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Black poplar (Populus deltoides, P. nigra, and their hybrids) is the main poplar cultivars in
China. It offers interesting options of large-scale biomass production for bioenergy due
to its rapid growth and high yield. Poplar wood properties were associated with chemical
components and physical structures during wood formation. In this study, five poplar
cultivars, P. euramericana ‘Zhonglin46’ (Pe1), P. euramericana ‘Guariento’ (Pe2), P. nigra
‘N179’ (Pn1), P. deltoides ‘Danhong’ (Pd1), and P. deltoides ‘Nanyang’ (Pd2), were used
to explore the molecular mechanism of xylem development. We analyzed the structural
differences of developing xylem in the five cultivars and profiled the transcriptome-
wide gene expression patterns through RNA sequencing. The cross sections of the
developing xylem showed that the cell wall thickness of developed fiber in Pd1 was
thickest and the number of xylem vessels of Pn1 was the least. A total of 10,331
differentially expressed genes were identified among 10 pairwise comparisons of the five
cultivars, most of them were related to programmed cell death and secondary cell wall
thickening. K-means cluster analysis and Gene Ontology enrichment analysis showed
that the genes highly expressed in Pd1 were related to nucleotide decomposition,
metabolic process, transferase, and microtubule cytoskeleton; whereas the genes
highly expressed in Pn1 were involved in cell wall macromolecule decomposition and
polysaccharide binding processes. Based on a weighted gene co-expression network
analysis, a large number of candidate regulators for xylem development were identified.
And their potential regulatory roles to cell wall biosynthesis genes were validated by
a transient overexpression system. This study provides a set of promising candidate
regulators for genetic engineering to improve feedstock and enhance biofuel conversion
in the bioenergy crop Populus.

Keywords: Populus, developing xylem, transcriptome, cell wall, transcriptional regulation

INTRODUCTION

Energy issue is one of the major concerns of this century. As an important biomass energy, wood
is expected to increase with the development of social economy. Biomass production as energy raw
material accounts for about 14% of the world’s primary energy sources (Parikka, 2004; El Kasmioui
and Ceulemans, 2012). Poplar is used as short-rotation coppice (SRC) tree and main raw materials
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of bioenergy because of its fast-growing, large biomass, and lower
requirements for cultivation (Willebrand and Verwijst, 1993;
Davis, 2008; Zhang et al., 2020). The biomass conversion rate of
poplar wood is higher than that of other tree species due to its less
fermentation inhibitory extract (Guerra et al., 2013).

Wood, the secondary xylem of trees, is mainly composed
of cellulose, hemicellulose, and lignin. All xylem cell types first
undergo secondary cell wall (SCW) thickening and experienced
programmed cell death (PCD) in xylem (Courtois-Moreau
et al., 2009; Zhong and Ye, 2015). While lignin content
determines whether wood is used for pulp and the conversion
efficiency of liquid biofuels (Wang et al., 2018). Lignin is a
major phenolic polymer which is composed of 4-coumaryl
alcohol (H-subunit), coniferyl alcohol (G-subunit), and sinapyl
alcohol (S-subunit) (Freudenberg, 1965). Phenylalanine finally
forms three monomers through the catalytic reactions of 10
enzyme families, including PAL (phenylalanine ammonia-lyase),
C4H (cinnamate-4-hydroxylase), 4CL (4-coumarate:CoA
ligase), HCT (p-hydroxycinnamoyltransferase), C3H
(4-coumarate 3-hydroxylase), CCoAOMT (caffeoyl-CoA
O-methyltransferase), CCR (cinnamoyl-CoA reductase),
CAld5H (coniferyl aldehyde 5-hydroxylase), COMT (caffeic
acid/5-hydroxyconiferaldehyde O-methyltransferase), and CAD
(cinnamyl alcohol dehydrogenase) (Freudenberg, 1965; Shi
et al., 2009). And LAC (laccase) was involved in oxidative
polymerization of lignin precursors and thus affected the process
of vessel element and fiber lignification (Zhao et al., 2013). The
changes of their expression can affect lignin content (Wagner
et al., 2011; Lin et al., 2015; Wang et al., 2018).

