smith, 2008). The most noteworthy
metabolites and enzymes include H2O2 and catalase, which are directly involved in the metabolism
of reactive oxygen species (ROS) (Su et al., 2018; Sousa et al., 2019).

Peroxisomes have a simple morphological constitution composed of a single membrane
surrounding an amorphous matrix. Over the last 30 years, an increasing number of new and
often unexpected components and processes in these organelles have been identified (Bueno
and del Río, 1992; del Río et al., 1992; Corpas et al., 1994, 2001, 2017a, 2019a, Barroso et al.,
1999; Reumann et al., 2009; Clastre et al., 2011; Simkin et al., 2011; Chowdhary et al., 2012;
Guirimand et al., 2012; Oikawa et al., 2015; Reumann and Bartel, 2016; Kao et al., 2018; Pan
et al., 2018, 2020; Borek et al., 2019), indicating that the plant peroxisomal metabolism and
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consequently peroxisomal enzymatic and non-enzymatic
components are more diverse than previously predicted. The
diverse complementary range of experimental approaches used
to identify these new peroxisomal constituents includes: (i)
the biochemical, proteomic and molecular analysis of purified
peroxisomes combined with bioinformatics methodologies
and (ii) cell biology studies of features such as immune
localization with the aid of electron microscopy and specific
fluorescent probes with appropriated controls. Although the
model plant Arabidopsis thaliana has increased our knowledge
of plant peroxisomes, it should be pointed out that studies of
peroxisomes from other plant species have been essential, as
the peroxisomal metabolism can be modulated depending on
the plant organ, development time and plant species involved.
Therefore, this review principally aims to provide an update
of research on the metabolism of reactive species associated
with oxygen, nitrogen and, more recently, sulfur, as well as to
outline new challenges and possible future research perspectives
regarding crosstalk between peroxisomes and other subcellular
compartments such as oil bodies, mitochondria and plastids
which are closely related both biochemically and structurally
(Palma et al., 2006; Oikawa et al., 2019). Information on plant
peroxisomes could also be useful in relation to peroxisome
research into other organisms and vice versa.

PEROXISOMAL ROS METABOLISM

Reactive oxygen species (ROS) are produced by a series of single-
electron reductions in molecular oxygen which sequentially form
superoxide (O2

•−), hydrogen peroxide (H2O2) and hydroxyl
(HO•) radicals and ultimately ending in water (Figure 1). It
is worth noting that the term peroxisomes, formerly known as
microbodies, originates from their high H2O2 content (De Duve
and Baudhuin, 1966; Corpas, 2015). Plant peroxisomes contain a
significant number of enzymatic systems capable of generating
H2O2 such as glycolate oxidase (GOX), acyl-CoA oxidase
(AOX), urate oxidase (UO), polyamine oxidase, copper amine
oxidase (CuAO), sulfite oxidase (SO), sarcosine oxidase (SOX),
or superoxide dismutase (SOD) (Hauck et al., 2014; Corpas
et al., 2017a and references therein). These H2O2-generating
enzymes are involved in multiple biochemical pathways which
are essential not only for the endogenous metabolism of plant
peroxisomes but also for their interactions with other subcellular
compartments such as plastids, mitochondria, cytosols, oil bodies
and nuclei. In these subcellular interconnections, H2O2 itself
plays a highly important role as a signal molecule in crosstalk
between organelles in order to coordinate cell function.

Photorespiration has been estimated to be responsible for
70% of total H2O2 generated mainly from peroxisomal GOX
in photosynthetic tissues (Noctor et al., 2002). Zhang et al.
(2016) have described an elegant dynamic physical GOX-catalase
association-dissociation mechanism that fine-tunes peroxisomal
H2O2 in rice plants. Although peroxisomal H2O2 is kept under
control when GOX and catalase are associated, under stress
conditions and when mediated by salicylic acid (SA), this
complex GOX-catalase dissociation mechanism inhibits catalase

FIGURE 1 | Reactive oxygen species (ROS) produced from a sequential
one-electron reduction from oxygen.

