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Increasing dry matter yield (DMY) is the most important objective in perennial ryegrass
breeding programs. Current yield assessment methods like cutting are time-consuming
and destructive, non-destructive measures such as scoring yield on single plants by
visual inspection may be subjective. These assessments involve multiple measurements
and selection procedures across seasons and years to evaluate biomass yield
repeatedly. This contributes to the slow process of new cultivar development and
commercialisation. This study developed and validated a computational phenotyping
workflow for image acquisition, processing and analysis of spaced planted ryegrass and
investigated sensor-based DMY yield estimation of individual plants through normalized
difference vegetative index (NDVI) and ultrasonic plant height data extraction. The DMY
of 48,000 individual plants representing 50 advanced breeding lines and commercial
cultivars was accurately estimated at multiple harvests across the growing season.
NDVI, plant height and predicted DMY obtained from aerial and ground-based sensors
illustrated the variation within and between cultivars across different seasons. Combining
NDVI and plant height of individual plants was a robust method to enable high-
throughput phenotyping of biomass yield in ryegrass breeding. Similarly, the plot-level
model indicated good to high-coefficients of determination (R2) between the predicted
and measured DMY across three seasons with R2 between 0.19 and 0.81 and root
mean square errors (RMSE) values ranging from 0.09 to 0.21 kg/plot. The model was
further validated using a combined regression of the three seasons harvests. This
study further sets a foundation for the application of sensor technologies combined
with genomic studies that lead to greater rates of genetic gain in perennial ryegrass
biomass yield.

Keywords: high-throughput phenotyping, biomass, perennial ryegrass, NDVI, plant height, computational
workflow
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INTRODUCTION

Increasing biomass yield is the most important trait to improve
during the breeding of perennial ryegrass (Smith et al., 2001;
McDonagh et al., 2016; Herridge et al., 2018; Ghamkhar et al.,
2019). However, biomass yield is a complex trait, which varies
with the number and density of tillers, regrowth after defoliation
and growth habit; across a range of seasons, environments, and
plant age (Yates et al., 2019). Furthermore, the early stages of
perennial ryegrass breeding programs depend on the assessment
of populations based on large numbers of genotypes planted as
spaced plants or small sward plots in the field (Lootens et al.,
2016; Ghamkhar et al., 2019). These assessments involve multiple
measurement and selection procedures across seasons and years
to repeatedly evaluate biomass yield (Leddin et al., 2018). Biomass
yield assessment methods are time-consuming, mainly relying
on visual scores or destructive harvesting, drying and weighing
of samples. This contributes to the slow process of new cultivar
development and commercialization. The application of sensor-
based high-throughput phenotyping (HTP) technologies on
aerial and ground-based mobile platforms have the potential
to offer a non-destructive, rapid and efficient method to assess
biomass yield in the field (Inostroza et al., 2016; Gebremedhin
et al., 2019b; Ghamkhar et al., 2019).

The possibility for the application of HTP for automated
biomass assessments on an objective and accurate basis has been
demonstrated for forage grasses (Walter et al., 2012; Barrett
et al., 2015). In other species, various remote sensing methods
have been calibrated and validated to conduct measurements
at a single plant, plot or experimental units, paddock and
landscape scales (Rahman et al., 2014; Hunt et al., 2015;
Inostroza et al., 2016; Punalekar et al., 2018). Satellite-based
remote sensing methods have been used to assess grassland
biomass at a landscape scale (Barrachina et al., 2015). However,
low temporal and spatial resolution limits the applicability of
satellite remote sensing for breeding (Tattaris et al., 2016). For
instance, satellite imaging tools have spatial resolution ranging
from 1.24 to 260 m (Chawade et al., 2019), which limits
their application on small experimental plots. Proximal sensing
platforms have the advantage of capturing phenotypic data from
thousands of genotypes at high spatial and temporal resolution
(Haghighattalab et al., 2016). The platforms equipped with
various sensors may function to capture information of multiple
traits from field plots and individual plants.

A variety of aerial and ground-based HTP platforms have
been developed for non-destructive biomass estimation of wheat
(Yue et al., 2017; Jimenez-Berni et al., 2018), barley (Bendig
et al., 2014; Brocks and Bareth, 2018), triticale (Busemeyer et al.,
2013), and rice (Devia et al., 2019). Specifically, small grassland
experiments (10 sampled plots of 1 m2 each), demonstrated
non-destructive biomass estimations of timothy and ryegrass
from plant height (Rueda-Ayala et al., 2019). Other experiments
of biomass estimation on ryegrass (Borra-Serrano et al., 2019)
and a mixture of timothy and meadow fescue (Viljanen et al.,
2018) were demonstrated using aerial platforms. In these studies,
vegetative indices, plant height and photogrammetric features
were validated, and the models from these surrogates were

