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Image-based phenotyping is a non-invasive method that permits the dynamic evaluation
of plant features during growth, which is especially important for understanding plant
adaptation and temporal dynamics of responses to environmental cues such as water
deficit or drought. The aim of the present study was to use high-throughput imaging
in order to assess the variation and dynamics of growth and development during
drought in a spring barley population and to investigate associations between traits
measured in time and yield-related traits measured after harvesting. Plant material
covered recombinant inbred line population derived from a cross between European and
Syrian cultivars. After placing the plants on the platform (28th day after sowing), drought
stress was applied for 2 weeks. Top and side cameras were used to capture images
daily that covered the visible range of the light spectrum, fluorescence signals, and the
near infrared spectrum. The image processing provided 376 traits that were subjected
to analysis. After 32 days of image phenotyping, the plants were cultivated in the
greenhouse under optimal watering conditions until ripening, when several architecture
and yield-related traits were measured. The applied data analysis approach, based on
the clustering of image-derived traits into groups according to time profiles of statistical
and genetic parameters, permitted to select traits representative for inference from the
experiment. In particular, drought effects for 27 traits related to convex hull geometry,
texture, proportion of brown pixels and chlorophyll intensity were found to be highly
correlated with drought effects for spike traits and thousand grain weight.

Keywords: automated high-throughput plant phenotyping, barley, data analysis methods, drought stress,
dynamic traits

Abbreviations: BBCH scale, a system for uniform coding of plant’s growth stages (Lancashire et al., 1991); DAS, day after
sowing; FLUOR, static fluorescence signals; GC, genetic correlation; GE, genotype by environment interaction; GWl, grain
weight per lateral spike; GWm, grain weight per main spike; IAP, Integrated Analysis Platform (Klukas et al., 2014); LA,
line with large trait values under control conditions and a large relative loss under drought; LB, line with low trait values
under control and a small relative loss under drought; LSl, length of lateral spike; LSm, length of main spike; NGl, number of
grains per lateral spike; NGm, number of grains per main spike; NIR, near infrared light spectrum; NSl, number of spikelets
per lateral spike; NSm, number of spikelets per main spike; NTP, number of productive tillers; NTT, total number of tillers;
PLS, partial least squares; PRESS, predictive residual error sum of squares; RDE, relative drought effects; REML, residual
maximum likelihood method; RIL(s), recombinant inbred line(s); TGW, 1000-grain weight; VIS, visible light spectrum; WSS,
within-group sum of squares.
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INTRODUCTION

Barley (Hordeum vulgare ssp. vulgare L.) is one of the most
important crops worldwide because of its multipurpose usage in
human diet and as animal feed. Although it is known to adapt to
a wide range of environments, in Europe new cultivars have been
bred under favorable conditions, which led to the narrowing of
genetic diversity in agronomical properties, including resistance
to environmental stresses like shortage of water. The gene pool
for tolerance to water scarcity in modern elite cultivars is
very limited. Broadening of the genetic diversity provides the
basis for plant improvement. Hence, success in breeding new
varieties with improved tolerance to water shortage or heat
can be achieved through the use of wild relatives, landraces
or varieties growing in dry areas as donors of the resistance
(Ceccarelli, 1994; Ceccarelli and Grando, 1999; Grando et al.,
2001; Cattivelli et al., 2008).

Understanding adaptation of plants to their environment is
a key issue that is addressed in many fields of study and may
also contribute to breeding crop plants adapted to sub-optimal
conditions. Water scarcity (also referred to as drought stress) is a
condition associated with insufficient soil moisture available to
provide satisfactory crop production. Development of drought
tolerant cultivars becomes increasingly important in changing
climate. Many different approaches have been used to study the
nature of plant reactions to defined levels of drought stress,
including physiological processes investigations (Buschmann
et al., 2000; Sanchez et al., 2002; Jones et al., 2003) and
phenotyping on conveyor systems in glasshouses with controlled
irrigation systems (Tuberosa, 2012; Honsdorf et al., 2014).

Accurate quantification of traits observed in plants grown
under conditions of limited watering is crucial for identifying loci
of interest in the genome. While in construction of genetic maps
high-throughput genotyping platforms are used routinely, plant
phenotypes are still assessed mainly by conventional procedures,
which are time-consuming, labor-intensive, low-throughput, and
usually destructive. Studying the drought stress response is
particularly challenging as its impact on plant performance is
a dynamic process that occurs across space and time. Endpoint
measurements are insufficient to asses and analyze dynamic
responses. Thus, phenotyping has become the major operational
bottleneck limiting the power of genetic analysis (Hartmann
et al., 2011; Cabrera-Bosquet et al., 2012).

In recent years, automation, imaging, and software solutions
have paved the way for many high-throughput phenotyping
studies (Munns et al., 2010; Busemeyer et al., 2013; Chen et al.,
2014; Honsdorf et al., 2014; Paulus et al., 2014). Regardless of
the platform setting, the goal is to evaluate phenotypic properties
of plants using automated processes in a non-invasive way.
Automated systems have been successfully applied to investigate
numerous components of plant growth, and may be used
to help tackle basic research questions when combined with
genetic strategies (Famoso et al., 2010; Muraya et al., 2017;
Neumann et al., 2017).

The aim of the present study was to screen changes in growth,
architecture and physiology traits measured by high-throughput
imaging in spring barley RILs population under drought and

control (well-watered) conditions, to identify traits relevant for
the description of drought response and to assess an association
between the traits measured during the time-course experiment
and yield-related traits measured after harvest. The purpose
was also to propose a method of selection of traits produced
by image analysis in order to obtain a non-redundant feature
set characterizing barley drought response. We assume that
quantitative analyses of plant structure traits during development
under water-limited environments will permit the identification
of lines with enhanced resilience to water deficit.

MATERIALS AND METHODS

Plant Material
Spring barley (Hordeum vulgare L.) recombinant inbred lines
(RILs) population (hereafter referred to as MCam) derived from
a cross between European and Syrian spring barley cultivars –
Maresi and Cam/B1/CI08887//CI05761 – was used in our
studies (Mikołajczak et al., 2016). Maresi is a German semi-
dwarf cultivar with the pedigree Cebeco-6801/GB-1605//HA-
46459-68, and Cam/B1/CI08887//CI05761 (hereafter referred
to as Cam/B1/CI) is a Syrian breeding line adapted to dry
environments. The Syrian genotype was supplied to Dr A.
Górny (Institute of Plant Genetics PAS, Poznań) by Drs S.
Grando and S. Ceccarelli from ICARDA in Aleppo, and
European cultivar was obtained from the collection of IPG
PAS Poznań. RILs were derived by the single-seed descent
technique (Goulden, 1939) until F8 generation. 95 RILs and
the parental genotypes Maresi and Cam/B1/CI were examined
in the experiment.

