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Maize yield components including row number, kernel number per row, kernel thickness,
kernel width, kernel length, 100-kernel weight, and volume weight affect grain yield
directly. Previous studies mainly focused on dissecting the genetic basis of per se
performances for yield-related traits, but the genetic basis of general combining ability
(GCA) for these traits is still unclear. In the present study, 328 RILs were crossed as
males to two testers according to the NCII mating design, resulting in a hybrid panel
composed of 656 hybrids. Both the hybrids and parental lines were evaluated in four
environments in 2015 and 2016. Correlation analysis showed the performances of GCA
effects were significantly correlated to the per se performances of RILs for all yield-
related traits (0.17 ≤ r ≤ 0.64, P > 0.01). Only 17 of 95 QTL could be detected for
both per se performances of RILs and GCA effects for eight yield-related traits. The
QTL qKN7-1 and qHKW1-3, which could explain more than 10% of the variation in
the GCA effects of KN and HKW, were also detected for per se performances for the
traits. The pleiotropic loci qRN3-1 and qRN6, which together explained 14.92% of the
observed variation in GCA effects for RN, were associated with the GCA effects of KW
and HKW, but not with per se performances for these traits. In contrast, Incw1, which
was related to seed weight in maize, was mapped to the region surrounding MK2567
at the qHKW5-2 locus, but no GCA effect was detected. The QTL identified in present
study for per se performances and corresponding GCA effects for yield-related traits
might be useful for maize hybrid breeding.

Keywords: maize, yield-related traits, NCII mating design, combining ability, QTL

INTRODUCTION

Maize (Zea mays L.), one of the most extensively grown crops worldwide, is important for both
animal feed and as a bioenergy feedstock. Crop breeders and farmers face the daunting task of
meeting increasing demand for food and feed. The improvement of maize yield depends mainly
on the exploitation of heterosis in the F1 resulting from the hybridization of genetically diverse
parents. However, the yield of hybrids cannot be predicted by the performance of their parents
per se (Hallauer, 1990), but depends largely on their combining ability, or the potential to generate

Abbreviations: GCA, general combining ability; HKW, 100-kernel weight; KL, Kernel length; KN, Kernel number per row;
KT, Kernel thickness; KW, Kernel width; QTL, quantitative trait loci; RILs, recombinant inbred lines; RN, row number; SCA,
specific combining ability; VW, volume weight; YP, yield per plot.
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progenies exhibiting high heterosis. Thus, understanding the
genetic basis of their combining ability is essential for utilizing
heterosis and selecting elite inbred lines in hybrid breeding.

Combining ability can be divided into general combining
ability (GCA) and specific combining ability (SCA). The genetic
variances of GCA and SCA were first estimated using a diallel
cross-mating design (Griffing, 1956). GCA is estimated by
the average performance of parents, while SCA is measured
as the deviations of hybrid performance from that predicted
from the GCA of the parents (Sprague and Tatum, 1942; Xu,
2010). GCA is primarily the result of additive allelic effects
of high-heritability traits, and SCA mainly results from non-
additive effects including dominance and epistasis (Reif et al.,
2007). Due to their low heritability and interactions with the
environment, the non-additive effects usually are difficult to
resolve in progeny (Lu, 1999). Therefore, during the crop
breeding process, the contribution of GCA to test-cross hybrid
values and inbred line development is greater than that of SCA
(Schrag et al., 2006; Fischer et al., 2010; Grieder et al., 2012).

Combining ability estimates have been used to anticipate
improvement due to hybridization and selection in maize
breeding (Khalil et al., 2010; Issa et al., 2018), but further
exploration will be required to dissect the genetic basis of
combining ability (Gichuru et al., 2017). With the development
of molecular markers (e.g., AFLP, RFLP, SSR), the genetic basis
of combining ability effects was estimated by QTL mapping
(Liu et al., 2004; Basbag et al., 2007; Shukla and Pandey,
2010; Giraud et al., 2017; Zhou Q. et al., 2017; Seye et al.,
2019). In maize, 23 QTL related to the GCA effects of
10 yield-related traits were identified using a linkage map
constructed from 146 pairs of SSR primers using a double
haploid (DH) population (Gu, 2007). A total of 21 loci for
SCA and 56 significant loci for GCA have been identified for
five yield-related traits in multiple environments using a set
of testcrosses with introgression lines (ILs) (Qi et al., 2013).
Ghd7 and OsPRR37 were confirmed to affect the GCA effects of
three yield-related traits in rice by linkage analysis (Liu et al.,
2015). These studies indicated that using molecular markers
to construct linkage maps was an effective way to dissect the
genetic basis of combining ability. However, the resolution of
those genetic maps based on traditional molecular markers was
relatively low. Fine-scale mapping was more time-consuming,
identifying QTL with minimal effects was more challenging
(Holland, 2007). Next-generation sequencing technologies for
constructing high-density genetic maps for large QTL mapping
population are more efficient and improve mapping accuracy
(Chen et al., 2014; Zhou et al., 2016). For example, qPH5-1 and
qPH10, which are located on chromosomes 5 and 10, respectively,
were validated for maize plant height-related traits using a
high-density genetic linkage map containing 4602 bin markers
developed using genotyping by sequencing (GBS). The genotype
at the qPH10 locus was only associated with GCA effects, while
that at qPH5-1 was associated with both per se performances
and corresponding GCA effects for the traits (Zhou et al., 2018).
A recent genome-wide association study (GWAS) identified 34
significant associations between GCA and SCA, and agronomic
traits in rice, and suggested the accumulation of desirable Ghd8,
GS3, and qSSR4 alleles in parental lines with high GCA (Chen

et al., 2019). Chromosome segment substitution lines (CSSLs)
were elite genetic resources for identifying naturally occurring
favorable alleles. A total of 40 significant GCA loci were identified
for 14 grain and stover yield-related traits in millet using testcross
hybrid populations of 85 CSSLs (Basava et al., 2019). Differing
from the trait values obtained by observation and measurement,
GCA effects were statistical values, and the feasibility of analyzing
the genetic basis of GCA effects by molecular markers has been
proved theoretically and practically.

Grain yield is a complex quantitative trait that cannot be
improved by directly selecting individual plants with excellent
performance. This is especially true for heterozygous maize, for
which yield gains largely depend on the utilization of heterosis
(Messmer et al., 2009). Previous studies have identified highly
significant genetic correlations between grain yield and yield
components, including kernel number per ear, kernel weight,
and volume weight (Ahmed et al., 1992; Zhang et al., 2007; Li
C.H. et al., 2013; Liu et al., 2014; Liu C.L. et al., 2016; Liu et al.,
2015). The factors, kernel number per row (KN) and kernel row
number (RN), are the two components of kernel number per ear.
Kernel weight is mainly determined by kernel thickness (KT),
kernel width (KW), and kernel length (KL). Comparing with
grain yield, these yield components exhibit higher heritability
(Messmer et al., 2009; Li C.H. et al., 2013; Raihan et al., 2016).
Although numerous QTL have been identified to associate with
per se performances for yield-related traits in maize, few studies
concentrate on the genetic basis of the GCA for yield-related
traits (Zhang et al., 2017; Zhou Q. et al., 2017; Lan et al.,
2018). Therefore, it is essential to study the genetic basis of yield
components and their combining abilities, especially GCA, for
the improvement of grain yield.