used to develop biomass estimation models under plots and
small paddock level (n ≤ 96 sampled plots) experiments. Thus,
the general application of aerial and ground-based phenotyping
methods in these experiments showed there is a potential
to increase throughput and hence to improve the precision
to individual plants level biomass yield estimation. Therefore,
development and validation of a phenotyping computational
workflow of data acquisition, processing and analysis could
be applied to implement automated biomass yield estimation
in large-scale ryegrass breeding program. We have recently
shown that normalized difference vegetative index (NDVI) and
plant height correlated with perennial ryegrass biomass yield in
four seasons (Gebremedhin et al., 2019a). The results showed
combining NDVI and plant height to be a robust method
to enable high-throughput phenotyping of biomass yield in a
ryegrass breeding program.

The objective of the study was to validate a computational
phenotyping workflow for image acquisition, processing and
analysis of spaced-planted perennial ryegrass to estimate the
biomass yield of 48,000 individual plants through NDVI and
plant height data extraction. The workflow resulted in the
accurate, non-destructive biomass yield estimation of spaced
planted perennial ryegrass across growing seasons in a field
environment. The outcome of the study contributes to the
application of sensor technologies combined with genomic
selection for greater rates of genetic gain in forages.

MATERIALS AND METHODS

Field Experiment and Plant Material
Advanced perennial ryegrass breeding lines and commercial
cultivars were established in a field experiment in June 2016
at Agriculture Victoria Research, Hamilton Centre, Victoria,
Australia (37.8464◦S, 142.0737◦E) (Supplementary Figure 1),
as part of a project to implement genomic selection (GS) in
perennial ryegrass. Fifty advanced perennial ryegrass breeding
lines and commercial cultivars were planted in a randomized
complete block design with ten replications of each. Each line or
commercial cultivar was coded 1–50 to conceal their identities as
requested by the owners of the breeding lines and cultivars. Each
replication was considered as a plot and contained three rows of
32 spaced plants each (i.e., 96 plants/plot). The experimental unit
was, therefore, a plot of 8 × 1.8 m. The spacing between plants
was 25 cm and between rows was 60 cm. The GS experiment
contained a total of 48,000 individual plants in 10 blocks. The
total area of the field experiment was 8,100 m2.

Phenotypic Data Collection
For the non-destructive biomass estimation, ground and aerial-
based proximally sensed data were collected a day before each
harvest. The harvests were allocated to seasons according to
the protocol of Leddin et al. (2018). The field experiment was
harvested three times in 2018, one in June 2018 called winter
2018, and two in the late spring season of October 2018 and
November 2018 called late-spring2018_1 and late-spring2018_2,
respectively. No harvests were conducted in autumn or summer
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due to slow growth and drought. In these three harvests, two sets
of data collection scenarios were conducted at the same time.

Firstly, 480 individual plants from three breeding lines were
selected and manually harvested at 5 cm above ground level
in each of the seasonal harvests. The manually harvested
measurements were used to develop and validate dry matter yield
(DMY) estimation model from the combinations of NDVI and
plant height values from sensors (Gebremedhin et al., 2019a).
The models developed from these individual plants were used
to estimate biomass of the 48,000 plants for the winter2018,
spring2018_1, and late-spring2018_2 seasonal harvests.

Secondly, mechanical harvesting of the 500 plots of the GS
field was conducted using a Gianni Ferrari combine harvester
(Gianni Ferrari s.r.l., Reggiolo, Italy) to validate the plot level
correlation between estimated and measured DMY. In the late-
spring2018_1 and late-spring2018_2 measured DMY data wasn’t
collected from 100 plots since these plots were allocated for
flowering score experiment. Plant height data from a few plots
of the late-spring2018_2 was not received due to technical issues
of the Phenorover driving at that specific date.

Aerial Images Acquisition and
Processing
Multispectral images acquisition was conducted using a
RedEdge-M sensor (RedEdge, MicaSense Inc., Seattle, WA,
United States) attached to DJI M100 quadcopter (DJI Technology
Co., Shenzhen, China). The RedEdge-M capture images
simultaneously at five bands including blue (465–485 nm), green
(550–570 nm), red (663–673 nm), red edge (712–722 nm), and
near-infrared (820–860 nm). It also has GPS and sensor and
incident light sensors. The flight mission was planned by Pix4D
Capture software.