The population genetic methods identified naturally occurring
genetic variation for wood formation. Single-nucleotide
polymorphism (SNP)-based association mapping, including
quantitative trait locus (QTL) and genome-wide association
studies (GWAS), has been used to identify SNPs related to wood
properties in specific wood formation biosynthesis pathways
in trees (Guerra et al., 2013; Zhang et al., 2018b), but only
some of these associations were affiliated with genes that have
a priori involvement in wood formation (Takata and Taniguchi,
2014; Zinkgraf et al., 2017). Transcriptional regulation is a
primary mechanism that firstly responds to the environment and
ultimately emits developmental signals during wood formation
(Du and Groover, 2010; Zinkgraf et al., 2017; Zhang et al.,
2018a). Transcriptomics has been widely used to compare and
recognize specific regulatory networks in xylem development.
It provides massive data for co-expression analysis, which
can be used for potential gene mining and identify similar
biological pathways or subject to similar regulatory pathways
(D’haeseleer et al., 2000; Usadel et al., 2009). For example,
Chano et al. (2017) analyzed the transcriptional profiles during
the growing season in Pinus canariensis. Sundell et al. (2017)
firstly established a high-spatial resolution transcriptome profile
and revealed a gene expression module of wood formation in
P. tremula. Subsequently, Seyfferth et al. (2018) distinguished the
expression networks of ethylene-related genes in wood formation
using this database.

Black poplar is widely used as the woody sources of fiber
for the pulp, paper industry, biofuel production, and ecological

shelter forest species in China. P. euramericana ‘Zhonglin46’,
P. euramericana ‘Guariento’, Populus nigra ‘N179’, Populus
deltoides ‘Danhong’, and P. deltoides ‘Nanyang’, are important
poplar cultivars in China, and there were differences in growth
and wood properties (Song et al., 2010; Yang et al., 2011; Hu
et al., 2013; Zhang et al., 2020). They can represent P. nigra,
P. deltoides, and their hybrids (P. euramericana), respectively.
Wood formation mainly comes from the development of
secondary xylem, which mainly refers to the deposition of lignin
and thickening on the cell wall of xylem fibers and vessels
(Zhang et al., 2014; Xu et al., 2017). It is great significance to
explore the mechanism of cell wall formation for the study of
wood formation. To obtain insights of molecular mechanism
of xylem development in the five black poplar cultivars, we
examined gene expression profiles of xylem and identified a large
number of candidate regulators for xylem development. Three
novel MYB transcription factors were identified and proved to be
involved in the regulation of lignin biosynthesis. It provides new
strategies and important resources for the exploration of xylem
development of novel regulatory genes.

MATERIALS AND METHODS

Plant Materials
In this study, five black poplar cultivars, P. euramericana
‘Zhonglin46’ (Pe1, ♀), P. euramericana ‘Guariento’ (Pe2, ♀),
P. nigra ‘N179’ (Pn1, ♂), P. deltoides ‘Danhong’ (Pd1, ♀), and
P. deltoides ‘Nanyang’ (Pd2, ♂) were used as the plant materials.
Poplar trees are grown in Jiaozuo, Henan Province, China
(35◦14′21′′N, 113◦18′40′′E). The stem sample was collected from
breast height of the stem in an area devoid of damage. The
stems were debarked in 10 cm × 20 cm region. Then, the
current year’s xylem (1–2 mm) was scraped from 9-year-old
trees using a sharp double-edged razor blade prior to August
2018. All the 20 samples (5 cultivars × 4 biological replicates)
used for RNA sequencing (RNA-Seq) were immediately flash
frozen in liquid nitrogen and then kept at −80◦C until use.
Then, the stem pieces, including bark, phloem, cambium, and
xylem, were collected in the adjacent position by knife and
reserved in formaldehyde-acetic acid-ethanol fixative (FAA) for
anatomical observation.

Light Microscopy
The stem pieces were dehydrated in a graded ethanol series
and embedded in steps of 25, 50, and 75% Spurr resin and
finally in 100% a full day and polymerized overnight at 60◦C
as described by Samuels et al. (2002). Cross section of 4-µm
thick was obtained from stem by Leica M205FA. Sections were
stained by 0.05% toluidine blue O (TBO) and then washed
with distilled water. Finally, all the sections were examined with
microscope (Zeiss). The number and diameter of vessels in each
sample were measured in the same area (860 µm × 940 µm).
And we measured the wall thickness of developed fibers 12–20
layers away from the cambium. All data were measured using
ImageJ software.
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Illumina Sequencing and Mapping
Total RNA was isolated using the RNAprep Pure Plant Plus Kit
(TIANGEN, China). Three micrograms of high-quality RNA per
sample was used for the sequencing libraries preparation using
NEBNext R© UltraTM RNA Library Prep Kit for Illumina R© (NEB,
United States). Then, 150 bp paired-end reads were generated on
an Illumina Hiseq platform. We first cleaned the raw sequences
and mapped to reference genome P. trichocarpa v3.01 using
TopHat v2.0.12 (Trapnell et al., 2009). Gene expression was
estimated as transcripts per million (TPM) (Li and Dewey,
2011). Sequencing data are available in NCBI SRA database (SRA
number: SRP234303).