Plant Cultivation and Phenotyping
After 4 weeks of pre-cultivation, plants were transplanted
onto a high-throughput platform. They grew under controlled
greenhouse conditions and were phenotyped on a daily basis
using the fully automated system consisting of conveyor belts, a
weighing and watering station, and three imaging sensors. Each
genotype was represented by 16 plants located in four carriers,
each with four pots. Genotypes were randomized throughout
the plant growth area. Two environmental conditions were
simulated: control – optimal watering (for two carriers), and
stress – limited watering (for another two carriers). The growth
conditions in the greenhouse were set to 20◦C during the day
and 16◦C at night with relative humidity >65%. The daylight
period lasted 16 h starting at 6 AM. Using automated, target-
weight based watering, control plants remained well-watered at
a field capacity of 70%, and those in stress conditions were kept
at 20% field capacity.

Drought stress was applied from the fifth day after placing
the plants on the platform (35th day after sowing, DAS 35)
until day 18th (DAS 48). After the stress period, plants were re-
watered to optimal field capacity and kept well-watered again
for another 2 weeks. Fertilization was carried out twice with
Combo Hakaphos blau (200 cm3 absolute volume per plant).
In order to avoid any position effects, the carriers were shuffled
daily for one lane, every 3rd day within each lane for 11
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positions. Imaging started 4 days after transplanting onto the
platform (DAS 31) and was performed daily for 33 days until
DAS 63. Observations were not done on DAS 56, but, for
simplicity, the data were analyzed as a continuous series of 32
time points. One top and three side view images were taken
covering the visible range of the light spectrum (VIS), static
fluorescence signals (FLUOR), and the near infrared spectrum
(NIR) (Junker et al., 2015). In this manner, 190,493 images
were acquired for all genotypes and two treatments during
the whole image phenotyping period. The image processing
pipeline (Integrated Analysis Platform, IAP, Klukas et al.,
2014) provided 376 traits that were subjected to analysis
(Supplementary Table 1).

After imaging in the phenotyping platform, the plants were
moved from the platform to a non-automated greenhouse, where
they were cultivated for another 40 days under optimal watering
conditions until ripening. After harvesting, 12 plant architecture-
and yield-related traits were measured for each genotype on two
plants grown in control conditions and two plants grown in
drought (Table 1).

Statistical Analysis
Data (per-plant observations) obtained from the image
analysis pipeline were first submitted to outlier removal
by application of the Grubbs test (Grubbs, 1950). Then,
data were averaged over plants within carriers giving as
input for statistical analysis, for each trait, a table for
97 genotypes × 2 conditions × 2 biological replications
(carriers) × 32 days. Pearson correlation coefficients
between time courses of observations done in replicates
(carriers of the same genotype) were computed and only the

traits for which both the correlation between two carriers
of non-stressed plants and the correlation between two
carriers of stressed plants were both >0.2 were selected for
further analysis. A linear mixed model with fixed effects
of treatment and random effects of genotype × treatment
interaction (with unstructured covariance matrix for
treatment term) was fitted for data obtained on each day,
with REML estimation of variance components, estimation
of genetic correlation between conditions, and Wald test
of mean drought effect. Relative drought effects (RDE)
for genotypes were computed as 100∗(mean value under
drought – mean value under control)/mean value under
control. Grouping of image-based traits with respect to
time profiles of computed parameters (drought effects,
genetic correlations, correlations with after-harvest traits)
was performed by searching for the optimum clustering
into 1, 2, . . . , 10 groups using the minimum within-
group sum of squares (WSS) criterion and selecting the
proper number of groups by inspection of the scree plot of
WSS values.

Phenotypic data obtained after harvesting were analyzed by
a mixed linear model analogous to the one used for image-
derived data. Pearson correlation coefficients were computed
between RDE for each after-harvest trait (computed as above)
and each image trait on each day (using the sets of RDE
for all genotypes). Prediction of RDE for after-harvest traits
by RDE for image-based traits was done by fitting a partial
least squares (PLS) regression model with two-groups cross-
validation.

Data processing until obtaining of mean values over carriers
was done in R 3.3.1 (R Core Team, 2018). Subsequent statistical

TABLE 1 | Results of ANOVA and estimation of genetic parameters for traits observed after harvesting.

Trait no. Symbol Trait -log10(P-value) for
testing of mean
drought effect

Variance component
for RILs in control

conditions (std. err.)

Variance component
for RILs under drought

conditions (std. err.)

Genetic correlation
between conditions

Phenotypic
correlation between

conditions

1 PH Plant height (cm) 39.39 0.76 (0.23) 0.22 (0.13) 0.71 0.31

2 NTP Number of productive
tillers

24.09 0 (–) 0 (–) – 0.02

3 NTT Total number of tillers 16.05 0 (–) 0 (–) – 0.23

4 TGW 1000-grain weight (g) 13.60 0.78 (0.23) 1.85 (0.43) 0.57 0.40

5 LSm Length of main spike (cm) 45.31 5.48 (1.07) 3.88 (0.78) 0.88 0.79

6 NSm Number of spikelets per
main spike

45.09 9.78 (1.83) 4.71 (0.93) 0.89 0.82

7 NGm Number of grains per main
spike

42.42 4.54 (0.90) 2.73 (0.58) 0.71 0.62

8 GWm Grain weight per main
spike (g)

43.48 7.40 (1.41) 2.71 (0.57) 0.65 0.58

9 LSl Length of lateral spike
(cm)

41.18 3.50 (0.71) 2.09 (0.46) 0.91 0.77

10 NSl Number of spikelets per
lateral spike

47.44 3.93 (0.79) 2.54 (0.54) 0.94 0.81

11 NGl Number of grains per
lateral spike

47.41 2.23 (0.49) 1.06 (0.28) 0.58 0.43

12 GWl Grain weight per lateral
spike (g)

43.22 3.42 (0.70) 0.70 (0.21) 0.47 0.34

Variance components for RILs estimated in the mixed model with unstructured covariance matrix for GE interaction; 0 – negative estimates of variance components.
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analyses and visualizations (violin plots, principal component
biplots, correlation heatmaps) were performed in Genstat 17
(VSN International, 2013).

RESULTS

Analysis of Post-harvest Traits
For all 12 traits observed after harvesting, the distributions of
mean values for lines under drought was shifted to lower values
(Supplementary Figure 1A), which resulted in significant mean
drought effects (Table 1; P < 0.001). The variance components
for RILs were the largest for traits describing main spikes (LSm,
NSm, NGm, GWm) and larger under control than under stress
conditions for all traits except TGW (Table 1; see also differences
in range of distributions shown in Supplementary Figure 1A).
The genetic correlation between conditions was the largest for
length of spikes and for number of spikelets (LSm, LSl, NSm,
NSl), and the smallest for GWl and TGW. Phenotypic correlation
between conditions was very low for number of tillers (NTP,
NTT); genetic correlation could not be estimated for these traits
due to the presence of negative estimates of variance components.
The biplot in Supplementary Figure 1B shows a smaller role
of traits describing the numbers of tillers than of other traits in
discriminating non-stressed and stressed plants.