activity, leading to an increase in cellular H2O2 which acts as
a signaling molecule (Zhang et al., 2016; Kohli et al., 2019).
Another sophisticated mechanism, involving the interaction of
the γb protein from the barley stripe mosaic virus with GOX,
has been reported to inhibit GOX and to facilitate infection
with the virus (Yang et al., 2018). More recently, Yamauchi
et al. (2019) observed a connection between the H2O2-generating
GOX and catalase, which is required in the stomatal movement.
Thus, when there is an increase of oxidized peroxisomes they
were removed by pexophagy allowing an increase in H2O2
in guard cells which mediated the stomatal closure. This
mechanism of ROS homeostasis in guard cells seems to be
relevant in response to environmental changes. On the other
hand, the new peroxisomal small heat shock protein Hsp17.6CII,
capable of increasing catalase activity especially under stress
conditions, has been reported to be present in Arabidopsis plants
(Li et al., 2017).

Acyl-CoA oxidase is another key peroxisomal H2O2-
generating enzyme involved in fatty acid β-oxidation which,
in collaboration with lipid bodies, enables triacylglyceride
mobilization especially during seed germination and is also
involved in the synthesis of signal molecules such as jasmonic
acid (Baker et al., 2006; Chen et al., 2019b; Wang X. et al.,
2019; Xin et al., 2019). However, under stress conditions such
as salinity, ROS generated by peroxisomal fatty acid β-oxidation
have a negative impact and contribute to oxidative damage
(Yu et al., 2019).

Polyamines such as putrescine, spermidine and spermine
are well known to be involved in multiple physiological
processes, as well as mechanisms of response to various
stress conditions (Wuddineh et al., 2018; Chen et al.,
2019a; Wang W. et al., 2019). Several enzymes involved in
the catabolism of polyamine, including H2O2-producing

Frontiers in Plant Science | www.frontiersin.org 2 July 2020 | Volume 11 | Article 853

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-11-00853 July 1, 2020 Time: 18:33 # 3

Corpas et al. Plant Peroxisomes and Reactive Species

polyamine oxidase (PAO) and copper amino oxidase
(CuAO), have been reported to be present in plant
peroxisomes (Moschou et al., 2008; Kusano et al., 2015).
These enzymes are also involved in the γ-aminobutyric acid
(GABA) biosynthesis signaling pathway (Zarei et al., 2015;
Corpas et al., 2009b).

In addition, peroxisomal xanthine oxidoreductase (XOR)
and superoxide dismutase (SOD), key enzymes in O2

•− and
H2O2 metabolism, can be regulated by stress conditions such as
salinity, heavy metal and ozone stress (Corpas et al., 1993, 2008;
Ueda et al., 2013).

Although catalase is the principal antioxidant enzyme
in the matrix of all types of peroxisome (Mhamdi et al.,
2010, 2012; Palma et al., 2020 and references therein),
other enzymatic antioxidants are present in both the
matrix and the membrane. It is also important to highlight
the role of SOD isozymes, which differ according to
peroxisomal origin (del Río et al., 2018). Thus, peroxisomes
of watermelon cotyledons have two SOD isoenzymes, a
CuZn-SOD located in the matrix and a Mn-SOD that
is bound to the membrane (Bueno and del Río, 1992;
Rodríguez-Serrano et al., 2007); pea leaf peroxisomes have
a Mn-SOD present in the matrix; sunflower cotyledon
peroxisomes have only a CuZn-SOD which is also located
in the matrix (Corpas et al., 1998); carnation petal and
pepper fruit peroxisomes have a Mn- and an Fe-SOD
(Droillard and Paulin, 1990; Palma et al., 2018); and olive
fruits peroxisomes contain four SOD isozymes, an Fe-SOD,
two CuZn-SOD and a Mn-SOD (López-Huertas and del
Río, 2014). Therefore, it could be hypothesized that the
presence of two or more types of SOD in peroxisomes
must have some physiological advantages. Thus, one of the
SOD isozymes could be constitutive while the other one
could be inducible under environmental or physiological
stimuli such as seedling development, leaf senescence
or fruit ripening.

