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The leaf economics spectrum (LES) characterizes multivariate correlations that confine
the global diversity of leaf functional traits onto a single axis of variation. Although LES
is well established for traits of sun leaves, it is unclear how well LES characterizes the
diversity of traits for shade leaves. Here, we evaluate LES using the sun and shade
leaves of 75 woody species sampled at the extremes of a within-canopy light gradient
in a subtropical forest. Shading significantly decreased the mean values of LMA and the
rates of photosynthesis and dark respiration, but had no discernable effect on nitrogen
and phosphorus content. Sun and shade leaves manifested the same relationships
among Nmass, Pmass, Amass, and Rmass (i.e., the slopes of log–log scaling relations of LES
traits did not differ between sun and shade leaves). However, the difference between
the normalization constants of shade and sun leaves was correlated with functional trait
plasticity. Although the generality of this finding should be evaluated further using larger
datasets comprising more phylogenetically diverse taxa and biomes, these findings
support a unified LES across shade as well as sun leaves.

Keywords: leaf functional traits, within-canopy, plasticity, sun and shade-leaves, convergent LES relationships

INTRODUCTION

A central premise of trait-based ecology is that performance and functioning across levels of
organization, from organs to ecosystems, are predictable from organ-level functional traits (Niklas,
1994; Westoby et al., 2002; Hallik et al., 2009; Adler et al., 2014; Wullschleger et al., 2014; Fisher
et al., 2015; Christoffersen et al., 2016; Díaz et al., 2016; McDowell et al., 2018). The leaf economics
spectrum (LES) offers substantial potential for quantifying the broad diversity of leaf functional
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traits to predict changes in community composition in response
to global change, as well as how these changes in composition will
feedback to ecosystem function (Reich et al., 1998; Wright et al.,
2004). However, the data used to construct the LES is primarily
based on the functional traits of sun leaves (i.e., leaves exposed to
direct sunlight) and it is unclear whether the trends established
by the LES extend to shade leaves.

The LES characterizes evolutionary convergence on robust
and consistent relationships among the form, function,
chemistry, and longevity of leaves from diverse ecosystems and
climates, confining this diversity onto a single axis of variation.
Specifically, the LES describes trade-offs among leaf mass per
area (LMA), nitrogen and phosphorus contents per unit mass
(Nmass and Pmass, respectively), assimilation and respiration rates
per unit mass (Amass and Rmass, respectively), and a number
of other critically important functional traits that characterize
plant physiology and ecology. The LES is shaped by the joint
effects of environmental filtering and biophysical constraints on
leaf carbon economics, yielding emergent functional tradeoffs
between assimilation rate, leaf longevity, and leaf construction
costs (Chabot and Hicks, 1982; Westoby et al., 2002; Kikuzawa
and Lechowicz, 2006; Michaletz et al., 2015, 2016; Anderegg et al.,
2018). These trade-offs have been demonstrated primarily using
global-scale data, and thereby provide a general mechanistic
framework for understanding and predicting variations of plant
community structure and function across resource availability
gradients. For example, under low-light conditions, the LES
predicts that leaves with higher LMA will have lower Nmass,
Pmass, and Amass, but longer life spans (Reich et al., 1998;
Wright et al., 2004). At the other end of the spectrum, leaves
exposed to high light conditions are predicted to have lower
LMA and higher Nmass, Pmass, Rmass, and Amass, but shorter
lifespans (Chabot and Hicks, 1982; Mooney and Gulmon, 1982;
Merino et al., 1984; Wright et al., 2004; Kikuzawa et al., 2013;
Reich, 2014).

Despite the apparent broad applicability of the LES, a major
concern is that its predictions are primarily based on data
derived from sun leaves (e.g., Wright et al., 2004; Keenan and
Niinemets, 2016). As noted previously, it remains uncertain
as to whether the trends manifest in the LES hold equally
well for shade leaves. Light availability varies more than 50-
fold within dense canopies and more than 10-fold within
open canopies (Hirose et al., 1997; Koike et al., 2001; Rambal,
2001; Valladares, 2003; Niinemets and Anten, 2009; Niinemets
et al., 2015). Light plays a key role in leaf growth and
physiology. One of the most profound effects of light on plant
development is the suppression of the expression of a series
of light-responsive genes (Li et al., 1995). Therefore, sun leaves
might exhibit better trait full genotypic expression than shade
leaves. This might be one of the reasons for why large-scale
LES analyses avoided shade leaves. It is crucial to evaluate
whether LES expands to shade leaves, including those from
low light environments commonly found in within-canopy
light gradients.