Aerial images were collected using the unmanned aerial
system (UAS) on a weekly basis over the GS trial site, and
three sets of data from 2018 (winter2018, late-spring2018_1,
and late-spring2018_2) was used for this analysis. Imaging dates
were synchronized with each harvest. Flight operations were
conducted under bright, sunny weather conditions to minimize
noise from environmental variation. The UAS flight altitude
was set at 20 m above ground level, and the flight speed was
6 m/s with 75% side and forward overlap of images. At this
flight altitude and speed, the spatial resolution of the images
was 2 cm/pixel. The same flight path was followed on each
date. Multispectral ground calibration targets (Tetracam Inc.,
Chatsworth, CA, United States) with known reflectance values
(6, 11, 22, and 33%) was used for radiometric calibration by
developing regression equation between digital numbers (DN) vs.
the reflectance percentage.

Computational Workflow for Data
Extraction
Before the first flight, nine ground control points (GCPs),
(50× 50 cm checkered linoleum flooring) were distributed across
the field experiment to improve the georeferencing accuracy. The
GCPs were used for manual assignment of absolute geographic
coordinates to the ortho-mosaic images. For image processing,

Pix4Dmapper Pro (version 4.3.31 Pix4D, Lausanne, Switzerland,
htttps://pix4d.com) was used to process raw images into ortho-
mosaics. The workflow of analyzing geospatial images of spectral
signals (Figure 1) is described below.

Ortho-Mosaic Processing, Calibration, and NDVI
Extraction
Ortho-mosaic processing have five main steps; including image
alignment, image geo-referencing, building dense point clouds,
ortho-mosaics, and vegetative indices map, were followed for
image processing. For detailed processing steps, please refer
to following previous studies (Khan et al., 2018; Dobbels and
Lorenz, 2019). Ortho-mosaic images were generated and stored
as geo-referenced TIFF files. Assessment accuracy of processed
ortho-mosaic images was conducted by assessing the quality
report from the Pix4D processing. After the ortho-mosaic
processing was completed, reflectance calibration and NDVI
extraction were conducted using eCognition. For radiometric
calibrations, linear correlations were developed between ortho-
mosaic images of DN and their known reflectance values for
each band. The equation developed was used to convert DN to
corrected reflectance values of the ortho-mosaic TIFF file. The
corrected ortho-mosaic TIFF file was used to develop the NDVI
extraction workflow in eCognition. NDVI was calculated from
the red and near-infrared reflectance values (Khan et al., 2018).

We generated a polygon as the boundary of each row of
32 plants as well as a polygon around the boundary of each
individual plant with an identification number (plant ID) from
the calibrated NDVI images above. The process comprises of four
components:

Perspective Transform
Four corner GCPs in the field were used to form a polygon
bounding the area of interest. The area contained in this
polygon for each NDVI image was subsequently cropped
and rotated into a rectangular shape using a perspective
transformation (Figure 2), where the plant rows and blocks
were essentially orthogonal to the image axes. Identification of
plant row polygons.

A set of 1,500 polygons, each of which contains a single row
of plants, was generated based on each transformed NDVI image
(time point). The best polygon for each plant row, which we refer
to as a consensus polygon, was subsequently chosen and applied
to all downstream analysis later.

Plant rows (Figure 3D) for each transformed NDVI image
were identified using projection methods, whereby the sum of
the image pixels along the image columns and image rows was
used to produce vertical and horizontal projection profiles. These
profiles were then processed (Figure 4) to identify the centers of
each trough (low-intensity regions) separating either the plant
blocks (Figure 3B) or the plant rows (Figure 3D). Briefly: first,
the plant blocks were identified by taking the projection of the
image pixels values along the x-axis as shown in Figure 3A where
the horizontal projection is seen in the profile to the right of
the sub-image. The actual processing steps used to identify the
troughs between the plant-blocks are laid out in Figure 4, from
which it is seen that only one external parameter is required;
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FIGURE 1 | Workflow of analyzing geospatial images of spectral signals taken by REM sensor. Each circle represents a processing step and each rectangle
represents an intermediate data type.
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FIGURE 2 | Transformation of GeoTIFF images based on 4 corner GCPs. The
green points are GCPs and the red polygon is the boundary for the
perspective transformation.

that is the expected length of the trial plant rows. Next, once
each plant block was isolated (Figure 3C) the individual plant
rows were then identified using the same process outlined in
Figure 4 in each plant block, but where the projection was along
the y-axis, and the plant-row length parameter was replaced with
the expected plant width/diameter.

The edges associated with each plant-block and plant-row
(Figure 4D, blue vertical lines) were then used to construct an
initial estimate of each plant-row polygon/box (Figure 5A). As
can be seen in Figure 5A, the initial estimates of the plant-
row boxes underestimated the extent of each box in the vertical
direction. The amount of underestimation in this case was
deliberate and was controlled by the size of the erosion in the
profile processing (Figure 4B). This was done to compensate for
the lack of alignment in the actual start and end vertical position
of each planted plot-row in each block (Figure 5A). However, this
meant the trial plants between two vertically aligned plant-boxes
were not assigned to a plant-row box. Therefore, to assign each
of these plants to a plant-row-box a box growing procedure was
developed as shown in Figure 5B.