Analysis of correlations between traits (Supplementary
Figure 1C) revealed high positive correlations between both traits
describing number of tillers (NTP, NTT) and between traits
describing spike properties, with correlations larger in control
conditions than under stress. Correlation coefficients revealed
a weak association between plant height and other traits both
in non-stress and stress conditions, although in drought, this
association appeared to be slightly stronger. Total number of
tillers in non-stress conditions was negatively correlated with
spike traits, i.e., length, number of spikelets and grains in main
and lateral spikes, as well as thousand kernel weight, but in
drought stress, these correlations became weaker.

For the purpose of further analysis, relative drought effects
(RDE) were computed for all lines and all after-harvesting
traits; they were on average negative (Figure 1A). Strong
correlation of effects was found for two traits describing
numbers of tillers and for subsets of traits describing main
and lateral spikes (Figure 1B). On the basis of traits with
largest inter-line variation, i.e., four main spike traits (LSm,
NSm, NGm, GWm), we identified two lines that were very
distant in optimal conditions and quite similar in drought,
therefore, contrasting with respect to reaction to drought: LA
(MCam001) with large trait values under control conditions
and a large relative loss under drought, and LB (MCam079)
with low values under control and small relative loss under
drought (Supplementary Figures 1A,B). These two lines are
extreme in terms of the scores of the first principal component
obtained for RDE of main spike traits (Figure 1C and
Supplementary Table 2). Lines LA and LB were contrasting
in a similar manner also with respect to traits concerning
lateral spikes, TGW (note a positive drought effect for LB,
Figure 1A) and, to a smaller extent, number of tillers. Line
LB was somewhat taller than LA, but the drought effects

TABLE 2 | Classification of traits according to type and acceptance for analysis on
the basis of correlations between carriers.

Classification Number of traits % accepted Total number of
traits

Not accepted Accepted

Camera type

VIS 50 146 74.49 196

FLUOR 30 132 81.48 162

NIR 10 7 41.18 17

MULTI* 0 1 100.00 1

Total 90 286 76.06 376

Category

Color 4 108 96.43 112

Texture 2 46 95.83 48

Geometric 84 156 65.00 240

Total 90 286 76.06 376

Statistic

First order 90 238 72.56 328

St. dev. 0 24 100.00 24

Skewness 0 24 100.00 24

Total 90 286 76.06 376

Color scale

None 86 180 67.67 266

RGB 2 28 93.33 30

HSV 2 42 95.45 44

LAB 0 36 100.00 36

Total 90 286 76.06 376

Viewpoint

Side 42 143 77.30 185

Top 44 131 74.86 175

Combined 4 12 75.00 16

Total 90 286 76.06 376

*Trait no. 316 computed from VIS and NIR camera images.

for plant height were similar for both lines. Parental lines
Maresi and Cam/B1/CI were not as extreme as LA and LB,
which indicates existence of transgression effects with respect to
reaction to drought.

Image-Based Phenotyping of the
Dynamics in Drought Response
Out of 376 characteristics provided by the image analysis pipeline,
seven contained no observations, and 83 provided data that
did not satisfy the criterion requesting the correlation between
carriers to be bigger than 0.2 (Supplementary Table 1). The
classification of all image-extracted traits with respect to their
type and origin is shown in Table 2. One can note that a rather
small proportion of traits derived from near infrared imaging
(41.18%) was accepted for further analysis.

All traits but one (no. 21, “leaf length”) exhibited a significant
mean drought effect at least at one time point (ANOVA F-test,
p < 0.05, Bonferroni correction over 286 analyzed traits).
First significant effects were observed on the fourth day of
drought, and the number of traits with a significant effect grew
until first day after drought (Figure 2A). Clustering of time
profiles of average RDE revealed six groups of traits (Figure 3A;
Supplementary Figure 2A) differing by the shape and effect
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FIGURE 1 | Results concerning relative drought effects for traits measured after harvesting (traits designated by abbreviations listed in Table 1). (A) Density plots for
relative effects for traits. Marked lines LA, LB. (B) Correlations between relative effects for pairs of traits. Critical value of correlation at P < 0.01 is
approximately ±0.235. (C) Biplot made on the basis of drought effects for four traits describing main spikes.

size. The largest and consistent drought effects were observed
in clusters 1 and 3. Cluster no. 1 contained four highly similar
profiles of negative effects for traits measured in visible or
fluorescent light describing projected plant area (traits 38, 44,
45, 277). Cluster no. 3 contained six profiles for traits describing
proportion of yellow, red or brown pixels (traits 139, 142, 144,
324) and skewness of colors (traits 328, 334), measured in visible
light by side and top cameras, with positive drought effect
increasing from about 12 to 18 day, meaning increased intensity
of these colors under drought (plants less green). Groups 4, 5, and

6 contained profiles for, respectively, 26, 116, and 130 traits, with
positive (group 4; all but one were fluorescent traits) and negative
(group 6; 90% were geometric traits) drought effects. In terms of
drought effects progression, for most of the traits, the maximum
effects were observed at the end of drought period, but there was
a group of traits in cluster 4 with a large drought effect appearing
about 5 days later (traits 124, 132, 166, 167, 284, 286, 297, 301,
302, 308, 309, 317, 344, 345). Clusters 2 and 4 were composed of
traits that indicated a lack of recovery of plants by the end of the
observation period.
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FIGURE 2 | (A) Number of traits with significant mean drought effect on consecutive days of experiment; significance assessed by F-test at p < 0.05 with Bonferroni
approximation. (B) Fold change of genetic variance under drought to genetic variance under optimal conditions on consecutive days. The lines show profiles of
median log2FC for color (black), texture (red), and geometric (green) traits. Horizontal bars mark the drought treatment period.

FIGURE 3 | Time profiles of (A) mean drought effects (averaged over all genotypes), and (B) genetic correlation coefficients between optimal and drought conditions,
for traits measured in time, clustered using minimum within-group sum of squares (WSS) criterion. Smooth lines drawn using splines with 16 d.f., vertical dashed
lines mark start and end of the drought treatment period.
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The differences between genetic variance in drought and
control, measured by the fold change in logarithmic scale
(log2FC), were visible, especially after 18th day (end of drought
period). The median values of FC (over traits) first slightly
decreased, but then increased, especially for texture traits
(Figure 2B), meaning bigger variance among lines subjected to
drought for many image-derived features. Clustering of time
profiles of genetic correlation between conditions (GC), the
indicator of the genotype by environment (GE) interaction,
revealed seven groups of traits (Figure 3B; Supplementary
Figure 2B). A temporary decrease of GC after the end of the
drought period could be seen in cluster 2 containing five traits
(153, 160, 181, 287, 288; color uniformity, texture, skewness of
saturation). In cluster 4 (28 traits; 46% texture traits, 75% top
camera), a very strong decrease of correlation to values close to
-1 (indicating a strong cross-over interaction) with a subsequent
increase to values close to zero was observed. For traits in group
5 (34 traits; 67% color, 2 geometric traits: compactness 245,
area/skeleton length 272), the correlation started decreasing at
the end of drought period. For three traits in group 1 (43, 44,
45; projected plant area), the correlation was small on all days;
for the rest of the traits, in groups 6 (80% geometric traits,
82% top camera) and 7 (64% geometric, 62% side camera),
the correlations were close to 1 on all days, indicating a lack
of GE interaction.