In addition, it is worth noting the role of ascorbate-glutathione
cycle components, including ascorbate peroxidase (APX),
monodehydroascorbate reductase (MDAR), dehydroasrcorbate
reductase (DAR) and glutathione reductase (GR) (Jiménez
et al., 1998; Romero-Puertas et al., 2006; López-Huertas
and del Río, 2014; Corpas et al., 2017a). While MDAR is
present in both matrix and membrane (Leterrier et al., 2005;
Lisenbee et al., 2005; Eastmond, 2007), APX is exclusively
located in the membrane (Corpas et al., 1994; Yamaguchi
et al., 1995; Bunkelmann and Trelease, 1996). With its
high affinity for H2O2 (low Km value around 74 µM),
membrane-bound APX appears to have fine-tuned control
of H2O2 (Ishikawa et al., 1998) as compared to catalase,
which, with a Km value in the mM range, is less efficient at
low concentrations of H2O2 (Huang et al., 1983; Mhamdi
et al., 2010). The Km values for plant catalase are reported to
vary quite considerably, with, for example, a Km of 50 mM
in Beta vulgaris (Dinçer and Aydemir, 2001), 100 mM in
rice (Ray et al., 2012) and 190 mM in pea (del Río et al.,
1977). Peroxisomal APX appears to be critical in a diverse
range of processes such as seedling development (Corpas

and Trelease, 1998) and leaf senescence (Ribeiro et al., 2017).
To maintain the ascorbate-glutathione cycle at the GR level,
NADPH needs to be supplied by NADP-dependent endogenous
dehydrogenases including glucose-6-phosphate dehydrogenase
(G6PDH), 6-phosphogluconate dehydrogenase (6PGDH)
and isocitrate dehydrogenase (NADP-ICDH) (Leterrier et al.,
2016; Corpas and Barroso, 2018b and references therein). In
addition, Corpas et al. (2017b) have reported the presence of
a protein immunologically related to plant peroxiredoxins,
whose expression is differentially modulated under oxidative
stresses such as those induced by CdCl2 and the herbicide
2,4-dichlorophenoxyacetic acid (2,4-D); however, further
research is necessary to clarify this phenomenon. Figure 2
shows a working model of the ROS metabolism and its
interaction with other reactive species, including NO and H2S,
which modulate the activity of peroxisomal enzymes through
posttranslational modifications (PTMs), events which will be
further discussed below.

Given the capacity of ROS to mediate several PTMs,
particularly carbonylation and S-sulfenylation, certain amino
acid residues, especially arginine, lysine, threonine and proline,
are carbonylated, which affects target protein function in
many cases (Debska et al., 2012; Lounifi et al., 2013). Several
studies have identified peroxisomal proteins, such as catalase,
malate synthase and the fatty acid β-oxidation multifunctional
protein AIM1, which undergo carbonylation (Nguyen and
Donaldson, 2005; Anand et al., 2009; Mano et al., 2014;
Rodríguez-Ruiz et al., 2019). On the other hand, H2O2
can oxidize specific protein cysteine thiols to sulfenic acid
(SOH), a process known as S-sulfenylation, which usually
results in enzymatic inactivation. Using proteomic techniques,
approximately 2% of peroxisomal proteins have been reported
to be susceptible to S-sulfenylation (Akter et al., 2017; Huang
et al., 2019). This PTM has been observed to occur with
respect to fatty acid β-oxidation acyl-coenzyme A oxidase
1, the multifunctional proteins MFP2, and AIM1, as well as
amine oxidase, phosphomevalonate kinase, MDAR and NADP-
ICDH. Table 1 shows a summary of peroxisomal enzymes
targeted by carbonylation and S-sulfenylation, as well as other
PTMs mediated by RNS and RSS, a subject which will be
discussed below.