Furthermore, as formalized by the carbon economics theory
(Chabot and Hicks, 1982; Blonder et al., 2011; Michaletz
et al., 2015, 2016), leaf functional traits are expected to vary

in response to within-canopy light gradients in order to
maximize leaf carbon return on investment. Indeed, it has long
been known that many leaf functional traits exhibit plasticity
and/or acclimation across within-canopy light gradients (Iio
et al., 2005; Lloyd et al., 2010; Kattge et al., 2011; Kenzo
et al., 2015). For example, LMA and nitrogen content per
area generally decrease with decreasing irradiance (Hirose
and Werger, 1987; Givnish, 1988; Hollinger, 1996; Pons and
Anten, 2004; Posada et al., 2009; Fajardo and Siefert, 2016),
which helps to maximize leaf net carbon gain because of
an accompanied lower carbon cost (Anten, 2016). In general,
because of the reallocation of nitrogen, leaf N content (the
“investment”) along light gradients within plants does not agree
with theoretical expectations that N declines with decreasing
light availability from the top toward the bottom of the
canopy (Hirose and Werger, 1987; Givnish, 1988; Anten, 2016).
Hence, large light-dependent sensitivity in LMA appears to be
responsible for the observed differences in the photosynthetic
production and nutrient content of woody plants (Niinemets
et al., 2015; Messier et al., 2016). However, relatively little
attention has been paid to LES of shade leaves. Using a worldwide
database (spanning 167 species with LMA measurements, 75
species with Nmass measurements, and 44 species with Amass
measurements), Keenan and Niinemets (2016) concluded that
LES, thought to comprise data for sun leaves only, might instead
include a large proportion of data for leaves growing under
shaded conditions, implicitly suggesting that LES may apply
generally to all leaves.

Each trait underlying the LES may be affected by canopy
conditions and exhibit plasticity (Messier et al., 2010; Sandel et al.,
2010). This suggests that values of a certain LES trait in sun and
shade leaves might be consistently correlated across all species
but that the scaling exponents and normalization constants of
the relationship might differ numerically (Wright et al., 2001;
Wright and Sutton-Grier, 2012; Niklas and Hammond, 2019).
For example, the numerical values of the scaling exponents of
some LES relationships have been shown to differ for plants
growing in environments with contrasting water and nutrient
availabilities (Wright et al., 2001). In addition, Wright and
Sutton-Grier (2012) have suggested that trends in the traits of
individual species do not consistently predict those of other
species. Therefore, it is unclear whether the scaling exponents
and normalization constants of LES trait-trait relationships are
consistent between sun and shade leaves.

Here, we evaluate the effects of within-canopy shading on
LES. Specifically, we examine relationships among five key leaf
functional traits (i.e., LMA, Nmass, Pmass, Amass, and Rmass) to
address two key questions. First, to what degree are leaf functional
traits plastic between sun- and shade- leaves? Second, do LES
relationships exist for both sun- and shade-leaves? And, if they
do, are the scaling relationships between sun and shade leaves
consistent? We hypothesize that (i) shade induced morphological
plasticity is a stronger determinant of leaf acclimation to
light availability compared to chemical (Nmass and Pmass) or
physiological plasticity (Amass and Rmass) (see Vaz et al., 2010;
Messier et al., 2016); and (ii) LES relationships should hold for
shade leaves, but the numerical values of the scaling exponents
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and normalization constants of some trait scaling relationships
may differ between sun and shade leaves.

MATERIALS AND METHODS

Study Site
This study was conducted in the Yangjifeng National Nature
Reserve of Jiangxi, southeastern China (117◦11′30′′∼117◦28′40′′
E, 27◦51′10′′∼ 28◦02′20′′ N, 1540.9 m a.s.l.). The reserve has a
typical humid mid-subtropical monsoon climate. The range of
annual precipitation average is 1870–2191 mm, 72–75% of which
falls from April to June. The range of average annual temperature
is 11.4–18.5◦C. The soil is a haplic lixisol. In August 2015, a 500
m × 500 m plot was established. The tree density was 703.5 trees
ha−1, mean diameter at breast height (DBH) was 11.77± 0.10 cm
(mean ± SE), mean height was 8.54 ± 0.06 m, mean crown
base height was 2.85 ± 0.02 m, and mean crown diameter
was 3.18 ± 0.02 m. The dominant species were Castanopsis
fargesii, Alniphyllum fortune, Litsea cubeba, Castanopsis carlesii,
Elaeocarpus sylvestris, and Schima superba.