Simultaneous classification of traits with respect to time
profiles of both drought effects and genetic correlation provided
21 combined clusters (Table 3). Among clusters with a moderate
or a large number of traits, one can note cluster (4, 4) of 14
traits characterized by positive drought effects, no recovery and
genetic correlation decreasing after drought period, approaching
-1 during recovery, and vanishing at the end of observations. All
traits in this cluster were obtained from fluorescent images and
describe color (eight traits, yellow or red fluorescence intensity –
positive effect means more red or yellow; color or brightness
uniformity – positive effect means less uniform) or texture of
plants (six traits, positive effect means coarser surface). Profiles
of mean values and drought effects for an exemplary trait from
this group, trait no. 124 (yellow fluorescence intensity), for all
lines, are shown in Figure 4A; characteristic is a late appearance
of positive drought effects (increased yellowness in drought),

TABLE 3 | Numbers of traits in simultaneous classification with respect to the time
profile of mean drought effect and genetic correlation between conditions.

Clustering criterion Genetic correlation cluster

1 2 3 4 5 6 7 Total

1 2 0 2 0 0 0 0 4

2 0 0 0 0 4 0 0 4

3 0 0 0 2 2 0 2 6

Mean drought 4 0 0 0 14 5 4 3 26

effect cluster 5 1 5 5 12 21 10 62 116

6 0 0 5 0 2 36 87 130

Total 3 5 12 28 34 50 154 286

Cluster numbers correspond to the ones shown in Figure 3.

no recovery for most of the lines, and differentiation of the
effects among lines leading to decreased genetic correlation
between conditions. We also note cluster (6, 6) of 36 traits with
negative drought effects, but with no evident decrease of genetic
correlation (all traits in this group but one are geometric ones,
measured in fluorescent or visible light by top view camera);
profiles for a trait from this group, no. 184 (diameter of the
smallest circle drawn around the plant), shown in Figure 4B,
show that the drought effects were relatively homogeneous for
lines, which led to a rather large genetic correlation. The most
numerous classes, clusters (5, 7) enriched in texture traits and
(6,7) enriched in geometric traits, contain traits with moderate
drought effects and no interaction of genotypes and environment.

The behavior of lines LA and LB with respect to traits shown
in Figures 4A–C can be described as follows. The (relatively)
less resistant line LA showed a larger “yellowing” effect [trait
124, cluster (4,4)] during drought (days 13–14) than the more
resistant line LB; after drought, the effects for LA were much
smaller, and LA, unlike LB, showed recovery by the last day
of observations. The smallest circle diameter [trait 184, cluster
(6,6)] was higher for LA than for LB both in control and drought
conditions, and the negative drought effects (smaller diameter in
drought), starting during the drought period, were initially larger
for LB, then similar for both lines, and, after drought, indicated
a reduced recovery for LB. The projected plant area [trait 39
in Figure 4C, cluster (6,7)] was larger for LA than for LB; the
negative drought effects for LA was bigger than for LB on days
14–20, but then was smaller, with, again, no recovery for LB. So,
for two of the presented traits (124, 39), the reaction of LA during
drought could be stronger than that of LB, but the difference
between LA and LB was more visible during the re-watering
period than during drought.

The above characteristics are further illustrated by selected
side view VIS images of lines LA and LB shown in Figure 5. For
example, a good recovery for LA and its lack for LB with respect to
projected plant area is well-visible. The pictures show differences
in developmental stages between lines (with approximate BBCH
ratings; see section “Discussion”). LB has reached heading during
the drought period; this process affected its behavior with respect
to many traits, and could cause apparently smaller drought effects
in terms of yellowing (trait 124) or plant area loss (trait 39). LA
has started heading at the end of drought period, when heading
in LB was completed; this explains smaller drought effects for
LA immediately after drought. During re-watering, LA continued
heading and showed recovery, whereas LB, being at the flowering
stage and going toward maturity, did not show signs of recovery.

Correlations Between Traits in Time and
Post-harvest Traits
After computing – for each day of experiment – correlation
coefficients between relative drought effects for traits observed in
time and for traits observed after harvesting, the numbers of days
were counted on which the correlation was significant, and these
counts were summed up over time traits (Table 4).

The total numbers of “days with correlation” were the highest
for traits describing properties of main spike, GWl and TGW. The
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FIGURE 4 | Examples of profiles for image traits observed in time. Top graphs: Observations for all genotypes grown under normal (green) and stress (red)
conditions (mean values over two carriers). Bottom graphs: Relative drought effects for all genotypes. Line LA – dashed line, LB – dotted line. (A–C) Show profiles for
three image-based traits discussed in the text.
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FIGURE 5 | Side view VIS images of lines LA and LB on selected days of experiment.

lowest numbers were obtained for plant height and tiller counts.
Taking into account this information, and the information on
correlations of RDE for traits observed after harvesting (section
“Analysis of Post-harvest Traits”), the following detailed analyses
were chosen for interpretation of relationships between time-
course and after-harvest phenotyping:

a) Analysis of correlations between traits measured in time
and the (correlated complex of) traits describing main
spikes – traits no. 5–8; the correlation profiles were averaged
over four after-harvest traits taken into account,

b) Analysis of correlations between traits measured in time
and TGW.

For case (a), clustering of profiles of correlation coefficients
(Figure 6A) revealed seven relatively homogeneous clusters,
representing various time profiles of correlation; in some clusters,
a trend in time is evident despite the fact that some correlations
are not statistically significant (but note that smoothed profiles
were drawn, with correlations on particular days possibly
significant). Correlations decreasing or increasing during or
immediately after drought, and then taking opposite values, were
observed in, correspondingly, clusters 1 (27 fluorescent traits)
and 2 (32 traits; 53% in color traits, 25% RGB), and 7 (58 traits;
81% geometric traits); or approximately constant until a few days
after the end of drought period, and then going up or down,
in, correspondingly, clusters 3 (32 traits; no overrepresentation)
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TABLE 4 | Numbers of days at which drought effects for traits measured after harvesting were significantly correlated with drought effects for a trait measured in time
(significance of correlations declared at P < 0.001).