In the box growing procedure, each initial plant-row box
(Figure 5A) is linked with the boxes directly above and or below
it. Each initial plant-row box is linked to at most two other
boxes. The region between two linked boxes can be defined
by a rectangle, with the top edge of the link delineated by the
bottom edge of the top box, and the bottom edge of the link
delineated by the top edge of the lower box. The sides of the
rectangular linking region are defined by the minimum and
maximum pixel x-positions taken from the intersection of the
x-positions defined by the top and bottom boxes. Therefore, the
width of a linked region is defined by the maximum x-position
minus the minimum x-position plus 1.

Next, for each of the linking regions, a projection profile was
constructed from the row-wise sums of the pixels in each of
the rows in the linking region. Let such a profile be represented
as f(x), where x∈{1,. . .,n} and n is the number of image pixel-
rows between the linked boxes. f(1) represents the sum of pixels
along the top edge of the link and f(n) represents the sum of the
pixels along the bottom edge of the link. Let t represent a positive
threshold value. The threshold t is set to the average background
(non-plant) pixel intensity and is scaled during box growing to
the number of pixels between the upper and lower edges of the
growing boxes. This threshold can be determined from the image

FIGURE 3 | Identification of plant blocks and plant rows. (A) Partial view of an
NDVI UAV field image. The trace to right of this image represents the sum of
the pixel values along each row of the image producing a vertical profile. (B)
Overlay of identified horizontal dividing lines separating the four plant blocks.
(C) The projection method applied to each plant block was used to identifying
the plant rows in each plant block. Here the horizontal profile seen at the
bottom of (C) constitutes the sum of the pixels along each pixel column within
the given block. (D) Overlay showing the separation obtained between
adjacent plant rows for a particular block.

or can be supplied by the user. The details of the box growing
procedure are outlined in the following pseudo-code:

Let j = 1; k = n; a = 0; s =
∑n

i=1f(i); t = specified threshold
width = number of pixels in a link row

while(j < k) {
if (f(j) > f(k))

a += f(j);
j++;

else if(f(j) == f(k))
a += f(j) + f(k);
j++; k–;

else
a += f(k);
k–;

t1 = t * width * (n-j+1);
if(s-a <= t1)

break;
}
Add to bottom edge of top box j-1 rows;
Add to top edge of bottom box n-k rows;

Choosing Consensus of Plant Row Polygons
As the plant row polygons were detected for each image
separately, we chose a best set of polygons that could be applied
to all downstream analysis. In order to choose the most stable
set of polygons, the variance of the area of the 1,500 polygons
for each transformed NDVI image (time point) was calculated
and compared across all time points. The plant row polygons
identified from the image captured at 31/03/2017 had the least
variance in polygon area and were chosen as the consensus.

Individual Center Detection
To identify single plants within the GS field trial, we applied the
following 2-step process.
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FIGURE 4 | Profile processing. (A) Shows the projection profile from nine plant blocks. The blue overlay shows the result of performing a morphological opening
using a line structuring element of length (plant row length)/2. (B) The opening was then processed using an erosion using a line structuring element of length (plant
row length)/3. (C) Inverted regional minima. The eroded profile was processed to locate its regional minima. (D) Red vertical lines give the centers of each identified
regional minima, while the blue vertical gives the boundary edge of each regional minima identified.

FIGURE 5 | Plant-row box growing results. (A) Initial estimate of plan-row
boxes. (B) The same plant-row boxes after box growing.

Firstly, a center point of each individual plant was
identified. The NDVI ortho-mosaic TIFF image (captured
date: 31/03/2017), from which the consensus of plant row
polygons was developed, and subsequently processed in Pix4D
was imported into eCognition (eCognition developer 9.2,
Trimble, Munich, Germany). The template editor algorithm in
eCognition was used to allow for the identification of individual
plants. A test template was created by selecting 35 samples
(Width: 20; Height 20; Context: 4) which were representative
of various sizes of perennial ryegrass plants. The correlation
between the generated test template and selected samples was
0.774. A small-region of the NDVI layer was randomly selected
to validate the generated template and predict individual plants

within the area selected. The identified plants within template
were then manually verified by the user as being correct, false, or
unsure predictions to allow eCognition to refine the prediction
model. After the template validation, test parameters values were
obtained [ground truth tolerance (pixels): 3 and threshold: 0.6].
The template applied to the test region correctly identified 281
plants, missed 18 plants and incorrectly identified 2 samples
as plants. The generated template was then updated based on
the test area and the updated template, which had a sample
correlation (0.917) to the samples within the selected area. This
template matching algorithm was then applied to the trial
area. All points predicted outside of the plant-row box was
discarded. Manual visual quality control was performed within
each plant-row box and further points added or removed to
ensure that it was correct representative of the plants within the
image were included.