In the present study, a NCII mating design was used to
analysis the GCA effects of eight yield-related traits in 328 RILs
and two test cross-populations by linkage analysis across four
environments. The objectives of this study were to (a) analyze
the correlation between per se performances and GCA effects
for yield-related traits; (b) identify stable QTL for GCA of these
traits; (c) compare the genetic basis of per se performances and
GCA effects for these traits and discuss the utility of these QTL
for maize breeding.

MATERIALS AND METHODS

Materials
A set of 365 RILs and two testers were analyzed in the present
study. These RILs were derived from a cross between Ye478 (as
female) and Qi319 (as male). Ye478 and Qi319, two elite inbred
lines, were selected from the PA (Partner A) and PB (Partner B)
heterotic groups, respectively. The two testers were Chang7-2 and
Mo17, which belong to the SPT and Lancaster heterotic groups,
respectively. Chang7-2, an inbred line derived from Huangzao4,
was extensively used in the Yellow and Huai River maize-growing
zone of China. Mo17, an elite inbred line derived from Lancaster
Sure Crop, has been used widely in commercial maize breeding.
Each RIL was crossed as male to the two testers according to the
NCII mating design. A hybrid panel composed of 656 hybrids was
thus obtained by 328 RILs that were successfully crossed with
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both Chang7-2 and Mo17, as sufficient seed was not produced
from 74 crosses. The Chang7-2 testcross population and Mo17
testcross population were defined as TC and TM, respectively.
The four F1 hybrids that were produced by crossing the Ye478
and Qi319 to the two testers were used as controls.

Field Experiments
Phenotypic performance was evaluated in 2015 and 2016
at Shijiazhuang (37.27◦N, 113.30◦E) and Xinxiang (35.19◦N,
113.53◦E) in China. Both of the locations for evaluating the
phenotypic performance of the parental lines and hybrids were
located in the summer maize-growing regions of China. All
of the experimental materials were arranged in a randomized
incomplete block design with two-row plots and two replicates
at each location. In each row, 17 plants were planted with 25 cm
of space between each plant, 60 cm of space between rows,
and a final density of 60,000 plants/ha. RILs and testcrosses
were planted separately to avoid the competitive effects.
Fields were managed according to the standard agronomic
practices for maize.

Evaluation of Phenotypes
At harvest stage, the middle 10 open-pollinated ears in the
central row of each plot were sampled for phenotypic evaluation
using standard procedures after air-drying. Eight agronomic
traits were measured in this study, including kernel thickness
(KT, mm), kernel width (KW, mm), kernel length (KL, mm),
100-kernel weight (HKW, g), row number (RN), kernel number
per row (KN), volume weight (VW), and yield per plot (YP, g).
An electronic digital caliper with a precision of 0.1 mm was
used to measure the former three traits, and these traits were
scored by randomly selecting 10 kernels from the middle of
each ear. HKW was measured as three repeated measurements
of 100 kernels mixed from 10 ears per plot. RN, KN, VW,
and YP were determined from 10 randomly selected ears. The
average measured value of three replications for each trait in each
environment represents the performance for each plot.

Statistical Analysis of Phenotypic Data
The “‘lme” function in the R package “lme4” was applied to
correct the raw phenotypic data using best linear unbiased
estimation (BLUE) using the formula: Pheno ∼1 + Line + (1|
Year) + (1| Loc) + (1| Line: Year) + (1| Line: Loc) + (1| Rep),
where Pheno represents trait data; Line represents the phenotypic
data of inbred lines or hybrids; Year represents the planting
year; Loc represents the planting location; and Rep represents the
replications in each environment. Line is considered a fixed effect,
while the other factors are considered random effects: indicates
an interaction between factors, and | separates the model matrix
and grouping factors. Estimates of phenotypic distributions,
correlations, and part of these QTL analyses were based on BLUE.

The broad-sense heritability (H2) for each of
the traits analyzed in the RILs across multiple
environments was estimated according to Knapp
(Knapp et al., 1985) using the modified formula:
H2 = σ2

G/(σ2
G + σ2

GL/L + σ2
GY /Y + σ2

GLY /L × Y + σ2
E/L ×

Y × R), where σ2
G is the genotypic variance; σ2

GL,σ2
GY

and σ2
GLY are estimates of genotype × location interaction

variance, genotype × year interaction variance, and
genotype × location × year interaction variance; σ2

E is the
error variance; L is the number of location; Y is the number of
year; and R refers to the number of replications per location,
respectively. All of these variances were estimated using the
“ASReml” R package. The genetic variance effects of GCA and
SCA of both testcross populations in four environments were
evaluated using a joint linear mixed model (Butler et al., 2007),
as follows:

Y ijklm = µ + Li + Ym + Bj(im) + GCAk + GCAl

+ SCAkl + L × GCAik + L × GCAil

+ L × SCAikl + Y × GCAik + Y × GCAil

+ Y × SCAikl + L × Y × GCAik

+ L × Y × GCAil + L × Y × SCAikl + Eijklm,

where Yijklm indicates the phenotypic value of the hybrid derived
from the kth female and the lth male evaluated in the jth block
and the ith location of the mth year; µ refers to the overall
mean, Li is the ith location effect; Ym is the mth year effect; and
Bj(im) indicates the jth block within the ith location and mth
year. GCAk and GCAl are the effects of kth female and the lth
male, respectively; SCAkl is the effect of the kth and the lth
parents; L× GCAik, L× GCAil, L× SCAikl indicates the location
interaction effect by GCAik, GCAil, and SCAikl, respectively;
Y × GCAik, Y × GCAil, Y × SCAikl indicates the year interaction
effect by GCAik, GCAil, and SCAikl, respectively; L× Y × GCAik,
L × Y × GCAil, L × Y × SCAikl indicates the location and the
year interaction effect by GCAik, GCAil, and SCAikl, respectively;
and Eijklm is random error. Li and the remaining factors are
considered random effects.

Linkage Mapping and QTL Detection
A high-density linkage map was constructed for a population of
365 F11 RILs using genotyping by sequencing (GBS) technology
on an Illumina 2500 platform and the raw sequence reads of
these lines are public on NCBI (Accession: PRJNA627044)1. We
developed a total of 88,268 SNP markers from SNP sites that
were heterozygous between parental lines and used them to
genotype this population. Finally, 4602 high-quality bin markers
were obtained using the sliding window (Zhou et al., 2016).
The map spanned total genetic distance of 1533.72 cM with an
average distance between markers of 0.33 cM (Supplementary
Figure S1). The QTL locations of the per se performances
and GCA effects for eight yield-related traits in each of
four environments were determined using a composite-interval
mapping (CIM) method with the R/qtl package (Broman et al.,
2003), and a joint analysis across all environments was performed
using BLUE. The threshold for identifying a significant QTL was
defined by a logarithm of the odds (LOD) score of 3.0 calculated
using 1000 permutations (P < 0.05). The QTL confidence interval

1http://www.ncbi.nlm.nih.gov/bioproject/627044
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was considered as genomic regions within a 1.5-LOD drop from
the peak LOD scores. The proportion of phenotypic variation
explained by each QTL was calculated using the fitqtl function
in the R “qtl” package. QTL detected in different environments
for different traits with overlapping confidence intervals or whose
peaks were within 20 Mb of each other were considered as
pleiotropic QTL (Frascaroli et al., 2007).