Gas-Exchange Measurements
Branches for gas exchange measurements were collected in
August 2017. Seventy-five species, from 61 genera and 33
families, were selected based on abundance (representing 88.12%
of individuals with DBH ≥ 1 cm in the plot; Supplementary
Table S1). Three individuals were sampled from each species.
To minimize the confounding effects of leaf age (Wright et al.,
2006) and branch length (Niklas and Cobb, 2010), three current-
year branches (twigs) were selected from each of the canopy
top (sun leaves) and canopy bottom (shade leaves) for each
individual following the protocol of Sack et al. (2006). Branches
were collected from canopies and immediately placed in water
to reduce water loss. Embolisms were removed by re-cutting
branch ends under water (Yoder et al., 1994; Mori et al., 2010;
Michaletz et al., 2016; Kelly et al., 2017; Malhi et al., 2017). There
were no significant differences between branch traits from sun
and shade canopy positions (P > 0.05, t-tests) (Supplementary
Table S2). For each sampled tree, the photosynthetic photon
flux densities (PPFDs) of leaves at the sampled canopy locations
were measured on a sunny day with a LI-250A light meter
(LICOR, Lincoln, NE, United States). All the PPFDs of the sun
leaves (1172.25± 25.73 µmol m−2 s−1) were significantly higher
than that in the shade leaves (82.88 ± 3.23 µmol m−2 s−1)
(Supplementary Figure S1A). The PPFDs at the shade leaves
consisted of about 7.15% ± 0.36 (Supplementary Figure S1A)
of full sunlight in the sun leaves.

Gas-exchange measurements were conducted on six to nine
leaves from each branch. Leaves showing no evidence of disease
or herbivory were used for all measurements and kept hydrated
throughout the time measurements were taken and recorded.
Maximum net assimilation rates (Aarea; µmol m−2 s−1) and
respiration rates (Rarea) were estimated from light response
curves obtained using a LI-6800 portable photosynthesis
system and calculated by Photosynthesis (LICOR, Lincoln, NE,
United States). During measurements, leaf temperatures were

maintained at 25◦C, chamber CO2 was maintained at 400 p.p.m,
and flow rates were maintained at 500 mmol s−1. To obtain light
response curves, net assimilation rates were measured at PPFDs
of 2000, 1600, 1200, 900, 600, 300, 200, 100, 80, 50, 20, and 0 µmol
m−2 s−1 (Supplementary Figure S1B).

Leaf Mass per Area, Leaf Nitrogen, and
Leaf Phosphorus Content Measurements
All of the leaves from each branch were detached and scanned
using a flatbed scanner (Epson V39, Epson, Japan), yielding
a total of data from 7417 leaves. Leaf area was measured
from scanned images using Image J (National Institute of
Health, Bethesda, ML, United States). Leaf samples were dried
subsequently at 75◦C for 48 h before measuring dry weight.
Samples were then ground and passed through a 100-mesh sieve
(0.15 mm). The leaf nitrogen content per unit mass (Nmass,%) was
determined using an Element Analyzer (VARIO EL III Element
Analyzer, Elementar, Germany). The leaf phosphorus content per
unit mass (Pmass,%) was measured using the molydate/ascorbic
acid method and a continuous flow analyzer (SKALAR SAN++,
Netherlands) after H2SO4-HClO4 (4:1, v:v) digestion.

Data Analysis
Leaf Trait Plasticity
To evaluate whether the interspecies traits of sun leaves are
significantly different than those of shade leaves, traits were
compared using t-tests and linear regression analysis. For
each trait, an index of maximum within-canopy plasticity was
calculated as the quotient for sun leaves divided by that of shade
leaves following the protocol of Sack et al. (2006) after calculating
the average of a trait in sun and shade leaves at three taxonomic
levels (i.e., species, genus, and family). Linear mixed effect models
were fit using the lme4 packages in R (v.3.5.1; R Foundation for
Statistical Computing, Vienna, Austria) to determine the extent
to which the three different taxonomic levels contributed to
trait variation. Analyses showed that there were no significant
differences of leaf trait plasticity among the three taxonomic
levels (Table 1 and Supplementary Table S3) and that among-
individual and among-species differences together consistently
explained over 50% of the total trait variance with the exception
LMA (i.e., 48.57%) (Supplementary Figure S2). Thus, leaf trait
plasticity was expressed as the average plasticity of all species.