Trait no. Symbol Trait name Number of days with
positive correlations

Number of days with
negative correlations

Total number of days
with correlations

1 PH Plant height (cm) 10 3 13

2 NTP Number of productive tillers 4 7 11

3 NTT Total number of tillers 19 19 38

4 TGW 1000-grain weight (g) 230 111 341

5 LSm Length of main spike (cm) 17 113 130

6 NSm Number of spikelets per main spike 193 505 698

7 NGm Number of grains per main spike 103 297 400

8 GWm Grain weight per main spike (g) 237 481 718

9 LSl Length of lateral spike (cm) 35 26 61

10 NSl Number of spikelets per lateral spike 23 37 60

11 NGl Number of grains per lateral spike 28 20 48

12 GWl Grain weight per lateral spike (g) 411 323 734

FIGURE 6 | Time profiles of correlations of drought effects (DE) for traits measured in time with (A) DE for main spike traits measured after harvest (correlations
averaged over traits 5–8), and (B) DE for thousand grain weight, clustered using minimum within-group sum of squares (WSS) criterion. Smooth lines drawn using
splines with 16 d.f., vertical dashed lines mark start and end of the drought treatment period.

and 6 (57 traits; 75% top view). Clusters 4 (36 traits; 97%
geometric, 100% side view) and 5 (44 traits) were made of traits
with rather low and constant correlation with RDE for traits
describing main spikes.

For case (b), grouping of correlation profiles provided five
clusters of traits (Figure 6B), with clusters 4 (63 traits; 65%
fluorescent; 41% texture) and 5 (102 traits; 77% geometric)
containing features characterized by, correspondingly,
decreasing and increasing correlation in drought period,
and going to opposite values afterward. Cluster 2 contained
33 traits (90% geometric), for which correlations with TGW
increased during the drought period and decreased afterward.

By merging clusters characterized by similar trends in time:
(1,2,3), (6,7), (4,5) for correlations with main spike traits, and
(4), (2,5), (1,3) for correlations with TGW, we obtained the
less fine divisions of traits (Table 5). For most of the traits,
the profiles of correlations with spike traits and with TGW had
similar characteristics (both increasing, both decreasing or both
constant – the diagonal in Table 5). The joint cluster of traits
which did not correlate with main spike traits but revealed a
correlation with TGW decreasing to negative values contained 25
traits (92% geometric, 80% side view). In addition to correlations
of drought effects, we also computed correlations between
absolute values of traits measured in time and absolute values
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TABLE 5 | Classification of traits with respect to profiles of correlation of their RDE with RDE of after-harvest traits: number of traits and overrepresented categories
of traits (in %).

Clusters for correlation with TGW

4 increasing 2, 5 decreasing 1, 3 constant

Clusters for correlation with main spike traits 1, 2, 3 increasing 62, 64% fluor, 53% color, 40% texture 8 21, 38% hsv

6, 7 decreasing 0 102, 81% geometric, 64% top 13

4, 5 constant 1 25, 92% geometric, 80% side 54, 83% side

of traits measured after harvesting (Supplementary Table 3).
Comparing these results with those shown in Table 4, we can
see that total numbers of “days with correlation” were larger for
absolute trait values than for RDE for plant height under drought
(546 v. 13), for total number of tillers under control conditions
(404 v. 19), and – considerably – for all traits characterizing
main and lateral spikes, both under optimal and limited irrigation
(1305–5935 v. 48–734). A reverse situation was observed for
TGW, where the days with correlation were less numerous
for absolute trait values (230 in control conditions, 235 under
drought) than for relative drought effects (341).

Selection of Traits Based on Correlations
of RDE
The joint classification of 286 traits observed in time with
respect to the shape of profiles of mean drought effects and of
genetic correlations between conditions (section “Image-Based
Phenotyping of the Dynamics in Drought Response”), and shape
of the profiles of correlations with after-harvest traits (section
“Correlations Between Traits in Time and Post-harvest Traits”),
provided: 59 groups of traits in case of correlation with spike
traits, and 46 groups in case of correlation with TGW.

The final selection of traits observed in time during drought
stress, with various characterizations with respect to time-
course of mean relative drought effects, genetic correlation (GE
interaction), and correlation with after-harvest traits, was made
by finding in all joint categories defined above the time traits
characterized by the number of correlation days maximal in
the given category and bigger than the upper quartile of the
distribution of number of correlation days for all traits. This
operation provided the list of 21 image-derived traits for which
RDE were highly correlated with RDE for spike traits, and 11
traits with the same property but with respect to TGW (Table 6
and Supplementary Table 4). The set of time traits selected on
the basis of correlation with both main spike traits and TGW
consists of traits characterizing: plant convex hull circularity
(16), plant’s convex hull geometry (75), texture (104), proportion
of brown pixels in relation to green pixels (144), and hull
compactness (256). Characteristics of these traits are summarized
in Supplementary Table 5.

Prediction of RDE for Post-harvest Traits
Based on Image Phenotyping During
Drought
Utilizing image-based traits selected in previous section, we
performed partial least-squares regression model fitting to

predict RDE for after-harvest traits, separately for each day of
observations. The profiles of the measure of model fit, predictive
residual error sum of squares (PRESS), for prediction of RDE for
four main spike traits using RDE of 21 image traits are shown
in Figure 7A. The prediction quality was relatively good when
traits measured on days 15–20 were used. Toward the end of
imaging period, prediction by 21 selected traits was better than
by using all traits. For prediction of TGW, the profile of PRESS
corresponding to 11 selected traits shows a steady improvement,
whereas the profile for all traits – a temporary one on days 18–19
(Figure 7B). On days 31–32, quality of prediction for both spike
traits and TGW using the selected subset of traits is as good or
better than prediction using all 286 traits.

The image-based traits with a dominant role in prediction
can be identified in PLS biplots shown in Figure 8. Genotypes
more resistant to drought in terms of main spike characteristics
(namely, losing less main spike length and grains) were
characterized:

– On day 17 (when a local minimum of PRESS was
observed) – by smaller positive drought effects for image
trait 139 (i.e., relatively smaller – in comparison to other
genotypes – increase of number of yellow pixels in relation
to green ones) and by bigger positive effects for traits 256
(bigger loss of compactness),

– On day 32 (at the end of imaging) – by bigger positive
drought effects for image traits 139 (bigger increase of
number of yellow pixels in relation to green) and 141
(bigger shift of distribution of hue values to the left, i.e.,
toward red values), and bigger negative effects of trait 261
(bigger loss of skeleton length, i.e., greater reduction of the
shoot length).

Genotypes relatively resistant in terms of TGW (losing less)
were characterized:

– On day 18 (local minimum) – by bigger positive effects
of traits 256 (bigger loss of hull compactness) and smaller
positive effects of trait 325 (smaller increase of color non-
uniformity),

– On day 32 (end of imaging) – by bigger positive effects for
trait 166 (bigger increase of coarseness of the plant surface).

The above relationship can be also confirmed by comparing
the behavior of lines LA (relatively susceptible) and LB
(relatively resistant) with respect to above-mentioned image traits
(Supplementary Figure 3).

