AUTHOR=Chaudhury Ayan , Godin Christophe TITLE=Skeletonization of Plant Point Cloud Data Using Stochastic Optimization Framework JOURNAL=Frontiers in Plant Science VOLUME=11 YEAR=2020 URL=https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2020.00773 DOI=10.3389/fpls.2020.00773 ISSN=1664-462X ABSTRACT=
Skeleton extraction from 3D plant point cloud data is an essential prior for myriads of phenotyping studies. Although skeleton extraction from 3D shapes have been studied extensively in the computer vision and graphics literature, handling the case of plants is still an open problem. Drawbacks of the existing approaches include the zigzag structure of the skeleton, nonuniform density of skeleton points, lack of points in the areas having complex geometry structure, and most importantly the lack of biological relevance. With the aim to improve existing skeleton structures of state-of-the-art, we propose a stochastic framework which is supported by the biological structure of the original plant (we consider plants without any leaves). Initially we estimate the branching structure of the plant by the notion of β-splines to form a