Individual Polygon Detection
Once all plant-row-boxes were constructed, and all plant centers
identified, a simple procedure was used to assign each plant-
center to its enclosing plant-row-box. Once all plant-centers were
assigned to a plant-row box, individual plant-boxes needed to
be constructed around each plant center. This was done by (1)
using the midpoint between adjacent plants-centers to create a
horizontal line connecting the left and right edge within each
plant-row-box and (2) the enclosing boxed region containing
a plant-center was then identified and used to determine the
coordinates for each plant-box. Consequently, each plant-row
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polygon was split into 32 individual plant polygons (bottom right
Figure 1). Each individual plant polygon was also annotated by
an identification number (plant ID) and was used to calculate the
NDVI statistics for each plant in eCognition.

Ground-Based Plant Height Data Acquisition and
Processing
In the ground-based platform, “PhenoRover,” a Polaris ranger
side-by-side vehicle was used for ryegrass morphometric data
collection. Details of the PhenoRover platform and data
processing method was discussed in our previous paper
(Gebremedhin et al., 2019a). In brief, the vehicle has six ultrasonic
sonars for plant height measurement attached to a welded
steel bar at 0.6 m above-ground. For accurate geolocating
of each sensor’s data, a single Real-Time-Kinematic Global
Navigation Satellite System (RTK-GNSS) unit was placed on the
top of the vehicle. Sensors data was stored on a data logger
(CR3000, Campbell Scientific, Inc., Logan, UT, United States).
For extracting data, we first projected the latitude and longitude
coordinates to Universal Transverse Mercator (UTM) coordinate
system and calculated the sensor position followed by matching
sensor data to individual plants in the quantitative GIS software
interface. The same polygons used to extract NDVI were
superimposed on top of each geo-referenced data in the
quantitative GIS software interface to extract plant height.

Destructive Biomass Measurements
The aboveground biomass was harvested manually at 5 cm
height. Destructive biomass harvest of 480 space-plants was
collected following the same procedure described previously
(Gebremedhin et al., 2019a). In addition, mechanical cutting
of all the GS field experiment plots was conducted to measure
total fresh biomass weight (kg/plot) at the row or plot level. In
this case, biomass was measured at each seasonal harvest from
all 500 plots. This data was used to validate the computational
phenotyping workflow with manually derived polygons as well as
to compare manually collected biomass with predicted biomass
using the workflow.

Data Analysis
The variability distribution of phenotyping data was statistically
analyzed using R version 3.6.1, R Development Core Team,
Vienna, Austria. Non-destructive biomass estimation
of individual plants was described using the combination of
NDVI and plant height. Spatial distribution variance maps of
NDVI, plant height, predicted and measured DMY in three
seasons were compared. Histogram of distribution graphs
was prepared in Tableau Software (Tableau2019.4, Seattle,
Washington, United States). The predicted DMY of spaced-
planted individuals was therefore estimated using the NDVI and
height combination (NDVIsq_PH) using the following general
and seasonal formulas derived from Gebremedhin et al. (2019a):

Universal Equation:

Biomass = intercept+NDVIsq_PH+ Season

+NDVIsq_PH × Season (1)

Seasonal Equations:

winter2018 = − 4.62+NDVIsq_PH (2)

late− spring2018_1 = − 4.62+ (5.088 × NDVIsq_PH)+

5.76+ (1.49 × NDVIsq_PH) (3)

late− spring2018_2 = − 4.62+ (5.088 × NDVIsq_PH)+

16.86+ (3.68 × NDVIsq_PH) (4)

The statistical regression between the predicted and measured
DMY during each harvest was compared at single plant and plot
level. Similarly, a model considering all three harvests of biomass
estimation was also developed. Coefficient of determination (R2)
and root mean square error (RMSE) were used to evaluate and
quantify the accuracies of regression models of phenotyping
variables. Normality of the data was verified by checking the
residual vs. fitted values of plots to ensure the normality of
residuals with constant variance.

RESULTS

Comparison of Automated and Manually
Derived Delineated Polygons
In our previous validation experiment, we developed a model to
predict the DMY of individually drawn polygon by combining
NDVI and plant height (Gebremedhin et al., 2019a). Polygons
used to extract data were manually, but it is difficult to apply
this into 48,000 plants. As a result, a computational phenotyping
workflow was applied to extract NDVI and plant height
information. To evaluate the robustness of the automatically
derived polygons, the predicted DMY of individual plants
from automated and manually derived polygons was compared
across three different seasons (Figures 6A–C). The results
show a strong coefficient of determination between predicted
DMY from automated and manual polygons with R2 values
ranging 0.82-0.93 for the winter2018 and late-spring2018_1
season and RMSE values ranging from 1.81 to 3.83 g/plant.
For the late-spring2018_2, harvest a moderate coefficient of
determination (R2 = 0.44) of DMY prediction was obtained.
These results indicate that automatically built polygons can
replace manually derived polygons for plant height and NDVI
accurate extraction, and biomass prediction for all 48,000 plants
in our field experiment.