Differential Expression Genes and
Functional Analysis
To identify the differential expression genes (DEGs) between the
five black poplar cultivars, we performed pair-wise comparisons
(Pe1 vs Pe2, Pe1 vs Pn1, Pe1 vs Pd1, Pe1 vs Pd2, Pe2 vs
Pn1, Pe2 vs Pd1, Pe2 vs Pd2, Pn1 vs Pd1, Pn1 vs Pd2, and
Pd1 vs Pd2) by DESeq2 R package. The parameters used to
“call a gene” between conditions was determined at a false
discovery rate (FDR)-adjusted P-value < 0.05. We computed
gene expression based on the obtained clean reads using TPM
values. Gene Ontology (GO) enrichment was performed based
on FDR-adjusted P-value < 0.05. Principal component analysis
(PCA) was performed using R package.

Clustering Analysis and Co-expression
Network Construction
K-means clustering of the transcript expression patterns was
performed using log2-transformed TPM in R package. Weighted
gene co-expression network analysis (WGCNA) was performed
according to Langfelder and Horvath (2008). The resulting
network was visualized by Cytoscape 3.7.0 (Shannon et al., 2003).

Transient Expression Assay
The coding sequence (CDS) of three novel transcription factors,
PdMYB55, PdMYB74, and PdMYB160, were amplified from Pd1
by special primers (Supplementary Table S1). Thermal cycler
program was as follows: 95◦C for 5 min followed by 35 cycles
of 94◦C for 30 s, 58◦C for 30 s, and 72◦C for 50 s and a final at
72◦C for 5 min. To analyze PdMYB55, PdMYB74, and PdMYB160
transcriptional activity in yeast, the amplification products were
cloned into pGBKT7 vector and transformed into the yeast
strain Y2HGold containing His3 reporter gene regulated by Gal4-
responsive promoter (Liu et al., 2018). And the full-length MYBs
were inserted in pCAMBIA2300-35S-OCS at Acc65I and SalI
sites. The empty vector was used as control. The recombinant
expression vectors were introduced into Nicotiana tabacum leaf
by transient Agrobacterium-mediated transformation method
(Buschmann et al., 2011). After 3 days of infiltration, total RNA
was extracted from infiltrated leaf region for the quantitative
Real-Time PCR (qRT-PCR).

1https://phytozome.jgi.doe.gov/pz/portal.html#!info?alias=Org_Ptrichocarpa

The amino acid sequences of MYB and NAC transcription
factors were obtained by BLAST searchers2 Amino acid
sequences were aligned and phylogenic analysis was
performed by MEGA6.0 with the neighbor-joining method
(Tamura et al., 2013).

Quantitative Real-Time PCR
qRT-PCR was used to verify the reliability of the RNA-Seq
analyses and new transcription factor (TF) roles in SCW
regulation. Eight DEGs were selected for qRT-PCR analysis.
Primer pairs were designed using Primer 33. qRT-PCR was
performed using a TB Green R© Premix Ex TaqTM II qPCR master
mix (TaKaRa, Dalian, China) according to the manufacturer’s
instructions. PtrActin and NtActin were the internal controls of
poplar and tobacco, respectively. The relative gene expression
was calculated by the 2−11Ct method (Livak and Schmittgen,
2001). All experiments were performed by using three biological
replicates and three technical replicates. All the primers used in
this study were listed in Supplementary Table S1.

RESULTS

The Microstructure of Five Cultivar
Stems
To find the differences of main cultivars, two P. deltoides
(Pd1 and Pd2), one P. nigra (Pn1), and two hybrids (Pe1
and Pe2) were selected for analysis. Firstly, we compared the
longitudinal and latitudinal growths of the five poplar cultivars
from 9-year-old trees. As is shown in Figure 1A, the diameter of
the two hybrids was bigger than P. deltoides and P. nigra, but no
significant changes were observed in height among the five poplar
cultivars (Figure 1B).