Given growing awareness of the important role of ROS
peroxisomal metabolism in combating biotic stress, the
expression of genes encoding for peroxisomal proteins
involved in their biogenesis, fatty acid catabolism and
the H2O2-generating glyoxylate cycle have been reported
to increase during interactions between the pathogen
Sclerotinia sclerotiorum and rapeseed (Brassica napus), thus
facilitating pathogen cell wall degradation and metabolism
detoxification (Chittem et al., 2020). On the other hand,
using the Arabidopsis nca1 mutant with no catalase activity
1, containing residual activity of the three catalase isozymes,
Hackenberg et al. (2013) identified a link between catalase
and ROS production as autophagy-dependent cell death
progresses. Table 2 shows some functional implications of
peroxisomal H2O2 and other signal molecules generated
in this organelle.
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FIGURE 2 | Simple model of the global metabolism of reactive oxygen/nitrogen/sulfur species in plant peroxisomes. Peroxisomes have an important battery of
H2O2-generating enzymes, being the photorespiratory glycolate oxidase (GOX) one of the most relevant. Peroxisomal xanthine oxidoreductase (XOR) activity
generates uric acid which the concomitant generation of superoxide radical (O2

•−) which is dismutated to H2O2 by superoxide dismutase (SOD). All three SOD
types have been described in plant peroxisomes from different origin, CuZ-SOD, Mn-SOD, and Fe-SOD. The H2O2 pool is mainly decomposed by catalase (CAT)
but also by the membrane-bound ascorbate peroxidase (APX). An L-arginine (L-Arg) and Ca2+ dependent NOS-like activity generates NO which can react
chemically with O2

- to produce peroxynitrite (ONOO-), a nitrating molecule that facilitates PTMs such as tyrosine nitration. NO can also interact with reduced
glutathione (GSH) to form S-nitrosoglutathione (GSNO), a NO donor which mediates S-nitrosation. GSH is regenerated by glutathione reductase (GR) which requires
NADPH supplied by several NADPH-generating enzymes (NADPH-ICDH, G6PDH, and 6PGDH). Uric acid is a ONOO- scavenger, this being a mechanism of
peroxisomal auto-regulation. With all these components, and according to reported data, the peroxisomal targets of NO-derived PTMs identified so far are CAT,
CuZn-SOD, and monodehydroascorbate reductase (MDAR) which can undergo an inhibitory effect either by nitration or S-nitrosation. Additionally, CAT and GOX can
be inhibited by hydrogen sulfide (H2S), and CAT is also inhibited by carbonylation. The H2O2-generating sulfite oxidase (SO) converts sulfite (SO3

2-) to sulfate
(SO4

2-), which is a mechanism of protection because sulfite inhibits catalase activity. Red line denotes inhibition effect.

The generation of singlet oxygen (1O2) has always been
associated with chloroplasts, particularly in photosystem II,
responsible for various types of photo-damage which triggers
distinct cellular responses (Wagner et al., 2004; Rosenwasser
et al., 2011; Chen and Fluhr, 2018; Dogra et al., 2018).
Using the green fluorescence probe to detect 1O2, peroxisomes,
mitochondria and nuclei have been shown to be either the origin
or target of 1O2, suggesting that this ROS is generated in a
light-independent manner (Mor et al., 2014). These findings
open up new questions about the importance of 1O2 in

the mechanism of response to plant stress in which several
subcellular compartments including peroxisomes are involved.

PEROXISOMAL REACTIVE NITROGEN
SPECIES (RNS)

Nitric oxide (NO) metabolism has a significant impact on cellular
metabolisms due to its involvement in the important plant
physiological processes of seed and pollen germination, root
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TABLE 1 | Peroxisomal enzymes target of diverse posttranslational modifications (PTMs) whose activities are affected by either ROS, RNS, or RSS.