RESULTS

Performance of RILs and Testcross
Populations for Yield-Related Traits
The means and ranges of eight yield-related traits measured
in the RILs and their testcross progenies were shown in Figure 1.
The TC and TM values for most of the traits except for KT
and VW were significantly higher than the corresponding values
in the RIL population (P < 0.01). The percentages of testcross
progenies were with higher values than RILs for these traits
ranged from−22.98% (KT) to 141.46% (YP) for TC and−12.36%
(KT) to 130.13% (YP) for TM. Notably, the percentages for
KN and YP were 61.55% and 141.46% for TC and 66.48% and
130.13% for TM (Figure 1A), indicating that KN and YP showed
apparent heterosis in these two testcross populations. In addition,
percentages for KT were −22.98% for TC and −12.36% for TM,
suggesting that the average performances of RILs were higher
than testcross progenies for KT. The GCA effects of eight yield-
related traits in RILs were normally distributed with the average
around zero, and the variations for the GCA effects of YP and
VW were larger than those for the GCA effects of other traits
(Supplementary Table S1). The value of all the traits in the RIL
population also showed a continuous and normal distribution
(Figure 1B), indicating the presence of complex underlying
genetic mechanisms for per se performances and GCA effects for
yield-related traits.

Correlation Analysis Between per se
Performance and Corresponding GCA
Effects for Yield-Related Traits and
Variance Analysis of Combining Ability
The correlations between the phenotypic values of per se
performances and the corresponding GCA effects for yield-
related traits were shown in Table 1. Most of the traits in
RILs were significantly correlated with each other. HKW was
significantly positively correlated with KT (0.56, P < 0.01), KW
(0.77, P < 0.01), and KL (0.42, P < 0.01), suggesting that
kernel size was a major component of kernel weight. However,
HKW was significantly negatively correlated with RN and KN,
which indicated tradeoffs between HKW and RN or KN. YP
was significantly positively correlated with all of the other traits
(0.15–0.71, P < 0.01) except for KT (-0.37, P < 0.01), but
especially with RN (0.41, P < 0.01), KN (0.71, P < 0.01), and
KL (0.55, P < 0.01). The correlations between the GCA effects
of YP and the GCA effects of KN, KL, and HKW were relatively
strong, indicating that it was important to select inbred lines with
relatively high GCA effects for these traits. In addition, significant
positive correlations were observed between GCA effects and

per se performances for all eight yield-related traits (0.17–0.64,
P < 0.01) (Table 2), for which strong correlations were detected
for RN (0.64, P < 0.01), KT (0.54, P < 0.01), KW (0.62, P < 0.01),
and HKW (0.53, P < 0.01).

ANOVA revealed highly significant differences among
genotypes, environments, and the genotype-by-environment
interactions for these eight yield-related traits (Table 2).
Broad-sense heritability (H2) was high for most of the
yield-related traits [ranging from 0.74 (HKW) to 0.86 (RN,
KT)], suggesting high heritability for these traits, except for VW
and YP. The variances for GCAk and SCAkl were significant
for all of the traits, suggesting that both of these genetic effects
were important for controlling the inheritance of the traits
(Table 3). Higher ratios of σ2

GCA/σ2
SCA [1.16 (YP) to 24.56

(KT)] suggesting that the predominance of additive gene action
was more important for the expression of these yield-related
traits, especially for RN (17.60) and KT (24.56).

QTL Detection
QTL for per se Performances for Eight Grain Yield
Related Traits
To better understand the genetic basis of per se performances and
GCA effects for eight yield-related traits, QTL mapping in four
environments (Supplementary Tables S3, S4) and joint analyses
were performed in the present study (Table 4). The results of the
joint analyses showed that a total of 36 loci were identified for
per se performances for eight yield-related traits (Table 4). A total
of 121 significant QTL were associated with per se performances
for these traits in four environments, and 26 of these QTL were
detected in multiple environments (Figure 2A). The QTL were
distributed over all 10 maize chromosomes, ranging from six on
chromosome 9–19 on chromosome 3 (Figure 2B). Between 11
and 23 significant QTL were identified for RN, KN, KT, KW,
KL, and HKW, while only 10 significant QTL were detected for
VW, which might be due to the low heritability of VW. All of
these QTL could individually explain between 2.46 and 12.71%
of the variation in particular traits (Figure 2C). The confidence
intervals for these QTL spanned physical distances ranging from
2.15 to 18.85 Mb, with an average of 5.52 Mb, with a mode for
physical distance of about 5 Mb (Figure 2C). Notably, qHKW3-2
explained the greatest proportion of phenotypic variation for
HKW and co-localized with QTL for three grain morphological
traits, including qKT3-3, qKW3-3, qKL3-3, and all of these QTL
were identified in at least two environments. Qi319 alleles had
positive effects on performance for KT, KL, KW, and HKW
(Supplementary Table S3).

QTL for GCA Effects of Eight Grain Yield-Related
Traits
Joint analyses identified a total of 64 loci associated with
GCA effects of eight grain yield-related traits. A total of 74
significant QTL for eight yield-related traits were associated
with GCA effects in four environments, but only four of them
were detected in multiple environments (Figure 2A). These
QTL were distributed over all 10 maize chromosomes, and two
(chromosome 9) to 15 (chromosome 3) QTL were detected on
each chromosome. Seven to 11 significant QTL for GCA effects
were identified for each trait (Figure 2B). All of these QTL
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FIGURE 1 | Phenotypic variation in eight traits in different populations. (A) The means and ranges of eight yield-related traits in the RILs and their testcross
progenies. (B,C) Phenotypic variation of per se performances and their GCA effects for eight yield-related traits. The histograms inside each hexagon indicate the
distribution of phenotypic values for each trait. RN, Row number; KN, Kernel number per row; KT, Kernel thickness; KW, Kernel width; KL, Kernel length; HKW,
100-kernel weight; VW, Volume weight; YP, Yield per plot.

TABLE 1 | Phenotypic correlation coefficients (r) between per se performances and GCA effects for eight yield-related traits.

Traits RN KN KT KW KL VW HKW YP

RN 0.64** −0.19** −0.19** −0.58** 0.22** −0.27** −0.40** 0.06

KN 0.26** 0.34** −0.32** −0.09 −0.14* 0.03 −0.27** 0.38**

KT −0.30** −0.62** 0.54** 0.12* −0.21** 0.14** 0.48** 0.09

KW −0.24** −0.15** 0.31** 0.62** 0.34** −0.018** 0.63** 0.15**

KL 0.26** 0.20** −0.13* 0.52** 0.44** −0.57** 0.34** 0.44**

VW −0.15** 0.15** −0.10 −0.19** −0.25** 0.38** 0.14* −0.07

HKW −0.25** −0.30** 0.56** 0.77** 0.42** 0.08 0.53** 0.48**

YP 0.41** 0.71** −0.37** 0.21** 0.55** 0.15** 0.18** 0.17**

Phenotypic correlation coefficients (r) between per se performances for eight yield-related traits are below the diagonal. Phenotypic correlation coefficients (r) between
GCA for grain yield-related traits are above the diagonal. Phenotypic correlation coefficients (r) between per se performances and their GCA effects for eight yield-related
traits are on the diagonal in bold font. RN, Row number; KN, Kernel number per row; KT, Kernel thickness; KW, Kernel width; KL, Kernel length; HKW, 100-kernel weight;
VW, Volume weight; YP, Yield per plot. * and ** indicate significance at P < 0.05 and P < 0.01, respectively.