The sections of five cultivars showed that the cambial region
was composed of six to eight layers cell (Figure 1C). The
number of cell layer and thickness of cambium in Pe1 and
Pe2 are significantly greater than Pn1 (Figures 1D,E). In xylem,
there were differences in cell wall thickness between developed
fibers of different varieties of xylem, among which Pd1 cell wall
was the thickest (Supplementary Figure S1C). The number of
vessels in the same area showed a significant difference, with
Pn1 having the lowest number but the largest size of vessels
(Figure 1F and Supplementary Figure S1). This indicates that
the breast diameter is associated with cambium and xylem
secondary growth.

Transcriptome Sequencing and
Alignment to the Reference Genome
To reveal the potential molecular mechanisms of cell wall
thickening in developing xylem of the five poplar cultivars,
the developing xylem was used for high-throughput RNA-Seq.
A total of 10.03 billion high-quality reads were generated, of
which 79.81% were successfully mapped to the P. trichocarpa

2http://www.phytozome.com
3http://primer3.ut.ee/
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FIGURE 1 | Growth traits and microscopic analysis of stem from five black poplar cultivars. The diameter (A) and height (B) of the five cultivars from 9-year-old
plants. (C) Cross sections of phloem–xylem region from 9-year-old trees. Scale bars = 100 µm. PP, phloem parenchyma; PR, phloem ray; PF, phloem fiber; V, xylem
vessel; XR, xylem ray; F, xylem fiber. Statistical analysis of the number of cambium cell layer (D), thickness of cambium (E), and number of vessel cells in the same
region (860 µm × 940 µm, Supplementary Figure S1) (F). Means ± SD from four biological replicates. Lowercase letters (a, b, and c) indicate the results of
Duncan’s multiple range test (significant differences at P < 0.05). Pe1, P. euramericana ‘Zhonglin46’; Pe2, P. euramericana ‘Guariento’; Pn1, P. nigra ‘N179’; Pd1,
P. deltoides ‘Danhong’; Pd2, P. deltoides ‘Nanyang’.

reference genome, constituting 151 Gb of cDNA sequences.
The GC content was 43.31%, and the Q30 was 93.33%
(Supplementary Table S2).

A principal component analysis (PCA) plot of the whole data
set revealed a sequential order of the different samples. The
results showed that the five cultivars were divided into three
clusters, and the biological replicates were projected closely. Two
P. deltoides Pd1 and Pd2 were clustered together, hybrids Pe1 was
clustered close to Pe2 in the middle of P. deltoides and P. nigra,
highlighting the genetic relationship of five cultivars (Figure 2A).

Analysis and Functional Annotation of
Differentially Expressed Genes
To identify the global transcriptional changes in varieties, we
performed a pair-wise comparison with 10 comparable groups. In
total, 10,331 differentially expressed genes (DEGs) were identified
(Figure 2B). The largest DEG set was identified in comparison
“Pn1 vs Pd1” (a total of 5,034 DEGs, including 2,101 upregulated
and 2,933 downregulated genes), suggesting the difference of
P. nigra and P. deltoides ‘Danhong’. In contrast, the smallest
DEG set was identified in comparison “Pd1 vs Pd2” (a total
of 339 DEGs, including 81 upregulated and 258 downregulated
genes) (Figure 2C).

To further characterize the biological role of DEGs, GO
enrichment analysis was performed. The significant GO terms of
the DEGs were classified into three major categories: 100 terms
of biological process (BP), 65 terms of molecular function (MF),
and seven terms of cellular component (CC) (Figure 2D and

Supplementary Table S3). The most enriched terms were cell
death, secondary cell wall, and lignin biosynthesis. In the BP
category, subcategories of “apoptosis” (GO:0006915), “cell death”
(GO:0008219), and “programmed cell death” (GO:0012501)
were significantly enriched. The DEGs of “Pe1 vs Pd2” were
enriched in “response to abiotic stimulus process” (GO:0009628),
suggesting that there are differences in abiotic stress between
the two cultivars. The GO terms “carbohydrate metabolic
process” (GO:0005975) and “metabolic process” (GO:0008152)
were specifically enriched in “Pd1 vs Pd2” DEGs. In the MF
category, terms “ADP binding” (GO:0043531) and “receptor
activity” (GO:0004872) were significantly enriched. The GO
terms “nucleotide binding” (GO:0000166), “receptor activity”
(GO:0004872), and “signal transducer activity” (GO:0004871)
were mainly enriched in comparisons Pn1 with four other
varieties. In the CC category, DEGs of “Pe1 vs Pd1” primarily
belonged to “microtubule” (GO:0005874) and “cytoskeleton”
(GO:0015630). “Pe2 vs Pd1” was significantly enriched in GO
term “membrane” (GO:0016020).