Seasonal Spatial Variation of Biomass
and Other Traits
The plant height, NDVI and predicted DMY variables were
retrieved using a computational data processing workflow
developed in this experiment (Figures 7A–C). NDVI showed
seasonal variability with increased values observed in late-
spring2018_1 compared to winter2018 and late-spring2018_2.
Most of the plots in the late-spring2018_1 indicated NDVI was
at saturation point at the time of harvest. Spatial variations of
NDVI values were observed in the middle, top and lower part
of the field experiment in all seasons. For instance, the center
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FIGURE 6 | Comparison of predicted DM of individual plants through automatically and manually derived polygons across growing seasons of winter2018 (A), late
spring2018_1 (B), and late spring2018_2 (C).

FIGURE 7 | Maps of perennial ryegrass NDVI, plant height (cm), predicted and measured DM (kg/plot) spatial variations at Winter2018 (A), late Spring2018_1 (B),
and late Spring2018_2 (C) at harvest time.

part of the GS trial site showed explicitly lower NDVI values
in winter2018 compared to an upper and lower location within
parts of the field experiment. Seasonal plant height and predicted
biomass variation occurred in the winter2018 followed by peak
accumulation in the late-spring2018_1 then decreased into late-
spring2018_2.

Distribution of NDVI, Plant Height, and
Predicted Biomass Across Growing
Seasons
The distribution of NDVI, plant height and predicted biomass
across three growing seasons, of the entire population of

48,000 individual perennial ryegrass genotypes was estimated
(Figures 8A–C). Figure 8A shows the NDVI distribution
variation of individual plants across seasons. The winter2018
season had a wider spread of NDVI values at the time of
harvest for most genotypes, with some already reaching
saturated NDVI values. In the late-spring2018_1, the narrow
spread of NDVI values distribution was skewed toward
the right indicating that most of the individual plants
reached the NDVI saturation point at the time of harvest.
In the late-spring2018_2 harvest, relatively normalized
distribution of NDVI values was observed signifying
some individual plants were harvested earlier than the
2–3 leaf stage.

Frontiers in Plant Science | www.frontiersin.org 8 May 2020 | Volume 11 | Article 689

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-11-00689 May 26, 2020 Time: 20:30 # 9

Gebremedhin et al. Automated Yield Measurement in Ryegrass

FIGURE 8 | Distribution of (A) NDVI, (B) plant height, and (C) predicted DM across three growing seasons of 48,000 individual perennial ryegrass genotypes.

The plant height of spaced-plants showed a normal
distribution across all growing seasons (Figure 8B). Taller
plants were observed at the late-spring2018_1 harvest followed
by the winter2018 and late-spring2018_2 harvests, respectively.
Figure 8C shows the predicted DMY distribution variation
of individual plants across seasons. The winter2018 and late-
spring2018_2 seasons histogram distributions were similar
with left-skewed distributions of narrow-spread values at
the time of harvest for most genotypes. The predicted DMY
distribution of the late-spring2018_1 harvest was observed

to be normally distributed, contrary to the winter2018 and
late-spring2018_2 harvests.

Comparison of Seasonal Distribution of
NDVI, Plant Height, and Predicted
Biomass of Cultivars
Figure 9 displays the NDVI histogram distribution variance of 50
cultivars/breeding lines for each of the three harvests. Cultivars
showed large relative differences in growth and development
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FIGURE 9 | Variation of individual plants NDVI values among and within 50 perennial ryegrass cultivars/advanced breeding lines across three growing seasons.

between and within a harvest. For example, cultivars designated
with a Cultivar ID number 8, 10, 13, 25, 45, 46, 47, and 48 reached
saturation and the overdue harvest was observed in winter2018.

Figure 10 displays the plant height variation distribution of
50 cultivars/breeding lines across three seasons. Similar to the
NDVI histogram distribution, the plant height variation of each
cultivar was obvious at the winter2018 harvest. For instance,
cultivars designated with Cultivar ID number 8, 10, 13, 25, 45, 46,
47, and 48 showed higher height values than their counterparts.

Similarly, plants with Cultivar ID 5, 9 12, 14, 16, 21, 33, 35,
36, and 41 showed a wider distribution at the late-spring2018_1
harvest. The plant height distribution for the late-spring2018_2
harvest did not show any major histogram structural differences
among cultivars.