Frontiers in Plant Science | www.frontiersin.org 11 June 2020 | Volume 11 | Article 743

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-11-00743 June 6, 2020 Time: 15:34 # 12

Mikołajczak et al. Image Phenotyping of Barley Under Drought

TABLE 6 | Image-based traits characterized by significant and frequent (over the time-course of phenotyping) correlations with after-harvest traits describing spike traits
(21 selected) and thousand grain weight (11 selected).

Trait no. Trait name Trait description Selected for
spike traits

Selected
for TGW

16 hull.circularity.geometry.trait.based.
on.fluorescence.side.view.

Indicates similarity of the convex hull to a circle, ranges between 0 and 1.
A circular object has value 1.

Yes Yes

39 area.geometry.trait.based.on.
visible.light.side.view.px.2.

Number of foreground pixels. Therefore, projected plant area in pixels. Yes

75 hull.pc2.geometry.trait.based.on.
visible.light.side.view.px.

If a line connects the two most far from each other situated plant pixels is
drawn, this number indicates the sum of the maximum distances of other plant
pixels from the left and right of this line.

Yes Yes

104 hsv.h.mean.color.related.trait.based.
on.fluorescence.side.view.

Mean – first order texture property (independent of pixel neighbors). Calculated
on grayscale image derived from channel Hue (HSV).

Yes Yes

115 hsv.v.mean.color.related.trait.based.
on.fluorescence.side.view.

Mean – first order texture property (independent of pixel neighbors). Calculated
on grayscale image derived from channel Brightness (HSV).

Yes

124 intensity.phenol.mean.color.related.
trait.based.on.fluorescence.side.view.

A relative indicator of the yellow fluorescence intensity, not taking into account
brightness but only the color hue (red = no intensity, yellow = high intensity).
Detailed information will be added to the documentation.

Yes

135 lab.b.stddev.color.related.trait.based.on.

fluorescence.side.view.

The standard deviation of the b values in the L*a*b* color space of the plant
pixels. The lower this value, the more uniform is the plant color

Yes

139 hsv.h.yellow2green.color.related.trait.
based.on.visible.light.side.view.

Proportion of yellow color plant pixels (histogram bin 3) divided by the count of
green color pixels (bins 4–7). This value is only valid if the bin count has not
been changed from 20, otherwise the involved bins represent different colors.

Yes

141 hsv.h.skewness.color.related.trait.
based.on.visible.light.side.view.

The “skewness” of the hue values of the plant pixels. “skewness” is a statistical
term, indicating the tendency of the value distribution to lean to one side of the
value range. The documentation will include a more complete description of this
trait in the future; see reference literature for full details.

Yes

143 hsv.h.mean.color.related.trait.based.
on.visible.light.side.view.

Mean – first order texture property (independent of pixel neighbors). Calculated
on grayscale image derived from channel Hue (HSV).

Yes

144 hsv.h.brown2green.color.related.trait.
based.on.visible.light.side.view.

Proportion of brown color plant pixels (histogram bin 2) divided by the count of
green color pixels (bins 4–7). This value is only valid if the bin count has not
been changed from 20, otherwise the involved bins represent different colors.

Yes Yes

150 lab.a.stddev.color.related.trait.based.
on.visible.light.side.view.

The standard deviation of the a-values in the L*a*b* color space of the plant
pixels. The lower this value, the more uniform is the plant color.

Yes

154 hsv.v.skewness.color.related.trait.
based.on.visible.light.side.view.

The “skewness” of the brightness values of the plant pixels. “Skewness” is a
statistical term, indicating the tendency of the value distribution to lean to one
side of the value range. The documentation will include a more complete
description of this trait in the future; see reference literature for full details.

Yes

157 rgb.red.mean.color.related.trait.
based.on.visible.light.side.view.

Average intensity of the red channel of the plant pixels in the visible light image. Yes

166 rgb.g.std.texture.trait.based.on.
fluorescence.side.view.

Standard Deviation – first order texture property (independent of pixel
neighbors). Calculated on grayscale image derived from channel Green (RGB).

Yes

174 rgb.r.std.texture.trait.based.on.
fluorescence.side.view.

Standard Deviation – first order texture property (independent of pixel
neighbors). Calculated on grayscale image derived from channel Red (RGB).

Yes

194 hull.area.zoom.corrected.geometry.trait.
based.on.fluorescence.top.view.mm.2.

Normalized area (in real-world coordinates) of the convex hull, which is the
shortest convex line drawing around the plant.

Yes

256 hull.compactness.16.geometry.trait.
based.on.visible.light.top.view.

borderPixels * borderPixels/filledArea (all of convex hull) Yes Yes

261 leaf.length.sum.geometry.trait.
based.on.visible.light.top.view.px.

Skeleton length. Yes

269 hull.pc2.geometry.trait.based.on.
visible.light.top.view.px.

If a line connects the two most far from each other situated plant pixels is
drawn, this number indicates the sum of the maximum distances of other plant
pixels from the left and right of this line.

Yes

316 ndvi.color.related.trait.based.on.
multi.camera.top.view.

ndvi = (averageNir – averageVisR)/(averageNir + averageVisR) Yes

320 hsv.v.mean.color.related.trait.
based.on.visible.light.top.view.

Mean – first order texture property (independent of pixel neighbors). Calculated
on grayscale image derived from channel Brightness (HSV).

Yes

321 hsv.s.stddev.color.related.trait.
based.on.visible.light.top.view.

The standard deviation of the saturation values of the plant pixels. The lower
this value, the more uniform is the saturation of the plant colors.

Yes

(Continued)
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TABLE 6 | Continued

Trait no. Trait name Trait description Selected for
spike traits

Selected
for TGW

325 hsv.h.stddev.color.related.trait.
based.on.visible.light.top.view.

The standard deviation of the hue values of the plant pixels. The lower this value,
the more uniform is the plant color.

Yes

330 lab.b.stddev.color.related.trait.
based.on.visible.light.top.view.

The standard deviation of the b values in the L*a*b* color space of the plant pixels.
The lower this value, the more uniform is the plant color

Yes

337 rgb.red.mean.color.related.trait.
based.on.visible.light.top.view.

Average intensity of the red channel of the plant pixels in the visible light image. Yes

353 rgb.b.std.texture.trait.based.on.
visible.light.top.view.

Standard Deviation – first order texture property (independent of pixel neighbors).
Calculated on grayscale image derived from channel Blue (RGB).

Yes

Correlations computed for drought effects.

FIGURE 7 | Profiles of Predictive Residual Error Sum of Squares (PRESS) for PLS regression of RDE for postharvest traits on RDE for time traits, on days 2, 3, . . . ,
32. (A) PLS for main spike traits as dependent variables. (B) PLS for trait TGW as a dependent variable. Black lines: prediction by all image-based traits; red lines –
prediction by 22 traits selected for spike in (A) and 12 traits selected for TGW in (B). Lines smoothed by splines (12 df).