K-Means Cluster of Five Cultivars
To further explore the functional diversity of DEGs from the
five poplar cultivars, we performed a K-means clustering analysis
and grouped the 10,331 DEGs into 20 clusters (Figure 3,
Supplementary Data Sheet 1, and Supplementary Table S4).
Three clusters (1, 8, and 15) showed a high expression
level in Pd1. Genes in cluster 1 were mainly involved in
“catabolic process”, “metabolic process”, “catalytic activity”, and
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FIGURE 2 | Differentially expressed genes (DEGs) in xylem of the five poplar cultivars. (A) Principal component analysis (PCA) of the expressed genes showing
sample separation. Principal component 1 (PC1) and PC2 explaining 20.5 and 17.57% of the total variance, respectively. (B) Heat map of transcriptome data for the
DEGs in the five poplar cultivars. (C) The number of upregulated and downregulated genes in pair-wise comparisons between the five cultivars. (D) Gene Ontology
(GO) enrichment analysis of genes in different comparisons. Node color represents -log10 transformed false discovery rate (FDR) corrected P-value. Node size
represents rich factor. Full list of enriched GO terms was shown in Supplementary Table S3.

“cytoskeleton”; genes in clusters 8 and 15 were involved in
“carbohydrate metabolic process”, “membrane processes”, and
“catalytic activity”. In addition, GO terms of “cellular amino

acid and derivative metabolic process”, “motor activity”, and
“cytoskeleton” were enriched in cluster 8. Genes in four clusters
(4, 9, 10, and 14) were highly expressed in Pn1, and genes in
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FIGURE 3 | K-means clustering and Gene Ontology (GO) classification of differentially expressed genes (DEGs). (A) Gene expression profiling of clusters, showing
log2 of fold change variations among the five poplar cultivars. (B) GO enrichment analysis of genes in different clusters. Node color represents −log10 transformed
false discovery rate (FDR) corrected P-value. Node size represents rich factor. Full list of enriched GO terms was shown in Supplementary Table S4.

clusters 10 and 14 showed low expression level in both Pe1
and Pd1. Genes in clusters 4 and 14 were both involved in
“cell death” and “death” processes, whereas genes in cluster
14 were involved in “response to stress”, “signal transduction”,
“carbohydrate binding”, and “receptor activity”. Cluster 16 which
was enriched in “cell death”, “photosynthesis”, and “thylakoid”
was highly expressed in Pe2. DEGs of cluster 19 did not show
a difference among varieties; they were involved in fundamental
categories of BP and MF.

TFs, binding to cis-acting elements in the promoters of target
genes, as master regulators activate or repress a large number
of functional genes (Gujjar et al., 2014; Yao et al., 2018). Of the
10,331 DEGs identified in this study, 671 differentially expressed
TFs, including 73 bHLHs (basic helix-loop-helix), 70 MYBs,
63 NACs, and 56 ERFs (ethylene response factor), were identified
in different clusters, except in clusters 10 and 15. The largest
number of TFs was distributed in clusters 19 (79 TFs) and 7
(78 TFs). In addition, 10 MYBs and 5 NACs were enriched in
cluster 8, which were related to cell wall biosynthesis and mainly
expressed in Pd1 (Supplementary Table S5).