Peroxisomal enzyme Pathway/Reaction PTM Effect on activity

Catalase (CAT) H2O2 decomposition Carbonylation Inhibition

Tyr-nitration Inhibition

S-nitrosation Inhibition

Persufidation Inhibition

Monodehydroascorbate reductase (MDAR) Ascorbate-glutathione cycle Tyr-nitration Inhibition

S-nitrosation Inhibition

S-sulfenylationa Not reported

Hydroxypyruvate reductase (HPR) Photorespiration Tyr-nitration Inhibition

S-nitrosation Inhibition

Glycolate oxidase (GOX) Photorespiration S-nitrosation Inhibition

Persufidation Inhibition

CuZn-superoxide dismutase (CSD3) O2
•− dismutation Tyr-nitration Inhibition

Malate dehydrogenase (MDH) Fatty acid β-oxidation Tyr-nitration Inhibition

S-nitrosation Inhibition

Malate synthase (MS) Glyoxylate cycle Carbonylation Inhibition

Isocitrate lyase (ICL) Glyoxylate cycle S-nitrosationa Not reported

Acyl-coenzyme A oxidase 1 Fatty acid β-oxidation Persulfidationa Not reported

S-sulfenylationa Not reported

Multifunctional protein AIM1 isoform Fatty acid β-oxidation S-nitrosationa Not reported

S-sulfenylationa Not reported

Lon protease homolog 2 Peroxisomal protein import S-nitrosationa Not reported

Phosphomevalonate kinase Isoprenoid biosynthesis S-sulfenylationa Not reported

NADP-isocitrate dehydrogenase NADPH supply Tyr-nitration Inhibition

S-nitrosation Inhibition

Persufidation Inhibition

S-sulfenylationa Not reported

aProteomic identification.

development, stomatal closure, senescence and fruit ripening, as
well as in the mechanism of response to many environmental
stresses including salinity, drought, heavy metals and extreme
temperature (Neill et al., 2008; León et al., 2014; Begara-Morales
et al., 2018; Kolbert et al., 2019; Wei et al., 2020). NO belongs
to a family of related molecules called reactive nitrogen species
(RNS), with peroxynitrite (ONOO−) and S-nitrosogluthione
(GSNO) being the most studied. Using various experimental
approaches including electron paramagnetic resonance (EPR)
spectroscopy, as well as biochemical and cellular biology, some
RNS including NO, ONOO− and GSNO have been detected in
plant peroxisomes (Barroso et al., 2013; Corpas and Barroso,
2014b; Corpas et al., 2019). Identification of peroxisomal proteins
undergoing PTMs mediated by these NO-derived species is
strong evidence of an active RNS metabolism in peroxisomes.
Figures 3A–H shows in vivo images of NO and ONOO− in
Arabidopsis guard cell peroxisomes detected by confocal laser
scanning microscopy (CLSM) and specific fluorescent probes.

ONOO− results from a reaction between NO with O2
•−,

considered one of the fastest chemical reactions with a rate
constant (k) of 1.9 × 1010 M−1 s−1 (Kissner et al., 1997).
ONOO−, a strong oxidant and nitrating molecule involved in
protein tyrosine nitration (NO2-Tyr), modifies protein function,
mostly through inhibition (Corpas et al., 2009a; Mata-Pérez
et al., 2016). This NO-derived PTM involves the covalent

oxidative addition of a nitro group (-NO2) to tyrosine residues,
a highly selective process which depends on factors such
as the protein environment of the Tyr and the nitration
mechanism (Bartesaghi and Radi, 2018). Table 1 shows some
nitrated proteins identified in plant peroxisomes and how
their function is affected. Interestingly, some of the proteins
affected are directly involved in the ROS metabolism, indicating
a close metabolic interconnection between both families of
reactive species.

The antioxidant glutathione (GSH), a tripeptide (γ-Glu-Cys-
Gly), undergoes S-nitrosation in order to generate GSNO, a
low-molecular-weight NO reservoir, through a covalent addition
of NO to the thiol group of Cys residues in order to form
S-nitrosothiol (SNO) (Airaki et al., 2011). GSNO is a key
molecule given its dynamic interaction with free cysteines,
GSH and proteins through processes such as S-nitrosation,
S-transnitrosation and S-glutathionylation (Broniowska et al.,
2013; Corpas et al., 2013a,b). GSNO is enzymatically decomposed
by GSNO reductase (GSNOR; Leterrier et al., 2011), an enzyme
susceptible to S-nitrosation and consequently inhibition (Guerra
et al., 2016). An increase in Tyr nitration, an irreversible
process, is usually associated with nitro-oxidative stress; however,
protein S-nitrosation, a reversible process, is a regulatory
protein mechanism that occurs under physiological and stress
conditions. Table 1 shows some peroxisomal proteins targeted
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TABLE 2 | Signal molecules generated in plant peroxisomes during different
processes and their functional implications.