DISCUSSION

This paper discusses the employment of high-throughput, non-
invasive imaging platform to the characterization of phenotypic
reaction of barley lines to limited irrigation. We analyzed the

data set provided by the image analysis pipeline containing
observations of more than 350 traits with the aim of defining a
non-redundant set of image-derived phenotypic characteristics
useful for a further inference on the fitness of genotypes. The
criteria for selection of traits were based on genetic considerations
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FIGURE 8 | PLS biplots for (A) main spike traits and (B) TGW, with explanatory variables on days 17, 18, and 32 (variables in PLS regression: Y = main spike traits or
TGW; X = selected traits – numbers of traits shown in the plot). RILs marked: LA (MCam001) – relatively susceptible to drought, LB (MCam079) – relatively resistant.

and on relating the picture of RILs observed during drought
stress to their characteristics with respect to yield-related traits
observed after harvesting.

Analysis of Post-harvest Traits
In our experiment, variance components for yield-related traits
of RILs were lower under drought than well-watered conditions.
This result confirms observations from practical breeding
that differences between genotypes (lines/cultivars) in crop
performance features are more evident in favorable conditions
than under stress. That is widely used in breeding high-yielding
cultivars which are selected most often under optimal conditions
(Laingi and Fischer, 1977; Atlin et al., 2017). Genetic correlations
between conditions estimated in our experiment showed that the
strategy of selection for any environment may work better for
traits characterizing spike architecture than for yield or TGW,
and will not work for plant architecture (number of tillers).

Our inference was based not on absolute trait values, but on
relative drought effects characterizing the reaction of genotypes
to water shortage. We utilized these effects for four characteristics
of main spikes to identify genotypes with a relative good (like
LB) and poor (like LA) resistance to water shortage. We attribute
the presence of such genotypes in the studied population to the
properties of its parents: Maresi, a good-quality European variety,
and Cam/B1/CI, a line of Asian origin. The characterization by
relative effects is independent of the fact that LB (and, indeed,
Cam/B1/CI) behaved much worse than LA (and Maresi) in
optimal conditions.

Phenotyping in Time
The analysis of image-derived data acquired over 32 days of the
experiment run on the high-throughput phenotyping platform
provided information on the behavior of genotypes during
drought period and during re-watering. Low replicability of
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observations obtained from infrared imaging was revealed; this
is in contrast with findings of Chen et al. (2014), who reported
good reproducibility of NIR-based traits. Relative drought effects
(mean – averaged over all genotypes; positive or negative –
depending on the trait nature) were observed for almost all
features extracted by the image analysis pipeline; they started
to be significant on the fourth day of limited watering. The
earliest and largest negative effects were observed for plant area
measured in visible or fluorescent light by side-view camera.
The largest positive effects, starting in the middle of drought
period (similarly as in Chen et al., 2014), were noted for
proportions of yellow, red or brown pixels measured in visible
light by side- and top-view cameras. So, the first observable
effect of reduced watering was the slowed down, and then
strongly reduced, plant body development; it was followed by
plants turning less green as a result of chlorophyll degradation
(Ghandchi et al., 2016). Reducing the chlorophyll content causes
a decrease in photosynthesis intensity and thus limits the growth
and development of plants (Buschmann and Lichtenthaler, 1998;
Buschmann et al., 2000; Jansen et al., 2009).

In addition to relative drought effects, we studied the time
profiles of genetic variances and of genetic correlation coefficients
between conditions, which informed us about the variability
and co-variability (GE interaction) of the traits under different
conditions. The genetic variance under drought was bigger than
under control conditions in the re-watering period (especially for
many texture traits). This is in contrast with what was observed
for after-harvest phenotypic traits and suggests that drought
resistant genotypes might be selected under limited watering
using properly chosen image-derived traits. This possibility is
further confirmed by the existence of many traits (especially
those measuring color or texture) for which the GE interaction
increased toward the end of the observation period.

The simultaneous classification of traits with respect to
time profiles of drought effects and of genetic correlation
between drought and control showed that numerous traits
describing color or texture of plants were characterized by
positive drought effects and decreased correlation. It indicates
that under drought the leaves discolored (turned brown or
yellow), while under optimal watering they were still green, but
the effect sizes were different for different genotypes and the
correlation between drought and control decreased. On the other
hand, many traits describing geometrical properties of plants,
measured in fluorescent or visible light by top view camera,
showed negative drought effects, but with no evident decrease
of genetic correlation between treatments. This again suggests
the use of color and texture traits in preference to geometric
ones in selection.

Relationships Between Traits in Time
and Post-harvest Traits
The numbers of days on which the significant correlation
coefficients between relative drought effects for traits observed
in time and traits observed after harvesting were the highest
for spike characteristics and TGW, while the lowest for final
number of tillers and plant height. That was due to the duration

of drought in the context of plant development. Phenotyping
started when plants were at the stage of tillering (26–29 in the
BBCH scale). During the period of water stress and 2 weeks
after drought, they have undergone the phases of tillering, and
shoot and spike development, which may explain observed
associations. On the other hand, re-watering contributed to grain
filling and the emergence of new shoots which did not form
grains. Plants continued growing also after the period of image
phenotyping; therefore, there is no clear relationship between
image-derived traits and the final number of tillers and plant
height. This result suggests that a different drought application
scenario would be necessary to study the reaction of genotypes to
drought with respect to plant architecture.

About 60 image traits were selected (mainly color and texture)
with RDE characterized by correlation with RDE for post-harvest
spike traits and TGW increasing in time (to positive values). As
we noted, this was due to the fact that the lines classified by us as
“relatively resistant,” e.g., LB, did not recover from the drought
by the end of the observation period (positive color/texture
effect), whereas the “relatively susceptible” lines, e.g., LA, did
recover (negative color/texture effect). For example, we have
shown that during drought, the leaves of LB turned yellow to a
lesser extent than those of LA, but after re-watering, toward the
end of observations, the “yellowing” effect of the LB deepened and
remained, while for LA, gradually decreased and become even
negative at day 32. It indicates that LA has the ability to produce
new shoots and green leaves after re-watering, which reduced the
overall “yellowing” effect.

On the other hand, about 100 traits (mostly geometric) had
RDE characterized by correlation with RDE for post-harvest
spike traits and TGW decreasing over time (to negative values).
This was also caused by the lack of regeneration of “relatively
resistant” genotypes in terms of plant architecture by the end of
the observation period. For example, drought caused a reduction
in the projected area of plants (trait 20) and skeleton length (trait
261); the effects were similar for LA and LB, or a bit smaller for
LB, until approximately day 20, when recovery started for line
LA but not for LB.

