
fpls-11-00681 May 22, 2020 Time: 20:26 # 1

REVIEW
published: 26 May 2020

doi: 10.3389/fpls.2020.00681

Edited by:
Luisa M. Trindade,

Wageningen University and Research,
Netherlands

Reviewed by:
Oene Dolstra,

Wageningen University and Research,
Netherlands

Shouvik Das,
Indian Agricultural Research Institute

(ICAR), India

*Correspondence:
Luiz F. Brito

britol@purdue.edu

Specialty section:
This article was submitted to

Plant Breeding,
a section of the journal

Frontiers in Plant Science

Received: 26 February 2020
Accepted: 30 April 2020
Published: 26 May 2020

Citation:
Moreira FF, Oliveira HR,

Volenec JJ, Rainey KM and Brito LF
(2020) Integrating High-Throughput

Phenotyping and Statistical Genomic
Methods to Genetically Improve

Longitudinal Traits in Crops.
Front. Plant Sci. 11:681.

doi: 10.3389/fpls.2020.00681

Integrating High-Throughput
Phenotyping and Statistical Genomic
Methods to Genetically Improve
Longitudinal Traits in Crops
Fabiana F. Moreira1, Hinayah R. Oliveira2, Jeffrey J. Volenec1, Katy M. Rainey1 and
Luiz F. Brito2*

1 Department of Agronomy, Purdue University, West Lafayette, IN, United States, 2 Department of Animal Sciences, Purdue
University, West Lafayette, IN, United States

The rapid development of remote sensing in agronomic research allows the dynamic
nature of longitudinal traits to be adequately described, which may enhance the
genetic improvement of crop efficiency. For traits such as light interception, biomass
accumulation, and responses to stressors, the data generated by the various high-
throughput phenotyping (HTP) methods requires adequate statistical techniques to
evaluate phenotypic records throughout time. As a consequence, information about
plant functioning and activation of genes, as well as the interaction of gene networks
at different stages of plant development and in response to environmental stimulus can
be exploited. In this review, we outline the current analytical approaches in quantitative
genetics that are applied to longitudinal traits in crops throughout development, describe
the advantages and pitfalls of each approach, and indicate future research directions
and opportunities.

Keywords: digital agriculture, genomic estimated breeding values, genomic selection, plant breeding, repeated
record, time-dependent trait

INTRODUCTION

Enhancing agricultural production efficiency by reducing yield gaps while also breeding more
stress-resilient cultivars is the next challenge for plant breeders (Godfray et al., 2010; Foley
et al., 2011; Ray et al., 2013; Challinor et al., 2014; Tai et al., 2014). The most feasible solutions
are developing innovative approaches to speed up the genetic improvement of economically
important traits and characterizing novel traits and incorporating them into breeding programs

Abbreviations: 3D, three-dimensional; 3PL, three-parameter logistic; 4PL, four-parameter logistic; 5PL, five-parameter
logistic; ANOVA, analysis of variance; AR-1, first-order autoregressive analysis; BIC, Bayesian information criterion;
BLUE, Best Linear Unbiased Estimation; BLUP, Best Linear Unbiased Prediction; CIMMYT, International Maize and
Wheat Improvement Center; CT, canopy temperature; CT, computed tomography; DL, deep learning; FA, factor analysis;
GWAS, genome-wide association studies; GS, genomic selection; GBLUP, genomic-based BLUP; GNDVI, green normalized
difference vegetation index; HTP, high-throughput phenotyping; LiDAR, laser-imaging detection and ranging; MTM,
multiple-trait model; MTRRM, multiple-trait random regression model; MANOVA, multivariate analysis of variance; NIR,
near-infrared; NDVI, normalized difference vegetation index; PCA, principal component analysis; QTL, quantitative trait
loci; RRM, random regression model; RNN, recurrent neural networks; RNDVI, red normalized difference vegetation index;
RGB, red-green-blue; ssGBLUP, single-step GBLUP; AIC, Akaike information criterion; UAV, unmanned aerial vehicle.
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(Duvick, 2005; Lange and Federizzi, 2009; Fischer and Edmeades,
2010; Nolan and Santos, 2012; Rogers et al., 2015).

Plant breeding was established as a science in the beginning
of the 20th century, when new insights about the genetic basis
of phenotypic variation for quantitative traits were integrated
with the foundational theories of inheritance mechanisms
and crop hybridization elucidated by Mendel and Darwin,
respectively (Johannsen, 1909, 1911; East, 1911; Bradshaw, 2017).
Since then, plant breeders have improved crop productivity by
selecting for numerous traits. Breeding objectives are constantly
refined to address new challenges, including adaptation to new
production areas, addressing emerging pests and diseases, various
end uses, advanced farming technologies, and climate change
(Toenniessen, 2002; Baenziger et al., 2006; Tester and Langridge,
2010; Gilliham et al., 2017). For instance, in 1955 the focus
of soybean breeding was to increase seed oil content, canopy
ground cover, and ripening uniformity. Ten years later the
focus shifted to reducing pod shattering and lodging, and then
it changed again over the years to include quality and value-
added traits (Baenziger et al., 2006). Similar shifts in breeding
goals and phenotyping technologies have also occurred in animal
breeding (Henryon et al., 2014; Miglior et al., 2017). However,
throughout history, improving traits of interest depends on
the ability to quantify phenotypes across genotypes replicated
over multiple environments (Stoskopf et al., 1994). Therefore,
potentially valuable traits may have been neglected due to costly
phenotyping and technological limitations.

Plant phenotyping has always been paramount for genetic
improvement. Recent advances in proximal remote sensing,
paired with new sensors and computer science applications, has
enabled cost-effective high-throughput phenotyping (HTP) and
dissection of novel traits (Montes et al., 2007; Furbank and
Tester, 2011; Fiorani and Schurr, 2013; Araus and Cairns, 2014;
Coppens et al., 2017). HTP provides time-series measurements
that track the development of a crop through its life stages and
as it responds to the environment. Information on gene function,
the activation of genes, interaction of genes networks at different
stages of plant development and in response to environmental
stimulus can now be exploited (Wu and Lin, 2006; Montes
et al., 2007). It is increasingly possible for plant breeders to
consider light interception, biomass accumulation, and response
to drought stress as dynamic traits, rather than static points in
time (Montes et al., 2007). This analytical framework enhances
our understanding of crop development and bridges gaps in
understanding the relationship between genotype and phenotype
(Granier and Vile, 2014; Araus et al., 2018).

Traits that are expressed repeatedly or continuously over the
lifetime of an individual can be defined as longitudinal traits
(Yang et al., 2006; Oliveira et al., 2019a), infinite-dimensional
traits (Kirkpatrick and Heckman, 1989), or function-valued
traits (Promislow et al., 1996). The study of longitudinal traits
can provide important insights into the genetic mechanisms
underlying physiological responses to environmental stresses
and developmental processes. This information can be used to
improve predictive ability for complex polygenic traits under
multivariate settings, and contribute to identifying overall (e.g.,
soybean yield) or time specific Quantitative Trait Loci (QTL)

(Fahlgren et al., 2015; Campbell et al., 2017; Sun et al., 2017).
Such analysis enables assessment of the statistical association
of genetic and environmental factors, such as the relationship
between molecular markers and response to abiotic stress at
different developmental stages (Langridge and Fleury, 2011).
In this context, phenotypic data describes a function changing
continuously in response to other variables (Stinchcombe and
Kirkpatrick, 2012; Granier and Vile, 2014). These approaches
generate a vast amount of data, which requires advanced
statistical approaches to enable evaluation of the phenotypic
data as a function of time. In this literature review, we will
outline the current analytical approaches in quantitative genetics
and genomics that can be applied to HTP quantified over time
(Figure 1). In addition, we describe the advantages and pitfalls
of each method and explore directions and opportunities for
future research.