Peroxisomal signal Functional implication References

Hydrogen peroxide
(H2O2)

Plant development and
stress response

Zhang et al., 2016; Su
et al., 2019

Involved in peroxisome
abundance under drought
and heat stress

Hinojosa et al., 2019

Pexophagy Yamauchi et al., 2019

Pathogen defense Chittem et al., 2020

Nitric oxide (NO) Pollen tube development Prado et al., 2004

Leaf senescence Corpas et al., 2019

Lateral root formation Schlicht et al., 2013

Heavy metal and root
architecture

Piacentini et al., 2020

Hydrogen sulfide Regulation of catalase Corpas et al., 2019a

(H2S) Herbicide glyphosate
response

Jasmonic acid (JA) Plant growth Wang X. et al., 2019

Environmental stimuli Xin et al., 2019

Insect defense

γ-aminobutyric acid
(GABA)

Fruit flavor and flower
fragrance

Zarei et al., 2015

Abiotic stress tolerance Shelp and Zarei, 2017

by S-nitrosation, as well as proteins involved in ROS metabolism
which are targeted by these NO-mediated PTMs.

The number of peroxisomal proteins targeted by NO-
mediated PTMs is growing continuously. Using the biotin-switch
technique and liquid chromatography/mass spectrometry/mass
spectrometry (LC-MS/MS), several more S-nitrosated
peroxisomal proteins have been identified during adventitious
root growth induced by treatment with NO (Niu et al., 2019).
These proteins include the peroxisomal LON2 protease, which is
necessary for matrix protein import into peroxisomes (Lingard
and Bartel, 2009); isocitrate lyase (ICL), involved in the glyoxylate
cycle; and the multifunctional AIM1-like isoform, involved in
fatty acid β-oxidation.

However, the source of enzymatic NO, as yet unelucidated,
is currently the most controversial aspect of NO metabolism
in higher plants (Kolbert et al., 2019). Two main candidates
have been proposed: nitrate reductase (NR) (Mohn et al., 2019)
and L-arginine-dependent NO synthase-like activity (Corpas
et al., 2017a). Although no evidence of NR has been found in
plant peroxisomes, NO synthase-like activity has been found
and characterized in peroxisomes purified from pea leaves
(Barroso et al., 1999). Though as yet unidentified, this protein is
called NOS-like activity, as peroxisomal NO generation requires
NOS proteins similar to those found in animals, including
L-arginine, NADPH, FMN, FAD, tetrahydrobiopterin, calcium,
and calmodulin (Corpas and Barroso, 2017b; Corpas et al., 2019).
The protein responsible for NO generation is imported by a type
2 peroxisomal targeting signal involving a process dependent on
calmodulin and calcium (Corpas and Barroso, 2014a, 2018a).

Peroxisomal NO metabolism is involved in processes such
as pollen tube germination (Prado et al., 2004), lateral