could individually explain from 0.04 to 9.10% of the observed
variation in a single environment (Figure 2C). The confidence
intervals for these QTL spanned physical distances from 0.70
to 14.55 Mb, with an average of 4.72 Mb, a mode near 5 Mb
(Figure 2C). The two QTL qKN7-1 and qHKW1-3 could explain
more than 10% of the variation in GCA effects for KN and

HKW, respectively (Table 4). Notably, the stable QTL qHKW1-3
explained 10.78% of the phenotypic variation in the GCA effects
of HKW and co-localized with the QTL for the GCA effects of
four grain morphological traits: qKT1-3, qKW1-3, qKL1-4, and
qKN1-6. Qi319 alleles had a negative effect on KT, KW, KL, and
HKW GCA effects, but had a positive effect on GCA effects for
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TABLE 2 | Combined analyses of variance for eight yield-related traits in Ye478 × Qi319 RILs.

Source of variation Mean square

RN KN KT KW KL VW HKW YP

Genotype (G) 0.63** 8.10** 12.90** 15.03** 19.96** 490.44** 5.58** 6990.41**

Location (L) 0.05** 0.01** 4.04** 6.73** 15.49** 4836.74** 13.08** 9538.99**

Year (Y) 0.17** 8.43** 3.95** 0.00 7.02** 462.86** 0.30** 6703.86**

G × L 0.00 0.70** 0.00 0.16** 0.00 164.47** 0.00 840.99**

G × Y 0.02** 0.01** 0.00 0.02** 0.00 0.00 0.00 0.00

G × L × Y 0.15** 3.20** 3.29** 3.54** 10.40** 84.87** 3.89** 6226.95**

Block (B) 0.01** 0.06** 0.00** 0.30** 0.65** 1.46** 0.11** 371.81**

Error (E) 0.42** 5.58** 10.33** 13.96** 22.49** 2685.31** 7.55** 8969.73**

H2 0.86 0.81 0.86 0.85** 0.79 0.53 0.74 0.69

Coefficient of variation (CV) 0.02 0.04 0.02 0.03 0.03 0.11 0.03 0.05

* and ** indicate significance at P < 0.05 and P < 0.01, respectively. RN, Row number; KN, Kernel number per row; KT, Kernel thickness; KW, Kernel width; KL, Kernel
length; HKW, 100-kernel weight; VW, Volume weight; YP, Yield per plot.

TABLE 3 | Combined analyses of variance for eight yield-related traits in the testcross population.

Source of variation Mean square

RN KN KT KW KL VW HKW YP

Location (L) 0.07** 0.82** 0.16** 0.00 8.73** 6834.82** 7.70** 35837.44**

Year (Y) 0.00 4.28** 0.00 0.65** 0.00 41.48** 0.00 8264.18**

GCAk 0.21** 1.50** 2.15** 4.89** 5.91** 182.33** 1.59** 1684.67**

GCAl 1.43** 0.34** 13.77** 0.03** 8.38** 6.03** 0.00 0.04**

SCAkl 0.09** 0.83** 0.65** 0.94** 1.55** 41.24** 0.35** 1452.68**

L × GCAk 0.00 0.04** 0.13** 0.00 0.63** 13.40** 0.05** 1252.77**

L × GCAl 0.00 0.00 3.00** 0.00 0.00 25.73** 0.87** 1165.38**

L × GCAkl 0.00 0.00 0.09** 0.42** 0.23** 0.00 0.05** 0.00

Y × GCAk 0.00 0.20** 0.09** 0.00 0.21** 13.10** 0.05** 714.71**

Y × GCAl 0.00 0.00 0.00 0.00 0.00 0.00 0.87** 9873.17**

Y × GCAkl 0.01** 0.10** 0.10** 0.86** 1.42** 10.34** 0.42** 315.97**

L × Y × GCAk 0.01** 0.46** 0.03** 0.35** 0.62** 48.33** 0.46** 269.46**

L × Y × GCAl 0.04** 1.39** 0.85** 0.29** 25.08** 82.87** 2.89** 487.01**

L × Y × GCAkl 0.02** 1.02** 0.05** 0.00 0.75** 0.00 0.18** 2055.55**

Block (B) 0.00 0.09** 0.11** 0.08** 0.00 9.34** 0.01** 407.69**

Error (E) 0.38** 4.20** 4.16** 12.30** 19.98** 1333.16** 5.87** 25822.13**

GCA/SCA 17.60 2.23 24.56 5.26 9.24 4.57 4.53 1.16

H2 0.94 0.52 0.85 0.66 0.57 0.43 0.36 0.13

Coefficient of variation (CV) 0.08 0.31 0.25 0.05 0.68 0.34 0.38 0.55

* and ** indicate significance at P < 0.05 and P < 0.01, respectively. k and l indicated the kth male (RILs) and the lth female (Tester). RN, Row number; KN, Kernel number
per row; KT, Kernel thickness; KW, Kernel width; KL, Kernel length; HKW, 100-kernel weight; VW, Volume weight; YP, Yield per plot.

KN. These results also confirmed the close genetic correlations
observed between the GCA effects of grain morphological traits,
which might result from pleiotropy.

Comparison of the Genetic Basis Between per se
Performances and GCA of Traits
In order to improve the reliability of our results, only the
loci identified in multiple environments and the results of the
joint analyses were used for subsequent analysis. A total of
95 QTL were identified that affected the per se performances
and corresponding GCA effects for eight yield-related traits
in Figure 3A and Table 4. A total of 17 of these QTL were

detected for both per se performances and corresponding GCA
effects for these traits. Zero (KN, VW) to four (RN, KW) QTL
were detected for both per se performances and corresponding
GCA effects of the traits. The numbers of QTL that co-
localized for per se performances and corresponding GCA effects
of traits corresponded to the results of correlation analysis
(Tables 1, 4). For example, qHKW3-2, which associated with
KT, KW, and HKW, was identified for both per se performances
and corresponding GCA effects for the traits. In addition, the
direction of the parental contribution was identical for the 17
co-localized QTL for the per se performances and corresponding
GCA effects for these traits (Figure 3B). This result validated
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TABLE 4 | QTL and corresponding GCA effects detected for eight yield-related traits in RILs.