PCA Analysis
To check how sun and shade leaf traits variability is organized, a
principle component analysis (PCA) was conducted using species
as data points. All variables were log-transformed before analysis
to improve normality. PCAs were performed for the five traits
using the ape (Paradis et al., 2004) and vegan (Dixon, 2003)
packages in R (v.3.5.1; R Foundation for Statistical Computing,
Vienna, Austria). Bivariate correlations between each trait and
PCA axis 1 (PC1) and axis 2 (PC2) were evaluated using Pearson’s
correlation coefficient (r).

Pairwise Scaling Relationships
We examined bivariate scaling relationships between LMA,
Nmass, Pmass, Amass, and Rmass, and compared our results
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with those of a published dataset of global trait variation
(Wright et al., 2004). The formula y = βxα (Equation 1) was
used to examine bivariate trait relationships. To linearize this
relationship, Equation (1) was log-transformed to give the linear
form log (y) = log (β) + α log (x) (Equation 2), where y
and x are interdependent leaf functional traits of interest, β is
the normalization constant, and α is the scaling exponent (the
slope of the log-log linear bivariate plot). The linear formula was
then fit to data using model II standardized major axis (SMA)
regression (Warton et al., 2012) using the smatr package 3.4-3
in R (v.3.5.1; R Foundation for Statistical Computing, Vienna,
Austria). When no significant numerical differences between two
or more scaling exponents (P > 0.05) for comparable bivariate
comparisons were observed (e.g., sun vs. shade leaves), a common
scaling exponent was then estimated.

RESULTS

Variation of Traits for Sun and Shade
Leaves
Within a given canopy location (sun or shade), we observed more
than one order of magnitude variation in each of the five leaf
traits (Table 1). The most variable trait was Amass, with a 14-fold
range in sun leaves and a 7-fold range in shade leaves (Table 1
and Figure 1). In contrast, the least variable trait was Nmass, with
a 4-fold range in sun leaves and a 1-fold range in shade leaves
(Table 1 and Figure 1).

Shading had different effects on each of the leaf functional
traits (Table 1 and Figure 1). The LMA, Amass, and Rmass of
shade leaves were significantly lower compared with those of
sun leaves (Figure 1). Specifically, the mean values of Amass
and Rmass respectively were 113.79 nmol g−1 s−1 and 9.50
nmol g−1 s−1 in sun leaves, 66.51 nmol g−1 s−1 and 6.25
in nmol g−1 s−1 in shade leaves (Table 1). The plasticity of
Amass and Rmass was 1.80 ± 0.07 and 1.63 ± 0.09, respectively.
The mean value of LMA decreased from 83.68 g m−2 in
sun leaves to 75.25 g m−2 in shade. The plasticity for LMA
was 1.13 ± 0.03 (Table 1 and Figure 1). In contrast, no
significant differences between sun and shade leaves were
detected for Nmass and Pmass, although the plasticity of Nmass
(i.e., 1.02 ± 0.01) was somewhat greater than that of Pmass (i.e.,
0.98± 0.02) (Table 1).

PCAs of Sun and Shade Leaf Traits
The PC1 axis captured 73.32 and 69.24% of the total variation
in the five traits of sun and shade leaves, respectively, with all
traits contributing substantially to this axis (Table 2). The PC1
and PC2 axes captured 81.04% of the total variability across all
species (Table 2 and Figure 2). When sun and shade leaves were
combined, PC1 captured 67.90% of the total variation in the five
leaf traits, with all traits contributing substantially to this axis
(Table 2 and Figure 2).

All traits contributed substantially to the PC1 axis (Table 2).
Leaf Nmass and Pmass and physiological rates were negatively
correlated with PC1, whereas LMA was positively correlated with
PC1 (Table 2).