PHENOTYPING LONGITUDINAL TRAITS

Current HTP platforms, also referred to as “phenomic” tools,
include a variety of methodologies that use remote sensing
to obtain non-destructive phenotypic measurements, either in
controlled environments or in the field (Pauli et al., 2016b). The
most common types of sensors for crop phenotyping include
red-green-blue (RGB; Xavier et al., 2017), multispectral (Xu
et al., 2019), hyperspectral (Bodner et al., 2018), fluorescence
(Pérez-Bueno et al., 2016), thermal (Sagan et al., 2019), three-
dimensional (3D; Topp et al., 2013), and laser-imaging detection
and ranging (LiDAR) (Sun et al., 2018) devices. In general, these
sensors rely on the interaction between electromagnetic radiation
and plants (reflecting, absorbing, or transmitting photons), which
is captured by the sensor as reflected radiation (Fiorani et al.,
2012; Li et al., 2014). Thus, the sensors interpret the plants as
optical objects, with each component of the plant displaying a
characteristic spectral signature arising from wavelength-specific
properties of absorbance, reflectance, and transmittance from the
vegetation surface (Schowengerdt, 2012; Li et al., 2014).

The spectral signatures of plants change during the life cycle,
giving rise to genotype-time-specific phenotypes. For instance,
during senescence, there is an increase of reflectance in the red
region caused by a loss of chlorophyll (Schowengerdt, 2012).
For field-based phenotyping, these sensing tools are usually
integrated into ground or aerial vehicles (Araus et al., 2018). Most
HTP platforms have the spatial and temporal resolution needed
to capture longitudinal traits. However, the needs and resources
of the specific experiment should drive the choice of platform
and sensor, as these choices directly impact the scale and type
of research (Pauli et al., 2016b). Several reviews have focused on
HTP and its nuances, such as data collection, data processing and
types of sensors (Fahlgren et al., 2015; Rahaman et al., 2015; Singh
et al., 2016; Tardieu et al., 2017; Yang et al., 2017; Zhao et al., 2019;
Reynolds et al., 2020).

The genetic control of longitudinal traits captured with HTP
was recently reported for different crops. In a greenhouse,
Neilson et al. (2015) investigated the growth and dynamic
phenotypic responses of sorghum to water-limited conditions
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FIGURE 1 | Schematic workflow of longitudinal data analyses. Different remote-sensing tools most commonly used for high-throughput phenotyping monitoring
crop growth and development. Comparative overview of the potential models for genomic analysis, together with examples of outputs and computational demand.

and various levels of fertilizer over time. They defined and
measured several traits, including leaf area, shoot biomass, height,
tiller number, and leaf greenness using laser scanning, RGB,
and near-infrared (NIR) cameras. In barley, multiple sensors
captured daily images in a greenhouse over 58 days measuring
the spectrum of visible light, fluorescence, and NIR in order to
dissect phenotypic components of drought responses (Chen et al.,
2014). Tiller growth in rice was examined using more than 700
traits extracted from an imaging system combining computed
tomography (CT) and RGB imaging during the tillering process
(Wu et al., 2019).

In the field, Sun et al. (2018) used LiDAR mounted on a
tractor to quantify leaf area, stem height, and plant volume in

cotton in the field from 43 to 109 days after planting. From these
measurements, they generated genotype-specific growth curves
and assessed variability in traits and their genetic correlation to
yield over time. In soybean, an unmanned aerial vehicle (UAV,
aka drone) with an RGB camera measured canopy coverage
in the field across several days after planting for genome-
wide association analysis and genomic selection (Xavier et al.,
2017; Hearst, 2019; Moreira et al., 2019). Blancon et al. (2019)
characterized the dynamics of the green-leaf-area index in a
diversity panel of maize under well-watered and water-deficient
treatments using multispectral imagery acquired from a UAV
throughout the growth cycle. Thermal and hyperspectral sensors
mounted to a manned aircraft were used to extract canopy
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temperature and vegetation indexes of more than 500 lines
of wheat in five field environments over a range of dates
(Rutkoski et al., 2016).

Field-based HTP for roots has seen less progress than
HTP of above-ground traits due to the difficulty of
below-ground imaging (Atkinson et al., 2019). Shovelomics
is a high-throughput method for root phenotyping and that
has been used for crops, such as maize, common bean, cowpea,
and wheat (Trachsel et al., 2011; Burridge et al., 2016; York
et al., 2018). It consists of extracting several traits from images.
However, it is destructive and labor-intensive, requiring manual
root excavation, which limits its ability to capture repeated
records over time. Recently, geophysical techniques, including
electrical resistance tomography, electromagnetic inductance,
and ground-penetrating radar have contributed to identify
and quantify roots in the field in a non-destructive manner
(Shanahan et al., 2015; Whalley et al., 2017; Liu et al., 2018a;
Atkinson et al., 2019). Nevertheless, HTP root phenotyping is
more commonly performed in controlled environments that
allow the use of alternative growth systems that enable root
imaging, such as rhizotrons, growth pouches and transparent
artificial growth media (Atkinson et al., 2019; Ma et al., 2019).
To model the growth dynamics of maize, Hund et al. (2009)
performed daily scans of root systems grown over blotting paper.
Topp et al. (2013) used 3D imaging phenotyping of rice root
architecture in a gellan gum medium on various days of growth
to perform QTL detection analysis. Recent advances in the use of
X-ray CT and magnetic resonance imaging in plant sciences have
enabled monitoring of root system architecture and dynamic
growth over time in soil (Metzner et al., 2015; Pfeifer et al.,
2015; van Dusschoten et al., 2016; Pflugfelder et al., 2017; Gao
et al., 2019). More details and additional techniques for root
phenotyping are presented in Atkinson et al. (2019).

MODELING LONGITUDINAL TRAITS

Plant growth and development are characterized by several
phenotypic changes, which can only be studied by monitoring
repeated phenotypes over time (Li and Sillanpää, 2015). HTP
platforms allow tracking of traits with a high temporal resolution,
whether continuously over time or in discrete intervals (Furbank
and Tester, 2011). Traditionally, mathematical functions are
used to describe temporal trajectories of traits during the
plant’s life cycle (Paine et al., 2012). Analysis of longitudinal
traits usually employs one of the following two techniques
(Li and Sillanpää, 2013): (1) smooth functions (such as
splines; e.g., van Eeuwijk et al., 2018; Oliveira et al., 2019a)
or parametric functions (such as growth models; e.g., Paine
et al., 2012) to fit the phenotypic records over time, providing
interpolated values for all time points; or (2) the data is
reparameterized by estimating the function’s coefficients, which
are then used in the analysis to represent the trait over
time. Either way, it is necessary to select the function that
best fits the shape of the trajectory of the trait to accurately
estimate the curve parameters and results. Paine et al. (2012)
provide a detailed review about growth models, highlighting

basic functional forms, advantages and disadvantages. In this
section, we will describe the main functions that have been
successfully used to fit a variety of traits for the purposes of
crop improvement.