Trait namea Nameb Chr.c Env.d Interval (Mb)e PVEf ADDg Env.d Interval (Mb)e PVEf ADDg

RN qRN1-4 1 15S/15x 221.15–237.25 5.38 0.43

qRN2-1 2 16X/C 7.70–10.85 5.52 0.41 15x/C 8.65–13.3 3.46 0.08

qRN2-2 2 16S/16X/C 203.05–209.10 5.14 −0.40

qRN3-1 3 C 21.45–25.65 7.03 −0.21

qRN3-2 3 C 203.65–207.5 4.23 0.29

qRN4-1 4 C 3.45–11.9 3.68 0.15

qRN4-3 4 C 189.65–216.4 3.71 −0.15

qRN5-2 5 15X/C 10.35–13.85 5.79 0.40 16s/C 8.75–26.2 3.46 0.06

qRN5-4 5 15S/16S/16X 160.75–167.55 5.86 0.48 C 147.05–176.95 1.10 0.09

qRN6 6 C 156.15–159.15 7.89 0.22

qRN7 7 C 0.35–2.65 3.02 −0.14

qRN8-2 8 C 166.15–169.15 2.84 −0.13

qRN9-1 9 15S/15X/16S/16X/C 7.85–16.85 4.71 0.37 C 10.9–16 5.83 0.19

qRN10-1 10 15S/15x 10.35–19.40 5.37 −0.43

qRN10-2 10 C 95.05–100.4 8.51 −0.23

KN qKN1-1 1 C 12.55–17.55 3.81 −0.38

qKN1-4 1 C 207.05–213.05 4.80 −0.43

qKN1-6 1 C 270.35–275 8.43 0.57

qKN2 2 15X/16X/C 171.95–183.20 4.55 −1.37

qKN3-1 3 15x/C 9.95–22.4 4.51 −0.25

qKN3-3 3 C 183.35–188.5 3.48 −0.36

qKN5 5 15X/16S/16X/C 165.05–183.55 4.82 1.42

qKN7-1 7 C 113.1–117.7 12.24 −0.67

qKN7-3 7 C 174.45–176.65 2.73 0.32

qKN8-2 8 16s/C 170.45–171.95 4.05 0.24

qKN10-2 10 15X/16S/C 91.25–102.60 6.02 1.60

KT qKT1-2 1 15S/16X 203.55–208.95 5.72 0.01

qKT1-3 1 C 266.35–274.4 4.12 −0.53

qKT2 2 C 2.05–3.2 7.25 −0.71

qKT3-1 3 C 2.45–4.8 2.00 0.39

qKT3-3 3 15S/16S/C 152.70–170.25 5.43 1.74 C 154.85–160.25 2.94 0.47

qKT4-1 4 15S/16S 30.00–39.90 5.93 −2.07

qKT4-2 4 15X/16X/C 128.15–134.40 6.76 −1.92 15x/C 126.5–144.75 7.63 −0.45

qKT5-1 5 15S/16X 166.15–173.10 5.28 −1.89

qKT5-2 5 15x/C 203.7–210.8 2.47 0.21

qKT6 6 15X/C 1.30–10.40 4.30 −1.53

qKT7-1 7 15S/C 115.35–134.05 4.25 1.42 C 113.1–118.9 5.50 0.63

qKT8 8 C 147.05–159.75 2.17 0.39

qKT9 9 C 16.2–18.45 2.76 −0.43

qKT10-1 10 C 18.1–23.6 4.56 −0.56

KW qKW1-1 1 15X/16S/16X/C 19.25–35.35 6.89 −2.28

qKW1-3 1 15S/16S 246.90–274.65 3.27 −1.75 C 262.9–268.25 5.56 −0.92

qKW3-1 3 C 18.85–27.8 0.28 0.29

qKW3-2 3 C 36.35–49.85 0.01 0.07

qKW3-3 3 15X/16S/16X/C 155.05–165.40 8.75 2.64 C 149.65–157.55 1.37 0.59

qKW4-1 4 C 26.3–43.9 0.35 0.41

qKW4-2 4 C 58.15–130.7 0.13 0.25

qKW4-3 4 16S/C 173.50–210.70 2.19 1.24 C 195.2–201.1 4.78 0.86

qKW5-1 5 C 63.8–90.65 0.06 −0.16

qKW5-2 5 C 119.7–154.8 0.64 −0.54

qKW6-4 6 15x/C 140.7–149.65 8.69 −0.65

qKW6-5 6 16x/C 164.75–168.75 4.31 −0.46

(Continued)
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TABLE 4 | Continued

Trait namea Nameb Chr.c Env.d Interval (Mb)e PVEf ADDg Env.d Interval (Mb)e PVEf ADDg