Figure 11 displays the variation of individual plant
biomass (predicted) among and within 50 perennial ryegrass
cultivars/advanced breeding lines across three growing seasons.
Similar to the plant height and NDVI, cultivars designated with a
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FIGURE 10 | Variation of individual plants height among and within 50 perennial ryegrass cultivars/advanced breeding lines across three growing seasons.

Cultivar ID number 8, 10, 13, 25, 45, 46, 47, and 48 showed higher
height values. However, the histogram of predicted DMY for each
cultivar at the late-spring2018_1 harvest showed more variation
compared to the winter2018 and late-spring2018_2 harvests.
Moreover, varietal differences in DMY distribution of some
cultivars showed a clear difference at the winter2018 harvest.

Plot Level Seasonal Biomass Estimation
Model
The automated biomass prediction of spaced individual plants
was translated to plot-level estimates. The sum of predicted
biomass from spaced planted 96 individual plants within the
plot was calculated to determine predicted biomass per plot
and compared with the mechanically harvested and measured

biomass data. Significantly high coefficients of determinations
were observed between measured and predicted DMY (R2 = 0.19-
0.81) at all three harvests (Figures 12A–C). Subsequently, RMSE
values ranged from 0.09 to 0.21 kg/plot was observed at these
harvests. When combining all harvests into a single regression of
estimated and measured biomass (Figure 13), the best coefficients
of determination had a slope, R2 and RMSE values of 0.93, 0.94,
and 0.21 kg/plot, respectively.

DISCUSSION

In commercial ryegrass breeding, experiments with thousands
of individual space-plants may be used for evaluation and

Frontiers in Plant Science | www.frontiersin.org 11 May 2020 | Volume 11 | Article 689

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-11-00689 May 26, 2020 Time: 20:30 # 12

Gebremedhin et al. Automated Yield Measurement in Ryegrass

FIGURE 11 | Variation of individual plants biomass (predicted) among and within 50 perennial ryegrass cultivars/advanced breeding lines across three growing
seasons.

selection (Hayes et al., 2013; Lin et al., 2016). Phenotyping
of these genotypes requires repeated evaluation across growing
seasons and years. This is essential to select, potentially high
yielding genotypes to take into future stages of a breeding
program. However, phenotyping of large populations, by
the available traditional methods of visual scores, manual
cutting, bagging and drying is difficult to implement in
terms of time and cost. This study developed and validated
ground-and aerial-based platforms equipped with advanced
sensors for high-throughput phenotyping of ryegrass biomass
yield. This resulted in the development of a computational
workflow for image acquisition, processing, and analysis to

predict biomass yield based on vegetative indices and plant
height from 48,000 ryegrass plants. With this method, it
was possible to assess traits including predicted biomass
of 48,000 individual plants in 6 h from data acquisition
to data extraction. This method may provide a robust
method for ranking of genotypes and make faster progress in
breeding programs.

Manually drawing thousands of polygons has been
indicated difficult and considered as time-consuming and
automation of polygons for 38,000 plots was expected to
increase the throughput and accuracy of traits extraction
(Shi et al., 2016). A coefficient of determination between

Frontiers in Plant Science | www.frontiersin.org 12 May 2020 | Volume 11 | Article 689

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-11-00689 May 26, 2020 Time: 20:30 # 13

Gebremedhin et al. Automated Yield Measurement in Ryegrass

FIGURE 12 | Comparison of predicted and measured DM (kg/plot) based on spaced-planted trial in Winter2018 (A), Late Spring2018_1 (B), and Late Spring2018_2
(C).

FIGURE 13 | Comparison of predicted and measured DM (kg/plot) across
three growing seasons combined.

the predicted DMY from automated and manually
derived polygons in the late-spring2018_2 was moderate
(R2 = 0.44). This could be due to smaller plant height
architecture at that particular time, which coincided with
early drought onset in the spring season of 2018. The
canopy of these smaller plants may have reflected weak
sound echoes from the surface of each plant, which may
result in a greater variability in height values that resulted
lower R2.

Biomass yield distribution of perennial ryegrass cultivars
may vary across growing seasons and years (Brock et al.,
1996; Chapman et al., 2015). These variations mainly occur
due to genetic merit of productivity and seasonal growth
rate differences of cultivars during the vegetative growth
stage. The ability to measure how much differences exist
mainly depends on destructive harvest or visual score,
which is restricted by low-throughput (Walter et al., 2012;
Ghamkhar et al., 2019). Sensor-based non-destructive biomass

yield predictive methods have the potential to replace this
with applicability in large scale screening of breeding
lines across seasons and years. Generally, individual plants
NDVI, plant height and predicted biomass estimations
showed variations across seasons. The distribution of
NDVI values was wider in the winter2018 than late
spring2018_1 and late spring2018_2. This indicates the
various genotypes responded differently to cold season
conditions (Förster et al., 2018). However, plant height and
DMY predictions in the late spring2018_1 indicated higher
values in which ryegrass appeared to have rapid growth
and faster accumulation of dry matter in the spring season
(Wang et al., 2019).