Many of the complexities of plant growth are commonly
represented using non-linear growth models that account for
temporal variation in growth, capturing age and size-dependent
growth (Paine et al., 2012). Usually, the growth pattern within a
plant life cycle follows a sigmoid curve (S-shaped) characterized
by an initial slow growth that then increases rapidly, approaching
an exponential growth rate, and finally slows when it reaches a
saturation phase (Yin et al., 2003). The S-shaped curve can be
described by sigmoidal functions such as the logistic, Gompertz,
Richards or β functions (Gompertz, 1815; Richards, 1959; Yin
et al., 2003; Poorter et al., 2013). In this case, the Gompertz
function is a special case of the Richard function; which is one of
the oldest growth models frequently used to fit various biological
processes across species (Tjørve and Tjørve, 2017). The Gompertz
function has been used to describe biomass accumulation in
maize kernels (Meade et al., 2013), barley biomass (Chen et al.,
2014), and various longitudinal traits in wheat (Camargo et al.,
2018) and sorghum (Neilson et al., 2015). The Logistic function
is more commonly used in its asymptotic form to describe the
time dependence of biological growth processes for traits such as
biomass, canopy coverage, canopy size, volume, length, and area
(Thornley et al., 2005; Paine et al., 2012). The Logistic function
can have one, two, three, four, or five-parameters (Tessmer et al.,
2013). One- and two-parameter logistic models are simplistic and
frequently do not fit the data well, but are still used in several
studies (e.g., Paine et al., 2012; Tessmer et al., 2013). The three-
parameter logistic function (3PL; also known as a Verhulst or
autocatalytic growth function) is perhaps the most popular model
for plant growth analysis. In a water-limitation experiment in
sorghum, a 3PL model had the best performance of a variety of
sigmoidal models to fit the projected leaf area (Neilson et al.,
2015). Sun et al. (2018) used a 3PL model to fit growth curves for
canopy height, projected canopy area, and plant volume obtained
from HTP in cotton. In wheat, Baillot et al. (2018) estimated
various grain-filling parameters by fitting a 3PL model. The four-
parameter logistic (4PL) model is more flexible than the 3PL as it
has fewer constraints (Pinheiro and Bates, 2000). Camargo et al.
(2018) phenotyped the average of area, height, and senescence in
wheat throughout its lifecycle and found that 4PL models best fit
the longitudinal data. The five-parameter version (5PL) provides
maximum flexibility and accommodates asymmetry (Gottschalk
and Dunn, 2005), despite its higher complexity compared to the
lower number of parameters.

Many biological curves cannot be described by sigmoidal
functions. A Power Law (also known as allometry) function
is a type of non-asymptotic, non-linear growth model that
does not produce an S-shaped curve (Marquet et al., 2005).
They are often used in ecology to predict relationships in plant
communities (Chen and Shiyomi, 2019). It effectively captures
temporal variation in growth as it allows the relative growth rate
to slow down over time and with an increase in biomass (Paine
et al., 2012). A Power Law function was used to fit projected
leaf area data in sorghum receiving various levels of nitrogen
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(Neilson et al., 2015), as well as leaf length and rosette area in
Arabidopsis thaliana (An et al., 2016).

Linear models, such as orthogonal polynomials and spline
functions, are also used to fit longitudinal traits (Oliveira et al.,
2019a). The use of polynomials in crop growth models started
in the 1960s as a functional approach to fit growth data and
provide a clear picture of ontogenetic drift (Vernon and Allison,
1963; Hughes and Freeman, 1967; Poorter, 1989). One of the
advantages of these functions is that they do not require prior
knowledge of the longitudinal shape of the phenotype. Therefore,
they are useful for fitting biological data of any shape simply
by choosing different orders of the polynomials. Although they
are not linear in time, polynomial functions are linear in
their parameters, and consequently, can take advantage of the
inference methods available for linear models (Yang et al., 2006).
For instance, cubic polynomial functions have been used to
describe grain growth in crops such as rice (Jones et al., 1979;
Shi et al., 2015), wheat (Gebeyehou et al., 1982), barley (Leon
and Geisler, 1994), and safflower (Koutroubas and Papakosta,
2010). One of the main difficulties with this approach is choosing
the appropriate degree of polynomial to fit the data while
avoiding spurious upward or downward trends or overfitting or
underfitting the data (Paine et al., 2012).

Orthogonal polynomials are particularly popular for fitting
biological curves because they have much lower correlations
among their coefficients and provide estimates of the covariance
matrices that tend to be more robust over a variety of
data sets (Schaeffer, 2004). Legendre polynomials represent
simple orthogonal polynomials and have been used successfully
to fit longitudinal traits in livestock breeding programs
(e.g., Albuquerque and Meyer, 2001; Oliveira et al., 2017,
2019b; Brito et al., 2017) and for plant research (e.g., Yang
et al., 2006; Yang and Xu, 2007; Campbell et al., 2018;
Momen et al., 2019).

Spline functions offer a more flexible alternative for modeling
longitudinal traits compared to orthogonal polynomials (van
Eeuwijk et al., 2018). Splines are piecewise polynomial functions,
linked at specific points called knots (de Boor, 1980). For
longitudinal data, these knots represent time points within the
data collection interval (Li and Sillanpää, 2015). The greater
flexibility of splines is due to the independence of each segment,
which can have the same or different polynomial degrees,
accommodating abrupt changes in the trajectory (Meyer, 2005b).
A particular type of spline function is the basis spline, or B-spline
(de Boor, 1980), extensively deployed in animal breeding (Meyer,
2005b; Oliveira et al., 2019a). Another version of spline is
P-spline, which combines B-splines with different penalties on the
coefficients of adjacent B-splines, resulting in smoother curves
(Eilers and Marx, 1996; Meyer, 2005b).

Spline functions have recently been used to model longitudinal
traits in crops. For instance, haulm senescence was assessed at
several points during the growing season in a diploid potato
mapping population and fitted using P-splines (Hurtado et al.,
2012). Montesinos-López et al. (2017) used a B-spline function to
fit wheat canopy hyperspectral bands in a yield prediction model.
B-splines have also modeled rice temporal shoot biomass in a
water-limited environment (Momen et al., 2019).

STATISTICAL GENETIC MODELS

Plant breeding is mostly based on the selection of new
genetically superior cultivars from a large set of candidates.
Simple arithmetic means of the phenotypic values, or Best
Linear Unbiased Estimation (BLUE, treating genotypes as fixed
effects), were used for selection prior to the development of Best
Linear Unbiased Prediction (BLUP; Henderson, 1974). BLUPs
are based on a mixed linear model and are now the most
commonly used method for genetic evaluation of plant and
livestock species (Piepho et al., 2008; Mrode, 2014). In the mixed-
model framework, the genotypes are fitted as random and the
genotypic effects are estimated by BLUP. The main advantage of
BLUP over previous methods is its increased prediction accuracy
for genetic effects. This is due to the shrinkage toward the mean
that depends on the amount of information available (from
the individual and/or its relatives), which will adjust extreme
high and low performance toward the overall mean, and also
to the incorporation of the genetic correlation between related
genotypes from pedigree or genomic information (Piepho et al.,
2008). The latter is not a requirement for the model, so the
simplest case of BLUP uses no relationship matrix and the
genotypes are considered to be independent random variables
(Yan and Rajcan, 2003; Cullis et al., 2006). Piepho et al. (2008)
present several examples of BLUP analyses in plant breeding.