qKW7-2 7 15S/15X/16X/C 126.10–148.90 6.97 2.20 C 127.05–131.1 6.32 0.98

qKW8 8 15s/15 × 16S/16X/C 161.90–171.35 5.48 −1.99

qKW9 9 15x/C 2.7–16.2 3.24 −0.31

qKW10 10 16S/C 100.40–116.80 5.66 −2.02

KL qKL1-1 1 C 88.2–148.65 2.42 −0.67

qKL1-2 1 16x/C 191.75–202.6 4.44 −0.53

qKL2 2 C 1.50–3.65 3.20 1.48 15s/C 2.05–10.05 7.01 0.74

qKL3-2 3 15S/C 34.80–51.95 6.05 2.63

qKL3-3 3 15X/16S/16X 159.05–165.8 5.94 3.14

qKL3-4 3 15S/16S/C 209.10–217.25 7.84 2.72 16x/C 204.25–230.45 4.07 0.47

qKL4-1 4 C 30.25–36.2 5.91 1.00

qKL4-3 4 15S/C 152.25–159.20 5.19 2.25

qKL5-2 5 C 204.35–206.65 3.59 −0.77

qKL7-2 7 15S/15X/16X/C 137.05–151.50 6.19 2.53

qKL9 9 C 106.1–134.25 2.60 0.66

qKL10-2 10 15X/C 82.55–118.65 3.59 −2.01 C 91.25–97.7 9.50 −1.27

VW qVW3-3 3 15x/16x 161–171.25 1.76 0.75

qVW4-1 4 C 31–36.7 6.73 −5.51

qVW5-2 5 C 187.2–217.35 2.62 −3.42

qVW6-1 6 15x/C 0.35–4.1 5.58 3.38

qVW10-1 10 15X/16S/C 4.05–34.60 4.26 13.77

qVW10-2 10 15S/C 100.4–108.35 9.31 4.44

HKW qHKW1-1 1 16X/C 19.85–26.85 5.84 −1.43

qHKW1-2 1 15X/16S 86.30–93.15 4.04 −1.45

qHKW1-3 1 15S/16S/16X/C 249.15–277.15 4.51 −1.14 16x/C 262.9–271.2 10.78 −0.46

qHKW2-1 2 C 6.05–9.65 4.68 −0.94

qHKW3-1 3 C 16.9–22.4 2.74 0.37

qHKW3-2 3 15S/15X/16S/16X/C 156.45–167.6 8.89 1.64 15x/C 142.55–171.25 5.57 0.26

qHKW4 4 15x/C 1.55–6.1 4.34 −0.26

qHKW5-1 5 16s/16x 4.95–21.6 5.12 0.12

qHKW5-2 5 15X/15S/C 164.95–184.45 4.36 −1.21

qHKW6-2 6 C 155.15–168.75 3.27 −0.35

qHKW7-2 7 C 126.1–131.55 7.49 0.53

qHKW7-3 7 15S/16X/C 138.55–153.95 8.01 1.56

qHKW8 8 16X/C 161.35–166.15 4.14 −1.12

qHKW9 9 C 9.55–17.25 2.51 −0.31

qHKW10 10 15X/16S/C 82.00–118.90 4.76 −1.44

YP qYP1 1 15S/C 201.95–207.95 4.04 −37.90 15S/C 196.5–201.1 7.38 −12.41

qYP2-3 2 16S/16X/C 190.40–199.05 5.73 −50.69

qYP5-2 5 15S/16x 174.45–214.45 3.54 −4.96

qYP9-1 9 16S/C 98.10–105.55 5.13 43.46

qYP9-2 9 C 149.15–153.55 5.23 13.86

qYP10 10 C 80.35–85.7 9.18 −18.62

aTrait refers to the name of each component of yield-related traits: RN, Row number; KN, Kernel number per row; KT, Kernel thickness; KW, Kernel width; KL, Kernel
length; HKW, 100-kernel weight; VW, Volume weight; YP, Yield per plot. bThe name of each QTL is a composite of the influenced trait: RN, KN, KT, KW, KL, HKW, VW, or
YP. cChr, chromosome. dQTL in a specific environment: 15S is 2015 Shijiazhuang; 15X is 2015 Xinxiang; 16S is 2016 Shijiazhuang; 16X is 2016 Xinxiang; C represents
joint analyses. e Interval, confidence interval between two bin markers. fPVE, the phenotypic variance explained by an individual QTL. gADD, the value of additive genetic
effect. LOD scores, PVE values, and ADD values are shown as mean values for QTL with multiple effects.

the positive correlation between the genetic basis of per se
performances and corresponding GCA effects for these traits.

Of the 27 and 51 QTL were characteristically detected in the
per se performances and corresponding GCA effects of traits,
respectively. Two QTL, qRN3-1 and qRN6, together explained

14.92% of the observed variation for the GCA effect of RN
(Table 4). qHKW3-1 was associated with GCA effects of HKW,
KW, and KN. However, no significant loci were detected for
the respective per se performances of the traits (Figure 3C).
In addition, qKT1-2 and qHKW5-1 explained 5.72 and 5.12%
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FIGURE 2 | Chromosomal distributions of yield-related QTL identified in the present study. (A) QTL regions represented by the confidence intervals for linkage
mapping across the maize genome from each dataset are shown as boxes. The width of the boxes reflects the length of the confidence interval. The different colors
of the boxes indicate the four environments, respectively. Orange, 2015 Shijiazhuang; green, 2015 Xinxiang; blue, 2016 Shijiazhuang; and red, 2016 Xinxiang. The
x-axis indicates genetic positions across the maize genome in Mb. The heatmap under the x-axis illustrates the density of grain yield-related related QTL across the
genome. The black arrows point out the QTL hotspots. RN, Row number; KN, Kernel number per row; KT, Kernel thickness; KW, Kernel width; KL, Kernel length;
HKW, 100-kernel weight; VW, Volume weight; YP, Yield per plot. (B) The numbers of QTL distributed on each chromosome for the eight yield-related traits identified
for per se performances of traits (above) and their GCA effects (below). (C) Frequency distribution of QTL interval length and the variance explained by each QTL
identified for per se performances of traits and their GCA effects. PVE, phenotypic variation explained.

of the observed variation for GCA effects of KT and HKW
individually rather than per se performances for the traits in
multiple environments. In contrast, the stable qHKW5-2 locus
that was associated with RN, KN, KT, and HKW per se, was only
associated with the GCA effects of RN and explained only 1.10%
of the observed variation in the GCA effects of RN. The results
reflected the distinct genetic bases of per se performances and
corresponding GCA effects for these traits.

The maize gene annotation database at MaizeGDB2 was
used to predict candidate genes in the qHKW5-2 region.
Incw1, which encodes cell-wall invertase in the developing
endosperm of maize, was located in the region surrounding
MK2567 (169.45–169.55) at the qHKW5-2 locus (Figure 3D).
SNPs between Ye478 and Qi319 located around MK2567
were calculated and categorized according to parental allele.
A total of 170 SNPs match the Ye478 parental genotype
and 130 match the Qi319 genotype. The phenotypic values
for HKW in the Ye478 × Qi319 RIL population differed
significantly (P = 3.01e-4). Nevertheless, there was no significant
difference in HKW between either the Chang7-2 × Ye478
and Chang7-2× Qi319 F1 hybrid groups (P = 0.14) or
the Mo17 × Ye478 and Mo17 × Qi319 F1 hybrid groups
(P = 0.25). There were significant phenotypic differences in RN
in the RIL population (P = 4.24e-5). However, there was no
significant difference in phenotypic values for RN between the

2http://www.maizegdb.org

Chang7-2× Ye478 and Chang7-2 × Qi319 F1 hybrid groups
(P = 0.12), but there was a significant difference in phenotypic
values of RN between Mo17 × Ye478 and Mo17 × Qi319 F1
hybrid groups (P = 0.0001).

Pleiotropy of Quantitative Trait Loci for Eight Grain
Yield-Associated Traits
The results of single environment analysis in the present study
showed that five QTL hotspots were located on chromosomes 3,
5, 7, and 10 (Figure 2A). Integrating the results of QTL detected
in multiple environments and during the joint analyses indicated
that the most densely distributed QTL were highly concentrated
in several chromosomal regions on chromosomes 1, 2, 3, 7, and
10 (Figure 3A). These QTL hotspots were likely responsible for
pleiotropy. The non-random distribution of these pleiotropic loci
might explain the correlation between some of these traits.

A total of 11 pleiotropic loci were detected for per se
performances of the traits, and five, two, and four loci were
simultaneously associated with two, three, and four traits,
respectively, in the RILs. Loci affecting four traits each were
located on chromosome 3, 5, 7, and 10, respectively. For instance,
qHKW3-2 and qHKW7-3 were simultaneously associated with
KW, KT, KL, and HKW. These results suggested that the
qHKW3-2 and qHKW7-3 loci might affect grain yield via the
development of grain morphology. Further, the qHKW5-2 locus
was simultaneously associated with RN, KN, KT, and HKW.
These results suggested that qHKW5-2 might affect grain yield
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FIGURE 3 | Comparison of the QTL distributions associated with per se performances and their GCA effects for eight yield-related traits. (A) Integrated QTL on the
10 maize chromosomes for eight yield-related traits across multiple environments and the joint analyses. RN (red), Row number; KN (orange), Kernel number per
row; KT (yellow), Kernel thickness; KW (green), Kernel width; KL (blue), Kernel length; VW (purple), Volume weight; HKW (gray), 100-kernel weight; YP (pink), Yield
per plot. The red and blue boxes indicate the QTL results in per se performances and their GCA effects for the traits, respectively. The width of the boxes reflects the
length of the confidence intervals for each QTL. (B) QTL numbers distributed on each dataset for eight yield-related traits across multiple environments and joint
analyses. Green boxes show the number of QTL overlapping between per se performances and their GCA effects for the traits. (C) A typical pleiotropic locus on
chromosomes 3 and 5. The x-axis indicates the genetic positions across the maize genome in Mb. The y-axis indicates the LOD score of the detected QTL. The
green arrow shows the position of Incw1, which influences HKW. (D) Tests for differences among phenotypic values for HKW and RN associated with MK2567 in the
parental inbred lines, Ye478 and Qi319, of RILs and the corresponding hybrids obtained by crossing with testers. CY and CQ represent the phenotypic values of the
hybrids of Chang7-2 × Ye478 and Chang7-2 × Qi319. MY and MQ represent phenotypic values of the hybrids of Mo17 × Ye478 and Mo17 × Qi319. Y and Q
represent phenotypic values of Ye478 and Qi319. P < 0.05 represents the level of significance for differences in the performance HKW (above) and RN (below) in CY
and CQ, MY and MQ, and Y and Q, respectively.

by exerting effects on the differentiation and development
of maize ears (Table 4). A total of 16 pleiotropic loci were
identified that were associated with GCA effects, with four,
five, and seven loci were simultaneously associated with the
GCA effects of two, three, and four traits. These loci that
were simultaneously detected for four traits were located on
chromosomes 1, 3, 5, 7, 9, and 10, respectively. In general,
these pleiotropic loci were associated with the GCA effects
of YP or HKW. Most of the pleiotropic loci were detected
for both per se performances and corresponding GCA effects
of traits. Notably, qHKW10, which was associated with eight
traits, was detected for the per se performances for the traits
KN, KL, KW, and HKW per se, but was associated with the
GCA effects of KL, RN, VW, and YP. This suggested that the

genetic bases of these traits in RILs and their corresponding
GCA effects could either be similar or different. Thus, these
pleiotropic loci could be used to improve the GCA of traits
while also simultaneously improving per se performances for
yield-related traits.