In this study, NDVI, plant height and predicted biomass
estimations from the UAS and PhenoRover showed obvious
temporal and spatial variabilities that mainly arises from
genetic and environmental interactions. In the winter2018
harvest, NDVI histograms of some cultivars (Cultivar ID
8, 10, 13, 25, 45, 46, 47, and 48) indicated they were at
NDVI saturation point before the harvest. This was further
confirmed by the estimates of the plant height and DMY
of these cultivars. These methods of accurate non-destructive
estimates may provide a better perspective to facilitate breeding
selection and ranking of ryegrass genotypes. The application
of this non-destructive biomass prediction will enable the
development of seasonal forage value indices (FVI) which
combine biomass yield and economic values to select best
performing commercial cultivars (Leddin et al., 2018; Giri
et al., 2019). At the late-spring2018_1 harvest, plant height
increased, and NDVI values saturated for all cultivars. The
increase in plant height was from the fast growth rate in the
spring season and NDVI value peaked and reached saturation
before harvest. This result agrees with previous studies in
wheat (Li et al., 2019) and buffelgrass (Mutanga and Skidmore,
2004) where NDVI tended to saturate at high canopy density.
However, in the late-spring2018_2 lower NDVI, plant height
and predicted biomass yields were observed for some plants.
This indicates there was an early-onset of a late spring
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drought stress, that can restrict leaf growth (Cyriac et al., 2018),
and plants with a thin canopy density are expected to reflect
limited echoes and NDVI values (Condorelli et al., 2018;
Yuan et al., 2018).

Experimental plots in this study were represented by
three sets of rows containing 32 spaced-planted individuals
each (total 96 plants/plot), in which individual plants level
biomass prediction has reflected an accurate representation of
plots biomass prediction. The results showed a significantly
higher coefficients of determination between the predicted
and measured DMY across three seasons with R2 = 0.19,
0.75, and 0.81 at the winter2018, late-spring2018_1 and
late-spring2018_2 harvests, respectively, and RMSE values
ranging from 0.09 to 0.21 kg/plot. Subsequently, the overall
regression of the three harvests indicated significantly
high coefficients of determination (R2 = 0.94) and RMSE
0.21 kg/plant. Similar coefficients of determination trends
(R2 = 0.76-0.89) were observed in previously reported
pasture studies when various sensors were used to estimate
biomass yield of tall fescue and ryegrass (Safari et al., 2016;
Ghamkhar et al., 2019).

In this study, we validated a computational workflow for
image acquisition, processing, and analysis to predict the biomass
yield based on vegetative indices and plant height measurements
of 48,000 ryegrass plants. Previous studies indicated the use
of NDVI for ranking cultivars of ryegrass (Wang et al.,
2019), field pea, canola, and spring wheat grain yield (Brian
McConkey et al., 2004) and lint yield in cotton (Hugie et al.,
2018). Considering the plant height and NDVI as a surrogate
to predict DMY of individual and plot-level plants, there
is a great potential to apply our workflow to be used for
ranking of genotypes and cultivars across growing seasons
and years. Our method also has the potential to further
pave a foundation for the application of sensor technologies
combined with GS that leads to faster rates of genetic gain in
forages. To further improve the stability and accuracy of the
automated workflow, other traits including vegetative indices
other than NDVI, volume and leaf area features may be included
by incorporating measurements through sensors including
LiDAR and various camera systems (Ghamkhar et al., 2019;
Yates et al., 2019).

CONCLUSION

The computational phenotyping workflow developed in
this study indicated that automatically built polygons could
replace manually derived polygons for plant height and
NDVI accurate extraction from 48,000 plants. The NDVI,
plant height, predicted and measured DMY showed accurate
seasonal and spatial variations, which may contribute to
identifying differences among genotypes of varying genetic
background. Thus, the proposed computational phenotyping
workflow proved to enable non-destructive and objective
prediction of individual plants NDVI, plant height and DMY

in three different seasons. Subsequently, the observed plot
level linear relationship between predicted and measured
DMY indicated capability of the developed computational
workflow to estimate plot-level DMY from the individual
plants’ prediction. Therefore, this study demonstrated
the potential of the validated computational workflow to
conduct seasonal and annual ranking of breeding lines and
commercial cultivars that may be used for the application
of genomic selection that paves to greater rates of genetic
gain in forages.
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