FIGURE 3 | Representative images illustrating the CLSM in vivo detection of nitric oxide (NO) and peroxynitrite (ONOO-), peroxisomes (red) and chloroplasts (blue) in
guard cells of transgenic Arabidopsis seedlings expressing CFP-PTS1. (A,E) Fluorescence punctate (red) attributable to CFP-PTS1, indicating the localization of
peroxisomes in guard cells. (B,F) Fluorescence punctate (green) attributable to the detection in the same guard cells of NO and ONOO-, respectively. (C,G)
Chlorophyll autofluorescence (blue) attributable to the detection of chloroplasts. (D,H) Merged images for corresponding panels. Reproduced with permission from
Corpas et al. (2017a) provided by Elsevier.
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FIGURE 4 | Representative images illustrating the CLSM in vivo detection of H2S (red color) and peroxisomes (green color) in root tips (A–C) and guard cells (D–G)
of 10 days old Arabidopsis seedlings expressing CFP-PTS1. (A,D) Fluorescence puncta (green) attributable to CFP-PTS1, indicating the localization of peroxisomes.
(B,E) Fluorescence punctate (red) attributable to H2S detection in the same area. (C) Merged image of (A,B) showing colocalized fluorescence punctate (yellow).
(F) Chlorophyll autofluorescence (blue) demonstrating location of chloroplasts. (G) Merged images of (D–F). H2S (red color) was detected by using 5 mM WSP-5, a
fluorescence probe for H2S. Arrows indicate representative punctate spots corresponding to the colocalization of H2S with peroxisomes. Asterisks indicate
localization of H2S in the cytosol. Reproduced with permission from Corpas et al. (2019a) provided by John Wiley and Sons.

root formation (Schlicht et al., 2013), and leaf senescence
(Corpas et al., 2019), as well as in responses to environmental and
heavy metal stresses such as salinity (Corpas et al., 2009b), lead
(Corpas and Barroso, 2017a), and cadmium (Corpas and Barroso,
2014b; Piacentini et al., 2020).

REACTIVE SULFUR SPECIES (RSS) IN
PLANT PEROXISOMES

Reactive sulfur species (RSS) are chemically comparable to ROS
(Olson, 2019) and can be generated from hydrogen sulfide
(H2S), some of these species are thiyl radical (HS•), hydrogen
persulfide (H2S2), persulfide radical (HS2

•−), sulfite (SO3
2−)

or sulfate (SO4
2−) among others (Gruhlke and Slusarenko,

2012; Ono et al., 2014; Mishanina et al., 2015; Park et al.,
2015; Schöneich, 2016). However, the biochemistry of H2S
in cells, given its multiple interactions with other reactive
species, is more complex than previously thought (see Filipovic
et al., 2018 for a more in-depth review); for example, protein
thiyl radicals are generated during the reaction of H2O2
with heme proteins, possibly inducing protein degradation
(Schöneich, 2016).

Different molecules and enzymes, such as GSH (Müller
et al., 2004), glutathione reductase (Romero-Puertas et al., 2006),
and sulfite oxidase (Nowak et al., 2004; Hänsch and Mendel,
2005), involved in sulfur metabolism, are present in plant
peroxisomes. Sulfite oxidase (SO) catalyzes the conversion of

sulfite to sulfate by producing H2O2. The functional relevance
of this enzyme is that it can protect catalase activity since sulfite,
at low concentration, has the capacity to inhibit catalase activity
(Veljovic-Jovanovic et al., 1998). Nevertheless, despite the greater
importance attributed to peroxisomal SO in a recent study,
mitochondrial SO in animal cells has the capacity to generate NO
from nitrite (Bender et al., 2019), while NO enzymatic generation
from SO in plant peroxisomes remains to be proven. An earlier
study confirmed the important role played by the peroxisomal
RSS metabolism (Corpas and Barroso, 2015).

H2S has recently been proven to be present in plant
peroxisomes (Corpas et al., 2019a). Figures 4A–G shows
representative images of H2S in peroxisomes from the root tips
and guard cells of Arabidopsis seedlings detected by in vivoCLSM
and a specific fluorescent probe. Using proteomic techniques,
some peroxisomal enzymes have been identified as targets of
persulfidation (Aroca et al., 2015, 2017). On the other hand,
in vitro analysis shows that catalase activity from Arabidopsis and
sweet pepper fruits is inhibited in the presence of H2S (Corpas
et al., 2019a). Although, to our knowledge, the enzymatic source
of peroxisomal H2S remains unknown, previous studies have
proposed some potential candidates. For example, catalase, which
functions as a sulfide oxidase or sulfur reductase, is capable
of oxidizing or generating H2S (Olson et al., 2017). SOD has
also been reported to have the capacity to catalyze the reaction
between O2 and H2S to generate persulfide (Olson et al., 2018).
In a previous study by Corpas and Barroso (2015), the presence
of these enzymatic and non-enzymatic components in plant
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peroxisomes indicates that, in addition to ROS and RNS, these
organelles also have an active RSS metabolism.