Scaling Relationships of Sun and Shade
Leaf Traits
Consistent with sun leaves, robust correlations among leaf
functional traits were also observed in shade leaves (Table 3,
4). With the exception of LMA vs. Nmass and LMA vs. Pmass,
the numerical values of scaling exponents were significantly
different from ± 1.0 (Table 4), indicating that traits manifest
allometric rather than isometric scaling relationships. The scaling
exponents of all the bivariate trait relationships did not differ
significantly between the sun and shade leaves (Table 4 and
Figure 3). Indeed, generalizable scaling relationships were
evident within each of the bivariate trait relationships. In the
particular case of photosynthetic rates, the scaling exponents
governing the N content for sun and shade leaves were 1.38
and 2.03 (common slope = 1.67), and 1.41 and 2.07 (common
slope = 1.71), respectively (Table 3 and Figure 3). However,
shading decreased the numerical values of the normalization
constants for physiological metabolic rates vs. chemical traits and
LMA scaling relationships, as well as decreased the numerical
values of the normalization constants of Amass and Rmass (Table 4
and Figure 3). In contrast, the normalization constants between
Nmass (and Pmass) vs. LMA as well as Nmass vs. Pmass were
unaffected for leaves collected in the shade (Table 4 and Figure 3).

The difference of the normalization constants between sun
and shade leaves was significantly positively correlated with the
differences of plasticity of the related functional traits (Figure 4).

DISCUSSION

The goal of this paper was to evaluate the universality
of LES relationships in the context of within-canopy light
gradients. This goal was approached in two ways. First,
we examined the leaf functional trait plasticity for sun
and shade leaves. Second, we evaluated whether species-level
differences in trait plasticity affected the canonical correlations
predicted by the LES. In general, our results demonstrate only
minimal to moderate variation in traits across leaves collected
from different canopy light gradients (i.e., the relationships
between sun and shade leaves scaling relationships do not
statistically significantly differ), indicating that phenotypic trait
variation across species is constrained by convergent leaf
economic spectra.

We observed moderate levels of leaf functional trait plasticity
across species within-canopy light gradients, indicating that
leaf functional traits across a wide range of light conditions
appear to be in equilibrium with the environment. These results
are consistent with those of previous studies. For example,
Sack et al. (2003) reported a limited LMA plasticity for mixed
Quercus forests in southern Spain (i.e., average within-canopy
plasticity was 1.5 or less). Wright et al. (2006) quantified the
leaf N and P contents for 28 woody species along vertical
canopy profiles and found that Pmass varied in a manner
consistent with optimal allocation, whereas LMA and Nmass
decreased with canopy depth in only two and five species,
respectively. Iio et al. (2005) found that there was no significant
difference in Nmass between the best-lit and the most shaded
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TABLE 1 | Summary of traits for sun and shade leaves from 75 tree species in a subtropical forest.

Traits Sun-leaves Shade leaves Plasticity

Range Mean ± SE Range Mean ± SE Range Mean ± SE

LMA (g m−2) 38.22–153.23 83.68 ± 3.20* 31.31–141.29 75.25 ± 2.60* 0.62–2.35 1.13 ± 0.03c

Amass (nmol g−1 s−1) 20.58–291.22 113.79 ± 6.51* 21.89–177.83 66.51 ± 3.71* 0.90–3.82 1.80 ± 0.07a

Rmass (nmol g−1 s−1) 1.44–37.08 9.50 ± 0.78* 1.21–26.04 6.25 ± 0.50* 0.64–5.53 1.63 ± 0.09b

Nmass (%) 0.83–3.68 2.04 ± 0.07 0.89–3.53 1.99 ± 0.06 0.89–3.53 1.02 ± 0.01d

Pmass (%) 0.05–0.20 0.11 ± 0.004 0.05–0.20 0.12 ± 0.004 0.78–1.50 0.98 ± 0.02d

Significant differences are denoted in bold; asterisks indicate significant differences in trait means between sun and shade leaves, while superscripted letters indicate
significant differences in mean plasticity among traits (t-test, P < 0.05).

FIGURE 1 | Histogram with normal distribution and shade-sun trait relationships for functional traits of sun and shade leaves from the same canopy. The dashed
lines indicate 1:1. (A) Leaf mass per area (LMA); (B) mass-based net assimilation rate (Amass); (C) mass-based respiratory rate (Rmass); (D) mass-based nitrogen
content (Nmass); (E) mass-based phosphorus content (Pmass). *indicates a significant difference at P < 0.05 and ***indicates a significant difference at P < 0.001.

leaves within the crown of a Fagus crenata tree. We also
found that shading had the most influence on leaf physiological
traits (Amass and Rmass) followed by morphological traits (i.e.,
1.13 ± 0.04 times), but shading had no disenable effect on
chemical (N and P) traits (Table 1). We suggest that these
modest phenotypic patterns may reflect adaptations to maximize
photosynthetic carbon gain.