DISCUSSION

Comparative Mapping of QTL for
Yield-Related Traits in the Spring and
Summer Maize-Growing Region of China
The present QTL analysis of yield-related traits in the same
population in different areas of the maize-growing region in
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China was helpful for adequately exploring the genetic basis of
yield-related traits in maize. Earlier, the identical RIL population
was planted in 2013 and 2014 in the spring maize-growing
regions of Beijing and Gongzhuling, China (Zhang et al., 2017).
Those results revealed three stable QTL associated with HKW
located on chromosomes 1, 7, and 9, respectively. Among
those loci, the qHKW7 locus located on chromosome 7 from
position 133.60 to 139.25 Mb, explained the greatest proportion
of phenotypic variation (7.13%) for HKW in this population and
environment. We also found that qHKW7 was a polymorphic
QTL that also influences kernel size. In the present study, the
same RILs were planted in the summer maize-growing region
of Shijiazhuang and Xinxiang, China, in 2015 and 2016. About
41.27% of the QTL detected in the present study were consistent
with those identified in the previous study for six yield-related
traits (Supplementary Table S3). Here, the major QTL qHKW3-2
with the major effects on HKW was located on chromosome 3
from position 156.45–167.6 Mb. Other significant QTL related
to HKW were also detected on chromosomes 1 and 7, in
the same intervals as in our previous studies, except for the
qHKW9 locus. The current results showed that the loci on
chromosomes 1 and 7 were the main QTL controlling HKW in
both spring and summer maize-growing regions. However, the
QTL on chromosome 3 only affected HKW in the summer maize-
growing region, and that on chromosome 9 only affected HKW
in the spring maize-growing region. The spring maize-growing
region has a shorter maize growing season than the summer
maize-growing region does, and growing season length was
significantly correlated with HKW. This difference might explain
the distinct genetic effects on yield-related traits in the spring and
the summer maize-growing regions in the present study. qRN3-1,
a major QTL that explained 7.03% of the observed variation in the
GCA effects of RN, could not be detected for per se performances
of the traits in both of these maize-growing regions. Thus,
MAS for qRN3-1 will also be promoted for breeding hybrid
combinations with optimal row number.

Correlation Between the Basis of
General Combining Ability and per se
Performances and GCA for Yield-Related
Traits
Parental inbred lines with high combining ability were considered
essential for the superior performance of hybrids (Duvick et al.,
2004). Although GCA effects might be predicted based on the
yield performance of inbred lines, the correlation between the
yield performance of inbreds and that of their hybrid progeny
was still not adequate for direct selection of inbred lines with
high combining ability based on the per se yield of RILs (Lv et al.,
2012). In general, although the correlations between the yield
performance of inbred lines and their corresponding GCA effects
in maize are positive, they are generally not strong. Previous
studies have suggested that GCA effects were not significantly
(r ≤ 0.44) correlated to their corresponding GCA effects for the
yield-related traits YP, RN, KN, HKW, and PH (Huang et al.,
2013). Similar results were found with another set of ILs whose
performance for GCA effects were weakly (-0.01 ≤ r ≤ 0.49)

correlated to the per se performances for the traits YP, KN,
HKW, EL, PH, and EH. However, strong correlations have been
detected between RN and its corresponding GCA effects (Qi
et al., 2013). Positive and strong (0.55 ≤ r ≤ 0.77) correlations
were identified between the three plant height related traits PH,
EH, and IN in RILs (Zhou et al., 2018). These results suggest
that correlations between traits have been influenced by genetic
selection during the gathering of germplasm genetic resources
and by environmental selection in planting locations.

In the present study, performances of GCA effects were
significantly correlated to the per se performances of RILs for all
yield-related traits (0.17 ≤ r ≤ 0.64, P > 0.01). The correlation
between RN and its GCA effects was the strongest (r = 0.64), and
was consistent with the results of previous studies (Qi et al., 2013).
However, the performances of GCA effects were also strongly
correlated to the per se performances for the traits KT, KW, and
HKW. This agreed well with the results of QTL co-localization.
The consistent genetic basis of the traits could be used to improve
the GCA while improving the per se performances for these
traits. However, the correlations between GCA effects and their
corresponding per se performances for the traits KN, KL, VW,
and YP were weak and indicated different genetic bases of
the per se performances and their corresponding GCA effects
for these traits. Due to diverse genetic backgrounds, various
QTL populations can perform differently for specific traits.
The selection of testers affected the performance of testcrosses
directly, and was essential for the evaluation of GCA effects
and the selection of elite inbred lines (Zhou H. et al., 2017).
Non-genetic components, such as the environmental sensitivities
of quantitative traits, can also affect phenotypes. Thus, it is
necessary to study the genetic basis of quantitative traits and
combining ability in multiple environments for many years with
multiple populations.