CROSSTALK BETWEEN PEROXISOMAL
REACTIVE SPECIES

Functional interactions and inter-regulation through PTMs in
these families of reactive species are shown in Figure 2. In
this working model, under physiological conditions, catalase, the
main antioxidant enzyme, regulates levels of H2O2 generated by
different pathways, principally photorespiratory glycolate oxidase
(GOX) (Noctor et al., 2002). On the other hand, peroxisomal
xanthine oxidoreductase (XOR) activity involved in purine
catabolism generates uric acid, with the concomitant formation
of the O2

•− (Corpas et al., 1997, 2008; Zarepour et al., 2010),
which, in turn, is dismutated to H2O2 by SOD. The pool of H2O2
is mainly decomposed by catalase (CAT) and also by membrane-
bound ascorbate peroxidase (APX). L-Arg-dependent NOS-like
activity generates NO (Corpas et al., 2019) which chemically
reacts with O2

•− to produce peroxynitrite (ONOO−), a nitrating
molecule that facilitates PTMs such as tyrosine nitration.
NO also interacts with reduced glutathione (GSH) to form
S-nitrosoglutathione (GSNO), a NO donor that mediates
S-nitrosation. Uric acid is a physiological ONOO− scavenger
(Alamillo and García-Olmedo, 2001) involved in endogenous
peroxisomal auto-regulation. Thus, the peroxisomal enzymes
targeted by NO-derived PTMs, catalase (CAT), CuZn-SOD,
and monodehydroascorbate reductase (MDAR), are inhibited by
nitration and S-nitrosation. Both CAT, and GOX are inhibited
by H2S; the former is also inhibited by carbonylation when
H2O2 is overproduced. In addition, H2O2-generating sulfite
oxidase (SO) is involved in the conversion of sulfite to sulfate
which, given sulfite’s ability to inhibit SO, has been reported
to be a catalase protection mechanism. These interconnections
highlight the biochemical complexity of this self-regulated plant
peroxisome network, in which the antioxidant catalase is one of
the most regulated peroxisomal enzymes (Palma et al., 2020).

CONCLUSION

Much of our knowledge of reactive species metabolism in plant
peroxisomes is now well established. The three molecular families
ROS, RNS, and RSS are present in plant peroxisomes, which
are considered to be potential producers of reactive species
and to play an important role in the cell signaling network.
However, our limited knowledge of reactive species families
needs to be expanded by identifying new peroxisomal protein

targets. We also need to determine the effect of the different
PTMs, carbonylation, S-sulfenylation, S-nitrosation, tyrosine
nitration, and persulfidation, on target protein function and
peroxisomal metabolism. In addition, interactions with other
subcellular compartments which share biochemical pathways
such as photorespiration, fatty acid β-oxidation, isoprenoid
biosynthesis and purine and polyamine metabolism (Clastre
et al., 2011; Guirimand et al., 2012; Corpas et al., 2019b)
should be investigated. Similarly, the relationship between
reactive species and complex peroxisomal biogenesis, division
and matrix/membrane protein import mechanisms (Reumann
and Bartel, 2016; Kao et al., 2018) has been underexplored
(López-Huertas et al., 2000). Further research should also be
carried out to identify the proteins responsible for endogenous
peroxisomal generation of NO and H2S. This would increase our
knowledge of how organelle biochemistry is modulated within
the framework of the whole cell metabolism. This research could
lead to biotechnological applications given the important role of
peroxisomes in many physiological processes and in responses
to biotic and abiotic stresses. Furthermore, in addition to
harboring reactive species, with their known signaling properties,
peroxisomes are a source of other signaling molecules such as
jasmonic acid and γ-aminibutic acid (GABA), which extends the
functional role of plant peroxisomes. Table 2 shows signaling
molecules generated in the plant peroxisomal metabolism and
some examples of their role in various plant processes.
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