As predicted, regardless of whether the data were drawn from
sun or shade leaves, species at the fast-return end of the LES
had high leaf nutrient contents, high Amass and Rmass, and low
LMA. At the slow-return end of the spectrum, species had high
LMA, low nutrient contents, and low Amass and Rmass (Figure 2).
Many other studies have reported that trends in the LES apply
equally well to species growing in resource-poor environments.
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TABLE 2 | Bivariate relationships between individual traits and the scores of the first and second PC for sun leaves, shade leaves and whole-canopy economic spectra.

Canopy location Explained variation (%) logLMA logNmass logPmass logAmass logRmass

sun leaves PC1 73.32 0.86** −0.86** 0.86** −0.81** −0.89**

PC2 10.84 −0.25* −0.40** −0.39** 0.38** 0.16

shade leaves PC1 69.24 0.85** −0.87** −0.83** −0.80** −0.82**

PC2 11.03 −0.20 −0.34** −0.45** 0.37** 0.25*

All leaves PC1 67.90 0.82** −0.88** −0.85** −0.76** −0.87**

PC2 13.14 0.17 0.37** 0.40** −0.49** 0.18

Significant correlations are denoted in bold with asterisks; * indicates a significant correlation at r < 0.05 and ** indicates a significant correlation at r < 0.001.

FIGURE 2 | Principal component analysis (PCA) of morphological, chemical, and physiological traits of sun and shade leaves for 75 woody species. Sun and shade
group was separated by ellipsoid at 68% normal probability. The PC1 scores between sun and shade leaves were not significantly different (P > 0.05).

TABLE 3 | Scaling exponents for bivariate relationships among mass-based traits of sun or shade leaves.

Canopy location Leaf traits log LMA log Amass log Nmass log Pmass log Rmass

Sun leaves log LMA −0.65 (−0.77, −0.55) −1.09 (−1.30, −0.91) −0.91 (−1.09, −0.75) −0.50 (−0.58, −0.43)

log Amass 0.44 (75) 1.67 (1.38, 2.03) 1.39 (1.16, 1.68) 0.77 (0.65, 0.91)

log Nmass 0.41 (75) 0.31 (75) 0.83 (0.72, 0.96) 0.46 (0.39, 0.55)

log Pmass 0.38 (75) 0.35 (75) 0.62 (75) 0.55 (0.47, 0.66)

log Rmass 0.59 (75) 0.46 (75) 0.45 (75) 0.46 (75)

Shade leaves log LMA −0.65 (−0.78, −0.54) −1.11 (−1.32, −0.94) −0.87 (−1.05, −0.72) −0.49 (−0.58, −0.41)

log Amass 0.40 (75) 1.71 (1.41, 2.07) 1.33 (1.10, 1.62) 0.75 (0.62, 0.90)

log Nmass 0.45 (75) 0.32 (75) 0.78 (0.67, 0.91) 0.44 (0.36, 0.53)

log Pmass 0.32 (75) 0.30 (75) 0.56 (75) 0.56 (0.46, 0.68)

log Rmass 0.41 (75) 0.36 (75) 0.36 (75) 0.33 (75)

Standardized major axis exponents with 95% confidence intervals are given in the upper right hand of the matrix (y variable is column 1, x variable in row 1). Coefficients
of determination (r2) and sample sizes (n, in brackets) are given in the lower left hand of the matrix. All relationships are highly significant, P < 0.001.

For example, Liu et al. (2010) found that correlated pairs of leaf
and root traits held equally well for species adapted to semi-arid
to arid environments. Correlations among leaves traits in forest
understory ferns have also been shown to hold true for patterns
reported for seed plants (Karst and Lechowicz, 2006). Therefore,
resource availability appears to have only modest effects on LES
trends (Wright et al., 2004).

It is noteworthy that sun and shade leaves do not depart
from each other on the PC1 axis (Figure 2), indicating that

trait plasticity does not change LES relationships between the
two leaf-types, thereby supporting the expectations of the leaf-
level carbon economics theory (Chabot and Hicks, 1982; Blonder
et al., 2011; Michaletz et al., 2015, 2016). In contrast, Zhao
et al. (2016) found that sun-acclimated species had a greater
capacity to transport nutrients and higher rates of resource
acquisition, whereas the reverse was true for shade- acclimated
species manifesting slow-growth strategies. It is understandable
that the economics strategies of sun and shade leaves will differ
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TABLE 4 | Scaling exponents for bivariate relationships among mass-based traits of sun and shade leaves.