Although rarely used, pedigree data is an easy and inexpensive
source of information for plant breeders to leverage the
relationship between individuals for a more accurate estimation
of breeding values. Pedigree-based BLUPs have been successfully
used in various crops (Bromley et al., 2000; Rutkoski et al., 2016;
Basnet et al., 2019; Moreira et al., 2019), and have contributed to
major advancements in the rates of genetic progress.

The inclusion of genomic information provides more accurate
estimates of genetic relatedness among genotypes, especially
with regards to the Mendelian sampling effects (Habier et al.,
2007). Genomic information traces allele inheritance, capturing
small segments of the genome shared among individuals, even
when they are apparently unrelated through pedigree (Velazco
et al., 2019). Plant breeders have widely adopted genomic-
based BLUPs (GBLUP) for genomic selection (Auinger et al.,
2016; Crossa et al., 2017; Schrag et al., 2019). Although
genomic information is promising, in practice high-density
genotyping is not always feasible for all genotypes within a
breeding program due to genotyping costs, logistics, or both
(Habier et al., 2009). An alternative is to construct a joint
relationship matrix based on pedigree and genomic relationships
to predict BLUPs for genotyped and non-genotyped material,
which is called single-step GBLUP (ssGBLUP; Misztal et al.,
2009; Aguilar et al., 2010; Christensen and Lund, 2010). This
approach integrates both relationship matrices, connecting their
different yet complementary information on genetic relatedness,
and provides more reliable and accurate estimates of genetic
similarities between genotypes. Genomic breeding values based
on the ssGBLUP approach are commonly used in animal
breeding (Aguilar et al., 2010; Legarra et al., 2014; Meuwissen
et al., 2015; Guarini et al., 2019a,b; Oliveira et al., 2019c), and
their use has started to become popular in plant breeding as
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well (Ashraf et al., 2016; Cappa et al., 2019; Velazco et al.,
2019). In sorghum, Velazco et al. (2019) demonstrated that this
methodology improves the predictive ability for complex traits,
especially for traits with low heritability estimates, measured
late in the development stage, or those that are difficult or
expensive to measure.

For longitudinal traits, one can calculate BLUPs for each time
point separately as individual traits with unique phenotypes;
however, these approaches do not directly investigate and
compare trends over time (Littell et al., 1998). This makes it
difficult to consider a large number of time points and inhibit data
comparison when BLUPs shrink differently due to discrepancies
in heritability estimates. The main goal of fitting curves and
patterns for longitudinal traits is to consider variability in the
developmental process across many points in time (e.g., growth).
Analytical methods have been developed to better evaluate
longitudinal traits using the BLUP context, a simple analysis of
variance, or both (Littell, 1990; Meyer and Kirkpatrick, 2005;
Mrode, 2014). We will discuss the main methods in this review.

Repeatability Model
Individual measurements recorded over time can be treated
as repeated records of the same trait. This is known as the
repeatability model. There are two critical assumptions implicit
in this method: (1) the variances of different measurements
within the same genotype (or individual) are always equal,
regardless of the time interval between records; and (2) the
genetic correlations between all measurements are equal to one,
i.e., measurements at different time points are all influenced by
the same genes (Falconer and Mackay, 1996; Meyer and Hill,
1997; Littell et al., 1998). In this scenario, simple repeatability
models are the standard approach.

One of the simplest methods is the repeated-measurements
analysis of variance (ANOVA) using a split-plot in time design,
which treats the genotypes as a whole-plot unit and genotypes
at particular times as a sub-plot unit (Rowell and Walters, 1976;
Littell, 1990). It is important to mention that as time is a factor
in the experiment that cannot be randomized, this is not a true
split-plot design. Also, this method assumes the data have equal
variances (homoscedasticity) in all repeated measurements and
that all pairs of measurements will have the same correlation
(i.e., compound symmetry), which are unrealistic assumptions
for most crop datasets. However, Huynh and Feldt (1970) showed
that the equality of the variances of differences between any two
treatment measurements assumed to be correlated was sufficient
to perform a split-plot ANOVA. In this case, if the data violate
the Huynh and Feldt condition, the F-statistics for the sub-plot
unit and their interaction will be inflated. Thus, this method is
prone to high Type I error rates, leading to conclusions that
effects are statistically significant when they are not (Scheiner and
Gurevitch, 2001; Fernandez, 2019).

In the context of mixed models, specifying the random and
fixed effects in the model will depend on the study objectives,
data structure, and the assumptions that can be made. Usually,
time is considered as a fixed effect because it is not randomized
in an experiment. Simple repeatability models have been used to
calculate BLUPs and BLUEs of longitudinal traits derived from

HTP for genomic prediction, such as in wheat (Rutkoski et al.,
2016; Sun et al., 2017).

Multiple-Trait Model
Often, HTP platforms are used to generate phenotypes of
plants in different “ages” or development stages, with the mean
and variance of the phenotypes between measurements/assay
dates changing over time. Thus, the assumption is that the
genetic control of longitudinal traits will be different over time,
characterizing the longitudinal records/phenotypes as different
traits. A common approach to analyze longitudinal traits in this
scenario is a multi-trait analysis that considers each time point as
a different dependent variable (Sun et al., 2017).

Multivariate analysis of variance (MANOVA) is an extension
of ANOVA, mentioned earlier, that avoids the covariance
structure problems raised in repeated-measures ANOVA.
However, it still requires equality in covariance among the
groups being compared and balanced data over time. In
addition, MANOVA assumes a multivariate normal distribution.
Alternative methods have been proposed to overcome these
restrictions (Krishnamoorthy and Lu, 2010; Krishnamoorthy
and Yu, 2012; Konietschke et al., 2015), but MANOVA still has
limited use in practice.

In the BLUP context, multiple-trait mixed models were first
implemented by Henderson and Quaas (1976) to analyze two
or more correlated traits making use of genetic and residual
covariances among the traits (Speidel, 2011). Using this method,
one can directly model the covariance structure of multiple
dependent variables and efficiently handle missing data (Mrode,
2014). The main advantage of using a multiple-trait model
(MTM) over a single-trait repeatability model is the improved
evaluation accuracy for each trait arising from better connections
in the data between the genetic and residual covariance (Colleau
et al., 1999; Mrode, 2014). This data structure will benefit the
prediction of traits with lower heritabilities when combined with
highly heritable traits and genotypes with missing records for
one or more traits (Mrode, 2014). In wheat, MTM was used to
predict BLUPs for canopy temperature and normalized difference
vegetation index (NDVI; Sun et al., 2017), and BLUEs for green
NDVI (Juliana et al., 2018).

There are some disadvantages of multiple-trait mixed models.
For instance, high-dimensional longitudinal data (e.g., traits
recorded multiple times over a long period) can lead to over-
parameterized models with high computational requirements
(Speidel, 2011). There is also the potential for high correlations
between consecutive measurements, which can reduce the power
of the tests of significance (Foster et al., 2006). There are
approaches to reduce the dimensionality of the MTM, which
we are discussed below. It is worth noting that, when applying
these approaches, the appropriate models should still be adequate
to describe the data, accounting for the changes of mean
and covariance over time, and estimate the necessary genetic
parameters (Mrode, 2014).