We can safely assume that the differences explained above
between lines LA and LB, more pronounced during re-
watering than during drought, originated from the properties
of the parents: Cam/B1/CI is a very early line as compared
to Maresi, with about 10 days earlier heading and earlier
maturity (Mikołajczak et al., 2016). A corresponding difference
between lines LB and LA was visible in image phenotyping (see
section “The Trait Selection Procedure” for more discussion of
phenology). The lack of recovery of LB could be caused by its
inability to regenerate after heading, in a later developmental
stage leading to maturity, whereas less yellow appearance of LA at
the later stages could be caused by spikes and new leaves emerging
after drought period. The inference that we could make on the
basis of relative drought effects and identification of “relatively”
resistant and susceptible genotypes shows important differences
in the behavior of genotypes. While LA showed a “stay green” and
recovery behavior, LB seemed to promote senescence, potentially
with rapid mobilization of resources into grain filling during
drought (thus avoiding drought effects by a shorter life cycle). The

Frontiers in Plant Science | www.frontiersin.org 15 June 2020 | Volume 11 | Article 743

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-11-00743 June 6, 2020 Time: 15:34 # 16

Mikołajczak et al. Image Phenotyping of Barley Under Drought

shorter vegetative phase of LB, with fewer tillers, may cause lower
yield in the non-stress condition.

In addition to correlations of relative drought effects, we
presented results showing that image-based traits expressing
good correlations with absolute values of most of the after-
harvest traits could be found. This finding creates a possibility of
using the approach presented in this paper for characterization
of genotypes better suited for cultivation in optimal or
suboptimal conditions. Such analysis is in progress and
will be reported elsewhere in the context of utilization of
molecular polymorphism data for localization of dynamic
quantitative trait loci.

The Trait Selection Procedure
The classification and selection of traits was based on the
assumption that useful image-derived features should provide
information on three components of RIL’s characterization:
environment (drought) effects, genetic correlation between
conditions related directly to genotype-by-environment
interaction, and the link between behavior during the stress and
the final yielding performance. First two parameters are widely
used for static characterization of RIL populations observed in
traditional experiments with only after-harvesting phenotyping;
they were also used for dynamic description of a smaller plant
population by Chen et al. (2014) who imaged 18 barley cultivars
under well-watered and limited irrigation conditions. Having
observations of post-harvest yield-related traits, we were able to
extend this idea to correlations between relative drought effects
of two sets of traits. By a multiple use of a simple clustering
procedure, we divided the set of all traits into disjoint groups with
various characteristics, and, finally, selected representatives of
these groups valuable for inference. We think that the described
procedure can be used extensively in image phenotyping for an
unsupervised selection of representative traits obtained from
various existing image analysis pipelines. Pipelines used by image
phenotyping platforms are continuously modified, and new
pipelines are being developed. Their potential to provide new
phenotypic characteristics is almost infinite. In such situation,
the presented selection procedure can be useful. Linking this
procedure to emerging taxonomies of image-based plant traits
(Fahlgren et al., 2015; Das Choudhury et al., 2019) will be
beneficial for better annotation of data sets.

In our studies, the applied statistical approaches allowed
choosing 21 traits out of 286 observed in time for which drought
effects were highly correlated with drought effects for spike
traits, and 11 traits with the same property but with respect
to TGW. The traits common to these two sets characterized
plant convex hull geometry related to the growth habit, and
texture, proportion of brown pixels and chlorophyll intensity –
features related to the earliness. In the studied population, growth
habit was mainly determined by the semi-dwarfing gene from
Maresi, while earliness by gene(s) from Cam/B1/CI (Mikołajczak
et al., 2016, 2017; Ogrodowicz et al., 2017). Segregation of genes
determining these two properties largely influenced variation of
all the observed traits, both measured in time and after harvest.

In the context of observed phenological differences between
studied parental forms and RILs, the problem arises of the

influence of these differences on the results of trait selection and
on the conclusions. Due to the absence of image-derived traits
annotated directly as corresponding to reaching consecutive
developmental stages, we attempted to target this problem by
visual scanning of (top view RGB) images to score, for each
plant, the day of reaching BBCH49 (the stage when flag leaf
sheath opens; all data not presented), and using these data
as a covariable in the linear mixed model in which drought
effects and variance components for RILs were estimated. The
differences between significance of mean drought effects in these
two models were quite minor (Supplementary Figures 4A,B);
the number of significant drought effects in the ANCOVA model
was slightly smaller until day 22, which means that for some
traits the difference between control and drought conditions
was partially explained by differences in phenology. Bigger
differences between two models were observed for fold change
of genetic variance between drought and control conditions
(Supplementary Figures 4C,D). The proposed trait selection
procedure performed using results of the ANCOVA model
provided 26 traits, out of which 16 were the same as in the
procedure based on ANOVA model reported in Results (Table 6),
including all five traits selected for both correlation with spike
traits and with TGW. Thus, some effect of the fact that RILs
were, at a given time point, at different developmental stages, was
observed. This points to a need for the development of image
recognition algorithms able to score phenology in an automatic
way. This additional analysis also further illustrates the flexibility
of the proposed trait selection procedure with respect to the
statistical model of the experiment. In reference to the discussion
on earliness of parental genotypes and RILs, we note that, on
average, lines LB and LA reached BBCH49 on imaging days,
correspondingly, 6.8 and 25.0 in control conditions, and on days
5.5 and 26.4 under drought, which is consistent with Figure 5.
For parental lines Cam/B1/CI and Maresi, the corresponding
values were 4.9 and 26.6 in control conditions, and 3.5 and
“more than 32” (after the imaging period) under drought, which,
in terms of direction of differences, agrees with the results of
Mikołajczak et al. (2016).

The final step of our analysis, prediction of RDE for after-
harvest traits by RDE of selected image-based traits, was
performed to illustrate a possible application of the trait selection
procedure. We do not claim that the PLS regression is the best
method to perform such prediction. However, we showed that a
good fit of a prediction model can be obtained for a small set of
selected traits.

CONCLUSION

Image phenotyping allows observation of changes in plants
during growth. The results of our experiment show these changes
in various aspects: changes in color, texture, and geometrical
properties of plants under optimal and water stress conditions,
and association of the traits evaluated in time with post-harvest
characteristics. In most cases, these changes were expected and
they are in line with practical observations. Our results permitted
to distinguish features related to the convex hull geometry,
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texture and proportion of brown pixels for which effects of
drought were highly correlated with drought effects for spike
traits and TGW. Estimated genetic correlations between drought
and well-watered conditions showed that strategy of selection
for a broad range of environments may be more effective for
traits characterizing spike architecture than for grain yield or
thousand grain weight, and can be ineffective in the case of
number of tillers. RILs relatively susceptible and tolerant to
drought were selected and although the yellowing and area loss
effects were somewhat smaller for the latter during drought,
after re-watering such effects for the tolerant lines deepened and
remained, while for susceptible ones gradually decreased which
indicates that in the studied population, tolerant lines escaped
drought through accelerated plant development. Further results
concerning the described experiment and RIL population will
combine the presented barley dynamic phenomic data with high-
resolution linkage mapping to illustrate the evolution of the
genotype-phenotype relationship in time, under water scarcity.
Such approach is relevant to identify genes underlying the
response of barley plants to drought.
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