Leaf traits log LMA log Amass log Nmass log Pmass log Rmass

log LMA −0.65 (−0.74, −0.57) −1.10 (−1.24, −0.97) −0.89 (−1.01, −0.78) −0.50 (−0.55, −0.44)

log Amass (150)*** 1.69 (1.48, 1.93) 1.37 (1.19, 1.56) 0.76 (0.67, 0.86)

log Nmass (150)** (150)*** 0.81 (0.73, 0.90) 0.45 (0.40, 0.51)

log Pmass (150) ns (150)*** (150)ns 0.56 (0.49, 0.63)

log Rmass (150)*** (150)** (150)*** (150)***

The common standardized major axis exponents with 95% confidence intervals are given in the lower left section of the matrix (y variable is column 1, x variable in row
1; see Equation 1). * indicates a significant difference at P < 0.05, ** indicates a significant difference at P < 0.01, and *** indicates a significant difference at P < 0.001.
Sample sizes (n) are given in brackets in the lower left hand of the matrix.

FIGURE 3 | Leaf Economics Spectrum (LES) scaling relationships for sun and shade leaves from this study compared with those from the global dataset of Wright
et al. (2004). The numbers in parenthesis indicate 95% confidence intervals of scaling exponents. ns indicates no significant difference between intercepts of sun and
shade leaves, ** indicates a significant difference at P < 0.01, and *** indicates a significant difference at P < 0.001.

among different plant functional groups, such as tree and shrub
species. Ordoñez et al. (2010) have demonstrated that qualitative
attributes, such as growth form, woodiness, and leaf habit, can
differ in accord with different environmental factors. In this
context, our data show that deciduous and evergreen species
cluster on the opposing ends of the LES likely because of their
different acquisition strategies (Supplementary Table S4).

The LES does not consider the effects of within-canopy light
availability on whole-plant performance. It implicitly assumes
that within-canopy light gradients do not alter general scaling
relationships. Our analyses support this supposition. The data
show that the numerical values of the scaling exponents of
key LES relationships are not statistically different between
sun and shade leaves (Table 4 and Figure 3). For example,
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FIGURE 4 | Bivariate plot of the difference of the normalization constants between sun and shade leaves against the difference of plasticity of two related functional
traits. D-value: the difference value.

the scaling exponents for the Amass vs. Nmass are numerically
indistinguishable in sun and shade leaves (with a common slope
of 1.69, 95% CIs = 1.48 and 1.93, P > 0.05). These similarities
indicate that the LES predicts coordinated shifts among traits due
to the fundamental biological trade-offs that underpin the LES
and constrains leaf phenotypic plasticity across the subtropical
forest canopy light gradients examined in this study (Reich
et al., 2003; Shipley et al., 2006). Specifically, differences in
species-level responses to changes in light conditions may not be
sufficiently different to alter the relative positions of species along
trait axes. This finding is consistent with the study of Keenan
and Niinemets (2016) who report that the scaling relationships
between LMA and both Amass and Nmass are similar in sun
and shade leaves (see Figure 3 in Keenan and Niinemets, 2016).
Furthermore, the scaling exponents between key leaf functional
traits of shade and sun leaves do not differ numerically, even
when evergreen and deciduous woody species are examined
separately (Supplementary Table S4).

The numerical values of the scaling exponents for each of
the leaf morphology vs. physiological scaling relationship in our
study are all numerically larger than those in the world-wide
data set, and fall within the lower region of the world-wide
pattern of LMA (Table 4 and Figure 3), which consists of data
drawn from plants growing at comparatively high temperatures
in lower latitudes (Poorter et al., 2010). For the world-wide sun
leaf dataset, the scaling relationship for LMA vs. Nmass (Table 4)
is negatively allometric, i.e., a = -1.28 (95% CIs = -1.32 and 1.24
(Wright et al., 2004). Extensive N deposition tends to increase
leaf N content (Peñuelas et al., 2015), which could explain the

numerical difference observed between our data and those using
the world-wide data set. The scaling exponents of the Nmass vs.
Pmass scaling relationship for sun and shade leaves (i.e., 0.77 and
0.78, respectively) are similar to those reported by Niklas and
Cobb (2005) who report a leaf Nmass vs. Pmass scaling exponent
approximately equal to 0.75.