Canonical transformation of phenotypic records is a common
procedure to eliminate autocorrelation among traits through
eigenvalue decomposition (Meyer and Hill, 1997). A set of highly
correlated measures will provide eigenvalues close to zero. Under
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the framework of canonical transformed phenotypes, the original
observations are transformed into a new set of response variables
and the ones with the highest eigenvalues are selected to compose
the new combination of traits. After fitting the MTM with the
new values, the results are transformed back to the original scale
(Mrode, 2014). Grosu et al. (2013) highlighted that canonical
transformation can only be used if all individuals are recorded
for all the traits and that the model needs to be the same for
each trait, accommodating only two random effects: residual and
genetic. Another strategy to fit MTM is referred to as “bending”
(Thompson and Meyer, 1986; Meyer, 2019). It does not require
all traits to be measured in all individuals. This procedure
forces a decreased autocorrelation among traits by shrinking the
covariance among traits by a bending factor, which creates a
positive-definite covariance matrix.

The principal component analysis (PCA) and factor
analysis (FA) methods are often more appropriate to reduce
dimensionality for a large number of traits. FA identifies
common factors, called latent variables, associated with the
correlations between variables (Mrode, 2014). On the other
hand, the PCA approach aims to create independent variables
(principal components) that explain the maximum amount of
variation in the dataset (Mrode, 2014). Thereafter, the principal
components or latent variables become the new dependent
variables in the MTM. Both methods have been used to reduce
the dimensionality of longitudinal trait analysis in animals
(Macciotta et al., 2017; Durón-Benítez et al., 2018; Vargas et al.,
2018), and plants (Kwak et al., 2016; Yano et al., 2019).

As longitudinal traits are, by definition, taken along a time
trajectory, the whole data set can be represented by parameters
describing the shape of the trajectory curve (e.g., growth curve).
These parameters can become the new dependent variables or
integrated covariance structures in MTM (Speidel, 2011; Oliveira
et al., 2019a); however, none of the approaches to analyze
longitudinal data that we have discussed so far have considered
that the genetic and environmental variances may change over
time (Meyer, 1998, 2005a; Oliveira et al., 2019a). In addition,
these approaches are limited to the time points at which traits
were measured. Random regression models (RRMs) provide a
way to overcome these limitations (Schaeffer, 2004).

Random Regression Model
A common property of longitudinal traits is that the covariance
between repeated measures depends on the interval of time
between them. In other words, measurements collected closer
in time will be more correlated than measures collected farther
apart. Kirkpatrick et al. (1990) presented the concept of analyzing
longitudinal data using covariance functions by describing the
covariance structure of the traits as a function of time. In
essence, this approach fits a set of orthogonal functions to
a given covariance matrix for the records taken over time
(Meyer and Hill, 1997).

First-order autoregressive analysis (AR-1) is an appealing
method for modeling covariance structure for phenotypes
measured over time (Apiolaza and Garrick, 2001; Yang et al.,
2006; Vanhatalo et al., 2019). It assumes homogenous variances
and correlations that decline exponentially as measurements are

separated by greater time intervals. Thus, two measurements
collected closer in time will be more correlated than those further
apart (Wade et al., 1993; Littell et al., 2000; Piepho et al., 2004).
The AR-1 structure is only applicable for measurements taken
at equally spaced time points (Wang and Goonewardene, 2004).
Though this is a difficult requirement to meet in agricultural
research, especially in field trials, modeling the longitudinal trait
as described in the previous section would make the data evenly
spaced over time and validate the AR-1 method. An alternative is
to use a spatial power covariance structure that allows for unequal
intervals between time points (Wang and Goonewardene, 2004).

Note that so far, we are assuming homogenous variance
over time. There are also covariance structures to handle
heterogeneous variance, such as the first-order ante-dependence
structure (Wolfinger, 1996). Thus, Legendre orthogonal
polynomials and splines are more attractive covariance
functions as they produce relatively small correlations among
the regression parameters and adjust flexibly to the shape
of the trajectory curve (Schaeffer, 2004; Meyer, 2005a,b;
Bohmanova et al., 2008; Pereira et al., 2013; Brito et al., 2018).
In plants, different covariance structures have been assessed
for a variety of traits (Apiolaza et al., 2011; Sun et al., 2017;
Campbell et al., 2019).

Meyer and Hill (1997) showed that covariance functions are
equivalent to RRMs. Schaeffer (2016) reported that covariance
functions help to predict the change in variation over time,
while RRMs are a way to estimate covariance functions and
determine individual differences in trajectories. RRMs provide
a robust framework for modeling trait trajectories using
covariance at or between each time point with no assumptions
of constant variances or correlations. RRMs provide insights
about the temporal genetic variation of developmental behavior
underlying the studied traits (Oliveira et al., 2019a). Despite
the increased computational cost, RRMs result in more accurate
breeding values compared to other methods (Sun et al., 2017;
Oliveira et al., 2019a).

The RRMs were first introduced in animal breeding to
overcome over-parameterized models in MTM and they have
been used extensively since then (Jamrozik and Schaeffer, 1997;
Schaeffer, 2004; van Pelt et al., 2015; Englishby et al., 2016;
Oliveira et al., 2019a). In summary, RRMs set the parameters
of the function describing the trajectory of the trait as fixed and
random effects in the model, resulting in fewer parameters than
MTM (Schaeffer, 2016; Oliveira et al., 2019a). Consequently, in
RRMs the random parameters do not correspond directly to the
individuals’ genetic value for the longitudinal trait. Rather, they
correspond to the genetic values of sets of regression coefficients
that represent the time trajectory of the longitudinal trait for each
genotype (Turra et al., 2012). Estimates of genetic parameters
and breeding values can be obtained for all time points within
the interval analyzed from the genetic (co)variance matrices
for the regression coefficients and the matrix of independent
covariates for all time points associated with the function used
(Oliveira et al., 2019a). When the same fixed effects are used
in all models, it is appropriate to examine different covariance
structures using real data and select the one that best fits
the model based on a statistical methods, such as the Akaike
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Information Criterion (AIC, Wang and Goonewardene, 2004)
or Bayesian Information Criterion (BIC, Neath and Cavanaugh,
2012). Finally, estimate the effects of interest using the selected
covariance structure. In a general form, RRM can be described as
follows (Oliveira et al., 2019a):

ygij =

Q∑
q=1

bqgzqg +

R∑
r=1

arizri +

S∑
s=1

psizsi + egij

where ygij is the jth repeated record of genotype i (e.g., canopy
coverage at different days after planting); bqg is the qth fixed
regression coefficient for the gth group; ari is the rth random
regression coefficient for the additive genetic effect of the
ith genotype; psi is the sth random regression coefficient for
permanent environmental effect of the ith genotype; egij is the
residual effect; and zqg, zri and zsi are the covariates related to
the function used to describe time (e.g., days after planting),
assuming the same function (e.g., Legendre polynomial) with
possible different orders Q, R, and S (e.g., linear, quadratic, cubic)
(Oliveira et al., 2019a).

Random regression models have been shown to be the
most effective choice to genetically evaluate longitudinal traits
in numerous livestock breeding programs (as reviewed by
Oliveira et al., 2019a), but there are only a few examples of
the applications of RRMs in plant breeding, especially when
incorporating genomic information. Sun et al. (2017) captured
the change of HTP traits continually over wheat growth stages
using RRMs. Campbell et al. (2018) used RRMs to predict shoot
growth trajectories in a rice diversity panel and demonstrated
an improvement in prediction accuracy compared to a single-
time-point model. Based on the same rice dataset, Campbell et al.
(2019) used RRMs to identify QTL with time-specific effects.
Multiple-trait RRMs are also feasible and have been implemented
in several settings in animal breeding programs (Nobre et al.,
2003; Muir et al., 2007; Oliveira et al., 2019b,c).