The Reliability and Validity of QTL for
GCA Effects
GCA was generally estimated by the method of variance analysis
based on diallel crossing design (Griffing, 1956). With a large
number of inbred lines, the huge workload was generated by the
design of diallel cross design. In contrast, combinations with high
GCA and parental lines with high SCA could be identified with
ease by utilizing mating designs like incomplete diallel crossing
or NCII (Comstock and Robinson, 1948), and the efficiency
was similar to that of diallel crossing design (Dhillon and
Singh, 1978). In rice, QTL analyses for 10 agronomic traits were
conducted in a backcross recombinant inbred lines population
and three testcross lines, and the results indicated similarities
between the genetic characteristics of per se performances and
corresponding GCA effects for these traits (Qu et al., 2012).
Combining abilities for seven bioenergy and biomass related
traits were predicated by 285 diverse dent inbred lines crossing
with two flint testers. The prediction accuracies ranged from 0.60
to 0.80 for metabolites and 0.72–0.81 for SNPs with metabolic and
whole-genome prediction models (Riedelsheimer et al., 2012).
365 F11 RILs using genotyping by a high-density linkage map
with 4602 high-quality bin markers in the present study had
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provided the precision for QTL (Zhou et al., 2016). In the
previous study, the power of QTL detection for grain yield and
other agronomical important traits were estimated in maize using
two independent samples (N = 107 and 344) of F2 plants with two
testers in four environments. A total of 39 QTL with N = 107
and 107 QTL with N = 344 were detected for all traits and
both testers. It also showed that QTL accounting for at least
10.2% of phenotypic variation in Experiment 2 (N = 107) could
be detected, but as little as 3.3% of phenotypic variation in
Experiment 1 (N = 344) with a LOD threshold of 2.5 (Melchinger
et al., 1998). A set of 365 RILs and two testers were analyzed
in the present study. The genetic bases of GCA for eight yield-
related traits were dissected using a hybrid panel composed of 656
hybrids obtained by 328 RILs, which were successfully crossed
both with Chang7-2 and Mo17. The amount of progeny was
sufficient to identify more minor QTL for per se performances
and corresponding GCA effects for the traits. Identification of
marker-QTL associations also depended upon the magnitude of
allele contrasts (Kerns et al., 1999). Consistency of QTL effects
across testers was in agreement with corresponding genotypic
correlations between the two testcross series (Melchinger et al.,
1998). The power of combining ability detection can be improved
by using the elite inbred lines in the opposite heterosis group as
the tester (Lu et al., 2009). The influence on GCA effect estimation
caused by testers can be eliminated by using standard testers.
The two testers were Chang7-2 and Mo17, which belong to the
SPT and Lancaster heterotic groups, respectively. Both of the
testers were elite inbred lines and used widely in commercial
maize breeding. Thus, the two testers in present study could
provide abundant favorable alleles for identified variety QTL
for traits GCA effects. In addition, the QTL × Environment
interactions contributed to the lack of congruency of QTL
found for multiple experiments (Melchinger et al., 1998; Kramer
et al., 2009). In present study, the specific QTL locations of the
per se performances and corresponding GCA effects for yield-
related traits in each of four environments were determined
(Supplementary Tables S3, S4), and a joint analysis across all
environments was performed using BLUE. In order to improve
the reliability of our results, only the loci identified in multiple
environments and the results of the joint analyses were used
for comparing the genetic bases of per se performances and
corresponding GCA effects for the traits (Table 4). Therefore,
the QTL identified in the present study for per se performances
and corresponding GCA effects for eight yield-related traits
could be reliable and efficient for marker-assisted selection
(MAS) in breeding.

Potential Utilization of Main QTL for GCA
Effects in Maize Hybrid Breeding
The genetics of combining ability were complex and greatly
influenced by environments (Rojas and Sprague, 1952; Walejko
and Russell, 1977). Marker-assisted selection offers an efficient
way to dissect the genetic basis of combining ability (Yousef
and Juvik, 2001; Eathington et al., 2007). Heterosis in F1 was
caused by combination of different alleles at a specific locus of
crossing parents (Liu et al., 2012; Zaid et al., 2017; Chen et al.,

2019). Although some studies on the application of heterosis
and combining ability have been published in several crops such
as tomatoes (Kalloo et al., 1974), soybeans (Cerna et al., 1997),
wheat (Singh et al., 2004), rice (Joshi et al., 2001), and maize
(Ertiro et al., 2017), only few such studies related to the genetic
dissections of combining abilities have been reported in maize
(Gu, 2007; Lv et al., 2012; Qi et al., 2013; Huang et al., 2013;
Giraud et al., 2017; Zhou et al., 2018). Comparing the genetic
basis of per se performances and corresponding GCA effects for
yield-related traits could improve the yields of maize inbred lines
without affecting their corresponding combining ability.

In the present study, we detected some loci that only
influence per se performances or their corresponding GCA
effects for the traits. For instance, Incw1, which encodes a
cell wall invertase in the developing endosperm of maize,
was confirmed to have conserved influence on seed weight
in Arabidopsis and maize (Liu et al., 2017). AtcwINV1,
OsGIF1, and Mn1, which have similar functions as Incw1,
were also associated with grain yield improvement (Li B.
et al., 2013). Incw1 was identified at the stable qHKW5-2
locus in the present study. The qHKW5-2 locus, which was
associated with per se performances for traits RN, KN, KT,
and HKW traits per se, was only associated with the GCA
effects of RN and was considered a minor QTL for that
trait. Our results indicated that the Incw1 gene might affect
the 100-grain weight through its effects on differentiation and
development of maize ears.

qRN3-1 and qRN6, two pleiotropic loci, were associated with
the GCA effects of RN, KW, and HKW rather than these per se
performances for the traits. The two loci were not been identified
in previous study (Qi et al., 2013), the specificities in additive
effects might be caused by diverse testers (Qu et al., 2012), the
identified loci occurred due to the presence of potential GCA
coverage in the potential genomic regions (Zaid et al., 2019).
Furthermore, qKT1-2 and qHKW5-1 were two stable loci for
GCA effects of KT and HKW respectively, but no significant loci
were detected for corresponding per se performances for the traits
in multiple environments. This suggested that some genes or
loci differ as to per se performances and/or corresponding GCA
effects for these traits. Previous study also revealed the different
genetic basis between per se performances and corresponding
GCA effects for the traits (Eltahawy et al., 2020). Due to
heterotic effects, differences between individuals in the testcross
population were significantly reduced. In addition, the maternal
genetic effects due to the selection of testers strongly influenced
the variation in F1 performance and population structure (Chen
et al., 2019). These factors might explain why some loci could only
be detected in a single dataset. qKT1-2 and qHKW5-1 explained
only 5.72 and 5.12% of the observed variation for GCA effects of
KT and HKW individually. Previous studies suggested that traits
GCA effects were mainly related with poly-genes rather than
with major gene controlling the per se performances for the traits
(Basava et al., 2019; Eltahawy et al., 2020), further loci associated
with GCA effects should be explored in maize.

Some previous studies have shown that per se performances
and corresponding GCA effects for the traits shared the same
set of genetic loci. Nevertheless, the location and number of
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dominant QTL for GCA effects were affected by the allele
frequency of testers (Austin et al., 2000; Frascaroli et al., 2009).
The performances of GCA effects were also strongly correlated
to the per se performances for the traits KT, KW, and HKW.
This agreed well with the results of QTL co-localization. In
addition, the QTL qKN7-1 and qHKW1-3, which could explain
more than 10% of the variation in the GCA effects of KN and
HKW, were also detected for per se performances for these traits.
The direction of the parental contribution was identical. In a
previous study, four QTL (qEH1-2, qEH5, qEH6-2, and qEH9-
2) were simultaneously detected in per se performances and
corresponding GCA effect, and together explained 18.16 and
19.70% of the observed variation for EH and EH GCA effects
(Zhou et al., 2018). Therefore, the application of phenotypic or
maker-assisted selection for improving inbred lines and GCA
effects simultaneously could be evaluated economically and
effectively (Mihaljevic et al., 2005; Qu et al., 2012).

CONCLUSION

In conclusion, we have compared the genetic basis of per se
performances and corresponding GCA effects for eight grain
yield-related traits. A total of 95 QTL were identified that affected
per se performances and corresponding GCA effects for eight
yield-related traits, and 17 of these QTL were detected for both
per se performances and corresponding GCA effects of traits
in multiple environments and the results of the joint analyses
datasets. The genetic characteristics of the traits GCA effects
were consistent or inconsistent with per se performances for the
traits. Therefore, the congruous and diverse QTL identified in
the present study for per se performances and corresponding
GCA effects for yield-related traits should be effective for maize
hybrid breeding.
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