However, the scaling exponent of Nmass vs. Pmass in this
study is numerically greater than that in the world-wide data
set (with a slope 0.66) (Table 4 and Figure 3). A number of
factors may help to explain this difference, particularly since our
data are drawn from species living in a subtropical community.
For example, Tian et al. (2017) report large variations in leaf
Nmass vs. Pmass scaling relationships across latitudinal zones,
wherein scaling exponents tend to numerically increase from
boreal to tropical regions. In addition, the growing season and
leaf longevity are longer in subtropical than in boreal regions, and
leaf growth rates and P-demands are greater during the growing
season with increasing latitude (Yan et al., 2017). Furthermore,
soil P availability relative to N availability tends to increase with
increasing latitude or from humid to arid regions, resulting in
decreasing leaf N:P ratios (Han et al., 2005). These relationships
help to explain at least in part why the leaf Nmass vs. Pmass scaling
exponent reported here is numerically greater than that observed
using a world-wide spectrum of data.

The N:P ratio in our study was also higher (18.37± 0.36) than
that reported by Han et al. (2005) (i.e., N:P = 14.4) for plants
across China, or He et al. (2008) for temperate and cold grasses in
North China (i.e., N:P = 15.3). Most studies have concluded that
P rather than N is the main factor limiting plant growth in the
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subtropical region (e.g., Reich et al., 1997; Han et al., 2005), which
is consistent with the higher N:P ratio observed for the leaves
examined in our study. This is also consistent with the larger
scaling exponents observed for the LMA and Amass vs. Pmass
relationships (Table 4 and Figure 3), and the lowerRmass reported
here compared to those for the world-wide data set (Table 4
and Figure 3).

Of particular interest in this regard is the observation that,
although vastly different canopy irradiance gradient exhibit
similar scaling exponents for any given trait relationship,
the numerical values of the normalization constants of LES
relationships differ significantly (Figure 3). These results may
reflect quantifiable differences in species evolutionary and
individual life histories (e.g., light) (Niklas and Hammond,
2019). Although the normalization constant is as biologically
meaningful as the scaling exponent, little attention has been
paid to how or why the normalization constant differs across
data sets, or how it changes during the course of evolution by
natural selection (Niklas and Hammond, 2019). In our study, the
differences in the normalization constants of traits between sun
and shade leaves were positively correlated with the differences
in their related plastic index (Figure 4). This suggests that
the variations in normalization constants might be attributable
to differences in trait plasticity. N was allocated to metabolic
functions in sun leaves and then a leaf with very high net gas
exchange characteristics was constructed. Whereas shade leaves
appeared to show excess uptake of N, which could be used for
future use or allocated for non-photosynthesis (Chapin, 1980;
Ågren, 2008). Therefore, at any given Nmass, Amass, and Rmass
were higher in sun leaves than in shade leaves. Furthermore,
the constants for Amass vs. Rmass and leaf morphology vs. Nmass
are not significantly different for sun and shade leaves for
either evergreen or deciduous woody species (Supplementary
Table S5), indicating that differences in normalization constants
for Amass vs. Rmass and leaf morphology vs. Nmass across species
are likely caused by differences of leaf habits among species in
our data set. It is important to note that this inferences is drawn
based on data drawn from subtropical communities. Because
our study deals with only a relatively small community, more
studies in different biomes are needed to confirm the generality
of our findings.

The effects of within-canopy light gradients on leaf traits have
been incorporated into canopy process (and land surface) models
to predict canopy carbon flux and forest production (e.g., Ryu
et al., 2011; Bonan et al., 2012). However, only some dynamic
global vegetation models concerned with photosynthesis at
the leaf level explicitly or implicitly consider the effects
of shading within-canopy (Prentice et al., 2007). Our data
contribute to a general LES for both sun and shade leaves

and can inform future attempts at modeling whole canopy
processes, particularly attempts to couple leaf photosynthesis and
position within-canopy.

CONCLUSION

Although the light availability gradient throughout canopies
significantly affects physiological and morphological leaf traits,
the scaling exponents of pairwise functional trait relationships
for five mass-based leaf traits in sun and shade leaves do not
numerically differ. These results support the proposition that
a “canonical” LES exists and can be applied to shade leaves.
Future progress toward understanding the scaling relationships
elucidated by the LES nevertheless requires additional data
with which to assess the effects of environmental factors
on leaf traits, because it is becoming increasingly clear
that the LES relationships are dependent on the species
composition of communities.
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