IMPLEMENTATION OF GENOMIC
SELECTION FOR LONGITUDINAL
TRAITS

Meuwissen et al. (2001) introduced the concept of genomic
selection (GS) based on the idea that markers from dense
genome-wide genotyping will be in linkage disequilibrium with
QTLs that have an effect on the quantitative trait of interest. Thus,
they can be used for selection without identifying the QTL or the
functional polymorphism. This increased understanding of GS
arose as it became known that markers would carry relationship
information in addition to the signal captured by the linkage
disequilibrium between markers and QTL (Habier et al., 2007;
Meuwissen, 2009).

In GS, genomic and phenotypic data are combined in a
training population to enable the development of prediction
equations that can be used in a testing (or target) population
of selection candidates consisting of individuals that were
genotyped but not phenotyped (Crossa et al., 2017). Therefore,
GS enables a more accurate selection of individuals at an early

age (with no measurements). This increases the rate of genetic
gain by reducing the time required for the variety development
and the cost per cycle. HTP is able to generate high-quality
quantitative data and effectively characterizes large training
populations during the growing season. The combination of GS
and HTP has the potential to increase precision and efficiency
while lowering costs and minimizing labor (Araus et al., 2018).

Under the longitudinal framework of GS, the prediction of
temporal breeding values enables targeted selection on specific
periods in the growing season or selection of individuals that
exhibit desirable trait trajectories. In addition, the longitudinal
trait can be used as secondary traits to improve the genomic
selection of economic endpoint traits such as yields (Sun et al.,
2017). Campbell et al. (2018) used RRMs with a second-
order Legendre polynomial to perform pedigree and genomic
predictions of shoot growth trajectories in a rice diversity
panel. They demonstrated an improvement in prediction
accuracy using the RRM compared to a single-time-point
model. Furthermore, the authors reported that genomic RRMs
were useful in predicting future phenotypes using a subset
of early measurements. Another study in rice used RRMs to
predict projected shoot area in controlled and water-limited
conditions using Legendre polynomials and B-spline basis
functions (Momen et al., 2019). Before fitting both functions,
they adjusted raw phenotypic measurements to obtain BLUEs
for downstream genetic analysis. Overall, RRMs produced higher
prediction accuracy compared to the baseline multiple-trait
model. In addition, B-splines performed slightly better than
Legendre polynomials (Momen et al., 2019).

Currently, statistical models used in GS for plant breeding are
most often single-trait (univariate) and do not take advantage of
genetic covariance among traits or phenotypic records collected
at different time points (Jia et al., 2012). However, MTM for GS
was shown to outperform single-trait models by accounting for
correlation among traits, thereby increasing prediction accuracy,
statistical power, parameter estimation accuracy, and reducing
trait selection bias (Jia et al., 2012; Guo G. et al., 2014;
Montesinos-López et al., 2016, 2019). These advantages are even
more obvious for low-heritability traits, such as yield, that are
genetically correlated with highly heritable traits (Guo G. et al.,
2014; Jiang et al., 2015). Recently, studies in the CIMMYT (2019)
wheat breeding program1 have shown that the accuracy of GS is
greatly improved by incorporating HTP longitudinal data from
the so-called secondary traits measured with UAV (Rutkoski
et al., 2016; Montesinos-López et al., 2017; Sun et al., 2017,
2019), an approach that is relatively inexpensive to implement
as HTP and genotyping have become more accessible (e.g.,
targeted genotyping-by-sequencing approach; Pembleton et al.,
2016). In addition, secondary traits are also useful to predict
the primary trait at early growth stages, since they can often be
phenotyped ahead of a primary trait like grain yield (Sun et al.,
2017). Therefore, longitudinal traits can be used as secondary
traits to improve the accuracy of GS and contribute to a better
understanding of the biological mechanisms underlying stress
responses and development. As described in the previous section,

1www.cimmyt.org/
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there are various ways to extract the genetic information from
longitudinal traits and the methods employed will determine how
they can be used in GS.

Rutkoski et al. (2016) used HTP canopy temperature (CT),
green normalized difference vegetation index (GNDVI), and
red normalized difference vegetation index (RNDVI) taken over
time as secondary traits in GS for yield in wheat. First, they
estimated BLUEs for the longitudinal traits using the repeatability
model and used them in an MTM with yield, for pedigree and
genomic predictions. They found that multiple-trait modeling
with secondary traits increased accuracies for grain yield using
both pedigree and genomic information, compared to the single-
trait models. In another study, CT and NDVI also improved
the ability to predict grain yield in wheat (Sun et al., 2017).
However, in addition to a repeatability model, the authors also
used MTM and RRMs to calculate BLUPs for the secondary
traits in order to compare their efficiency. The predictive ability
improved by 70%, on average, when including secondary traits,
and the predictive ability of RRM and MTM were superior to the
repeatability model. Also in wheat, Juliana et al. (2018) performed
pedigree and genomic multi-trait prediction models using BLUEs
of yield and GNDVI measured at different dates. They found
that including GNDVI increased prediction accuracies. Sun
et al. (2019) used an RRM with a cubic smoothing spline to
predict BLUPs for CT and GNDVI in wheat. In a second step,
they used BLUPs for secondary traits and grain yield as the
dependent variables in GS. The prediction accuracy using the
secondary traits increased by an average of 146% for grain
yield across cycles and the secondary traits measured in the
early stages were optimal for enhancing the prediction accuracy.
Montesinos-López et al. (2017) and Crain et al. (2018) obtained
similar results in wheat. Howard and Jarquin (2019) modeled
the genetic covariance between canopy coverage and yield using
the SoyNAM dataset (Song et al., 2017; Diers et al., 2018) and
demonstrated that, based on different cross-validation schemes,
the predictive ability was the highest when both canopy and
marker information were included in the model. Two other
papers reported similar improvements with the same dataset
(Xavier et al., 2017; Jarquin et al., 2018).

Given the capability of HTP to collect multiple temporal
traits at the same time, multiple-trait RRMs (MTRRMs) can
be powerful tools for joint genomic prediction of several
longitudinal traits (Oliveira et al., 2016). In addition, MTRRMs
can incorporate different functions to describe different traits
in the same model and estimate genetic correlations between
different traits over time (Oliveira et al., 2016). In animals,
MTRRMs are a plausible alternative for joint genetic prediction
of milk yield and milk constituents in goats (Oliveira et al.,
2016), cattle (Oliveira et al., 2019c), and buffaloes (Borquis et al.,
2013). Recently, MTRRMs for projected shoot area and water-use
recorded daily over a period of 20 days showed better predictive
abilities compared to single-trait RRMs (Baba et al., 2020).

In animal breeding and multiple-stage plant breeding analysis,
it is common to use deregressed genetic values as the pseudo-
phenotypes for genomic predictions. Oliveira et al. (2018)
compared different deregression methods for longitudinal traits.
However, this multiple-step approach may result in lower

accuracies, bias, and loss of information (Legarra et al., 2009;
Kang et al., 2017). Considering the advantages of ssGBLUP
and RRMs in genetic evaluation, integrating both approaches
is an effective strategy to enhance the genomic prediction of
longitudinal traits (Kang et al., 2017). Koivula et al. (2015)
reported higher accuracy and less bias in the prediction of Nordic
Red Dairy cows for milking performance using a ssGBLUP
RRM compared to the traditional pedigree-based RRM. Kang
et al. (2017) showed that ssGBLUP RRMs achieved the highest
accuracy and least bias under a variety of scenarios, including
persistency of accuracy over generations, compared to other
models. In summary, the use of ssGBLUP based on RRMs can
increase the reliability of genomic predictions for test-day traits in
dairy cattle (Koivula et al., 2015; Kang et al., 2018; Oliveira et al.,
2019c), and possibly in crops.

DETECTING QTL AND CAUSAL
VARIANTS ASSOCIATED WITH
LONGITUDINAL TRAITS

One of the main goals in genomic research is to predict the
phenotypic variation using genotypes, by identifying genetic
variants. The development of an organism is the result of
an interacting network of genes and environmental factors
(Wu and Lin, 2006). Unlike single-time-point measurements,
studying longitudinal traits as a function of time allows the
comprehensive assessment of crop growth and development (e.g.,
age metabolic rate; Ma et al., 2002). However, in plants, the
detection of QTL analysis or genome-wide association studies
(GWAS) for longitudinal traits are still performed at each time
point independently. For instance, Würschum et al. (2014) used
linkage mapping at discrete time points separately to identify
time-specific QTLs associated with plant height in triticale.
In cotton, canopy-related traits were used separately for each
of the several studied days to map additive QTL effects and
their interaction with the environment (Pauli et al., 2016a).
In soybeans, a GWAS was used to identify QTL for each
individual canopy coverage measurement spanning 14–56 days
after planting (Xavier et al., 2017). Zhang et al. (2017) performed
QTL mapping for several growth-related traits at 16 time points
separately in maize. Also in maize, analysis of individual time
points found different and simultaneous QTLs controlling plant
height at different growth stages (Wang et al., 2019). Using
time point growth-related traits, Knoch et al. (2020) found
evidence of temporal QTLs in canola. Although useful, these
static examinations provide a simplified view of genetic control,
neglecting temporal changes and developmental features of trait
formation (Wu and Lin, 2006). In addition, in animals, it has
been shown that neither the phenotypic nor additive polygenic
effects of longitudinal traits are constant throughout the entire
phenotypic expression (Szyda et al., 2014; Brito et al., 2018;
Oliveira et al., 2019a).

As an alternative, Ma et al. (2002) proposed a dynamic
model, called functional mapping, to map QTLs associated
with the whole developmental process of longitudinal traits.
As mentioned earlier, longitudinal traits can be represented as
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curves, described by a few parameters from a linear or non-
linear function over a given time. The idea behind functional
mapping is that the difference in curve parameters among
genotypes may suggest temporal patterns of genetic control over
the phenotypic trajectory (Ma et al., 2002). Thus, functional
mapping allows testing of timing and the duration of QTL
expression (Wu et al., 2004). Several modeling strategies for
functional mapping have been proposed and have been reviewed
by Li and Sillanpää (2015). One of the approaches (the two-stage
method) consists of modeling the whole phenotypic trajectory
using linear and non-linear models and using these parameters
as latent-trait phenotypes for QTL detection (Li and Sillanpää,
2015). Often, researchers perform analyses for individual time
points followed by this two-stage method to derive the curve
parameters. Busemeyer et al. (2013) used a logistic function to
fit high-throughput-derived biomass from different development
stages of a large mapping population of 647 double-haploid
triticale lines. In addition to GWAS for the individual days,
they performed a multiple-trait functional GWAS using the
parameters from the logistic curve to reveal temporal genetic
patterns of biomass regulation. A similar approach was used to
assess image-derived biovolume in maize lines (Muraya et al.,
2017); digital biomass accumulation in spring barley (Neumann
et al., 2017); and area, height, and senescence in wheat (Camargo
et al., 2018). Campbell et al. (2017) calculated the projected
shoot area in 360 rice accessions from 19 to 41 days after
transplanting. They modeled the longitudinal phenotypes using
a power function (Paine et al., 2012) and used the parameters
as the pseudo-phenotypes in a multiple-trait GWAS. In order to
reveal the temporal dynamics of senescence in potato, Hurtado
et al. (2012) employed P-splines as a smoothing curve and used
the curve parameters for identifying QTLs.

Kwak et al. (2014) proposed two simple regression-based
methods to map QTL by analyzing each time point separately
and then combining test statistics across time points to determine
the overall significance. Later, Kwak et al. (2016) proposed an
improved approach where the observed longitudinal traits were
replaced by a smoothing approximation, followed by dimensional
reduction via PCA. Multiple-trait QTL analysis was then
performed on the reduced data (using principal components).
Muraya et al. (2017) implemented the approach suggested by
Kwak et al. (2016). They used B-splines to smooth the phenotype
followed by PCA for variable reduction and performed a
multiple−QTL analysis following the methods of Kwak et al.
(2014) to reveal the underlying genetic variation of growth
dynamics in maize. Temporal height QTLs in the model C4 grass
Setaria were also revealed using this approach (Feldman et al.,
2017). Animal breeders have been using PCA for longitudinal
trait analysis for a long time to synthesize complex patterns and
reduce computationally demanding multiple-trait QTL detection
(Macciotta et al., 2006, 2015, 2017; Zhang et al., 2018).

RRMs offer a better option to fit longitudinal traits and
have been widely used in genetic evaluation of animals (Ning
et al., 2017; Oliveira et al., 2019a). The random regression
approach uncovers SNP effects over time because it is able to
identify persistent and time-specific transient QTLs. Moreover,
RRMs have increased statistical power to detect QTLs over

other approaches because they leverage the full set of raw
longitudinal phenotypes (Ning et al., 2017) and can capture QTLs
with significant effects in specific regions of the development
curve, though the effects of these QTLs may be small overall.
RRMs are also useful for detecting QTL in gene-by-environment
interactions (Lillehammer et al., 2007; Carvalheiro et al., 2019).

Das et al. (2011) proposed a method called functional
GWAS (f GWAS), based on RRMs, which integrates GWAS
and mathematical models describing biological processes. In
summary, f GWAS estimates the mean for different SNP effects
for each genotype and time point and then performs hypothesis
testing to determine whether the SNP has any additive or
dominant effect during the time course. The main drawback
of this method is that it only performs a single-locus analysis.
Later, Ning et al. (2017) proposed a modification of f GWAS by
estimating the time-dependent population mean and the SNP
effects separately, instead of fitting them directly. They also
extended the model to capture the time-varying polygenic effect
of complex traits by treating SNPs as covariates (f GWAS-C) or
factors (f GWAS-F). However, their method was shown to be
computationally inefficient due to the high dimensionality of the
mixed model equations compared to other models. Subsequently,
Ning et al. (2018) proposed a rapid longitudinal GWAS method,
transforming the covariance matrices to diagonal matrices using
eigen-decomposition. This way the model can be solved by a
weighted least squares model for each SNP test.

To the best of our knowledge, Campbell et al. (2019) were
the first to use RRM GWAS in a major row crop. They took
the genomic breeding values derived from RRMs using Legendre
orthogonal polynomials to assess the genetic architecture of
rice shoot growth over a period of 20 days during early
vegetative growth. They found both transient and persistent
effects associated with shoot growth and more associations with
the RRM when compared to single-time-point analysis.

CHALLENGES AND FUTURE
DEVELOPMENTS

To capitalize on advances in phenotyping and molecular
technologies, greater progress is needed in developing ways
in which breeders can manipulate systems to understand the
relationships between genotype and phenotype. The underlying
biological changes due to environmental systems and/or over
time can be captured with longitudinal data. The major
challenge is synthesizing the various layers of information
together in a meaningful manner to understand the downstream
effects of developmental stress and implications for breeding
(Harfouche et al., 2019).

Non-Additive Effects and GxE
Non-additive genetic effects may significantly contribute to the
total genetic variation of complex traits. Prediction models that
include dominance effects represent an important component of
breeding programs that focus on crossbred populations, hybrid
production, and vegetatively-propagated species (de Almeida
Filho et al., 2019). There is also ample evidence of the importance
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of epistasis in the genetic architecture of complex traits in
various crops (Guo T. et al., 2014; Monir and Zhu, 2018).
Integrating non-additive effects into statistical models may
improve prediction accuracy and detect more QTLs than simple
additive models, especially when the non-additive variance
contributes to a large proportion of the genetic variance (Bouvet
et al., 2016; Bonnafous et al., 2018; Liu et al., 2018b, 2019; Monir
and Zhu, 2018; Varona et al., 2018). However, these studies
are restricted to single-time-point traits. For longitudinal traits,
it may be challenging to have a full genetic model (including
both additive and non-additive effects), requiring dense marker
panels to estimate the time-dependent (co)variances, as well as
partitioning of the genetic variance components. Nevertheless,
full genetic models of longitudinal traits may have the potential to
impact future design and implementation of breeding strategies.

The temporal dynamics of longitudinal traits lead to
interactions that change the phenotype over time. This may be
because the gene-gene and gene-environment interactions (GxE)
are time- or age-dependent and need to be properly modeled
(Fan et al., 2012). In this case, environmental descriptors should
be measured several times as the trait phenotypes. The resulting
model is a multiple-trait, multiple-environment model with a
variety of interactions, in which computational issues may arise
due to the increase in the number of parameters being estimated.
It has been shown that RRMs can account simultaneously for the
additive genetic effect and some degree of GxE in longitudinal
traits in animal breeding by allowing for the estimation of
genetic (co)variance components and breeding values over the
whole trajectory of a time-dependent trait and environment-
dependent covariate (Brügemann et al., 2011; Santana et al., 2016;
Bohlouli et al., 2019). In plant breeding, therefore, this model may
provide considerable biological insights into the mechanisms
determining performance in specific environments, making it a
worthwhile method for study in future research.

Complementary “-Omics” Technologies
The rapid advances in “-omics” technologies enable the
generation of large-scale “-omics” datasets for many crop species,
providing new opportunities to investigate and improve complex
traits. The different approaches described in this review offer
valuable tools to combine phenomics and genomics data to reveal
the underlying genetic basis of longitudinal traits. However, one
current challenge is integrating additional “-omics” technologies
(e.g., transcriptomics, metagenomics, proteomics, metabolomics,
epigenomics) to provide a holistic multi-omics approach to study
biological mechanisms and their response to environmental
stresses for important agronomic traits.

Recently, methods that combine “-omics” information have
been used in some crops to study phenotypic networks for
single-point traits, for example, to pinpoint candidate genes
and/or loci and predict phenotypic variation (Acharjee et al.,
2016; Li et al., 2016; Das et al., 2017; Sheng et al., 2017;
Pandey et al., 2018; Jiang et al., 2019). A meta-analysis of
the detailed “-omics” datasets regarding longitudinal traits in
crops has been limited so far. Baker et al. (2019) characterized
the mechanistic connections between the genomic architecture,
transcriptomic expression networks, and phenotypic variation

of growth curves that underlie the developmental dynamics
of plant height in Brassica rapa. The combination of multi-
omics approaches also seems promising to elucidate senescence
processes in model and crop plants (Großkinsky et al., 2018).
When joint modeling longitudinal “-omics” data (one or more
type of “-omics” data measured over time) the statistical analysis
becomes more challenging. Some key points can be found in
Sperisen et al. (2015). In general, there is a need to adapt
methodologies and experimental designs to explore processes
related to the global evolution of biological processes such as
growth and development. Despite all these challenges, integrative
methods can increase analysis power to find true causal variants,
regulatory networks, and pathways. These, in turn, could be
incorporated into GS and breeding programs to speed up genetic
gains (Suravajhala et al., 2016).

Deep Learning
Deep learning (DL) is a powerful and highly flexible class of
machine learning algorithms based on representation-learning
methods that incorporates multiple levels in a non-linear
hierarchical learner (Lecun et al., 2015). Essentially, DL is an
advanced version of artificial neural networks (ANN) with
multiple hidden layers that aims to mimic the human brain
functioning (Patterson and Gibson, 2017).

Deep learning has demonstrated its utility in different fields of
biological sciences, such as disease diagnosis (Gao et al., 2018),
multi-omics data integration (Chaudhary et al., 2018), predicting
DNA- and RNA-binding specificity (Trabelsi et al., 2019), and,
recently, in plant breeding genomic prediction (Ma et al., 2018;
Montesinos-López A. et al., 2018; Montesinos-López O. A. et al.,
2018; Montesinos-López et al., 2019). Zou et al. (2019) and
Pérez-Enciso and Zingaretti (2019) provide a primer on DL in
genomics. The growing interest in DL methods in plant breeding,
especially for prediction, may arise from its powerful capability
of learning complex non-linear relationships between predictors
and responses hidden in big data, usually resulting in higher
accuracy when compared with other methods (Montesinos-
López A. et al., 2018; Pérez-Enciso and Zingaretti, 2019; Zou et al.,
2019). It is important to point out that even though DL can deal
with complex scenarios and achieve state-of-the-art accuracy, it
requires domain knowledge and large-scale datasets, while the
interpretation of the underlying biology is more challenging than
for standard statistical models (Zou et al., 2019).

Within the classes of DL, recurrent neural networks (RNN)
are designed for sequential or time-series data (Lecun et al.,
2015) and may be the most appropriate architecture to model
longitudinal traits. An RNN can be thought of as a memory state
that retains information on previous data the network has seen
and updates its predictions in the light of new information. Thus,
besides prediction, RNN has the ability to capture long-term
temporal dependencies (Che et al., 2018). Recently, RNNs have
achieved astonishing results in many applications with time series
or sequential data, particularly in human sciences (Azizi et al.,
2018; Che et al., 2018; Lee et al., 2019; Sung et al., 2019; Zhong
et al., 2019). Despite its advantages, to our best knowledge RNNs
have not been employed in genomic prediction or mapping QTL
for longitudinal traits in plant breeding. In the context, versatile
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DL models for multiple-trait analysis (Montesinos-López O. A.
et al., 2018), multiple-environment analysis (Montesinos-López
O. A. et al., 2018), and performing simultaneous predictions of
mixed phenotypes (binary, ordinal and continuous; Montesinos-
López et al., 2019) have been successfully implemented. Such
cases are not only encouraging but may lead to future integration
of DL and RNNs into the analysis of longitudinal traits in
crops. DL is a powerful approach and is likely to transform
many domains in plant breeding because it has the potential to
handle all the complexities highlighted in this review. Needless to
say, further innovation and technology assessment are required
to fully enable DL to deal with the unique properties of
planting breeding data.
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