Construction of Gene Co-expression
Network
To obtain a comprehensive understanding of gene expression and
identify novel regulatory genes during poplar wood formation,
we performed a weighted gene correlation network analysis
(WGCNA) using DEGs. Modules were defined as clusters of
highly interconnected genes, and genes within the same module

have high correlation coefficients. A total of 26 distinct modules
(labeled as different colors) were identified and shown in the
dendrogram (Supplementary Figure S2A). We then compared
the overlapped genes between WGCNA modules and K-means
clusters. Module turquoise (1,309 DEGs) is highly correlated
with clusters 1, 8, and 15, which genes were highly expressed
in Pd1 (Supplementary Figure S2B). It mainly participated in
lignin, cellulose, and secondary cell wall biosynthesis, including
65% of secondary cell wall biosynthesis module, 57.6% of
lignin biosynthesis module, and 48.5% of S-lignin and xylan
biosynthesis module in AspWood database (Sundell et al., 2017)
(Supplementary Table S6). In turquoise module, 23 putative
MYB and 10 NAC genes were identified including the master
switches homologous of MYB46, MYB83, NACSECONDARY
WALL THICKENING PROMOTING FACTOR 1 (NST1), and
SECONDARY WALL-ASSOCIATED NAC DOMAINPROTEIN 2
(SND2) of SCW formation (Zhang et al., 2018a) (Supplementary
Figures S2D,F). Module darkturquoise is major participated
in cellular component organization progress and cell wall,
external encapsulating structure, and extracellular region
(Supplementary Figure S2C).

Lignin synthesis pathway was regulated by three layers of
regulatory network in wood plants, including MYBs, NACs,
miR397a, etc. (Lu et al., 2013; Zhang et al., 2018a). To further
identify potential novel regulatory genes in lignin biosynthesis,
we extracted the subnetwork of lignin biosynthetic genes from
our co-expression dataset (Figure 4A and Supplementary
Table S7). Many known SCW regulatory TFs were identified in
this subnetwork, including MYB4, MYB46, MYB83, MYB102,
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NST1, SND2, and VASCULAR NAC DOMAIN 4 (VND4),
etc. In addition, several functional unknown TFs were
highly connected with those key regulators and the lignin
biosynthetic genes, including four R2R3 MYB subfamily MYB19
(Potri.009G096000), MYB43 (Potri.011G041600), MYB55
(Potri.014G111200), MYB74 (Potri.015G082700), and one
MYB3R4 subfamily MYB160 (Potri.006G241700). MYB74
directly co-expressed with genes related to lignin biosynthesis,
including MYBs (MYB46, MYB63, MYB4, and MYB85),
NACs (NST1 and SND2), and structural genes (PAL1, 4CL,
C4H, and CCoAOMT1). MYB55 indirectly co-expressed with
lignin biosynthesis through a positive correlation with protein
kinase and zinc finger. MYB160 co-expressed with noyl-CoA
hydratase, glutamine synthetase, and sinapine esterase, which
were positive correlation with 4CL, C3H1, and CCoAMT
(Figure 4A and Supplementary Table S7). The phylogenetic
relationship shows that PtrSND2/3-B1 and PtSND2 are the
closest to AtSND2, PtrVND6-A1 and PtrVND6-B1 are the
closest to AtVND4, PtrVND6-C2 is the closest to AtVND1/2,
and PtrWND2A is the closest to AtNST1. MYB55 and MYB74
have the closest relationship with known SCW-associated
R2R3-MYB transcription factors PtrMYB121 and PtoMYB170,
while MYB160 as MYB3R4 type is the furthest from R2R3-MYB
(Supplementary Figure S3).

We found 77 DEGs in our datasets that were involved
in lignin biosynthesis. The highly expressed genes in Pd1
cover almost 10 enzyme families in monolignol biosynthesis
and the most of LACs (Supplementary Figure S4). Eight
genes identified from DEG list were selected for qRT-PCR
validation, which include three potential novel regulatory genes
(PdMYB55, PdMYB74, and PdMYB160), three known MYBs
(MYB43, MYB63, and MYB83), and two cell wall biosynthesis
structural genes (C3H and CesA4). The high expression of
the genes in Pd1 was consistent with RNA-seq, indicating the
reliability of the RNA-seq results and the xylem of Pd1 is in active
stage (Figure 4B).

Transient Expression Assay in
Nicotiana tabacum
In order to verify whether these novel regulators identified
in our study play potential roles in lignin biosynthesis, the
three selected MYB genes were cloned from Pd1 and were
transiently overexpressed in tobacco. Yeast cells expressing
BD-MYB55, BD-MYB74, or BD-MYB160 but not BD alone
grow in the absence of His (-His) on SD plates, suggesting
that three MYBs possess the activity to promote HIS marker
gene expression in yeast (Figure 5A). qRT-PCR analysis
for three independent lines indicated that PdMYB55,
PdMYB74, and PdMYB160 can regulate the expression of
lignin biosynthetic structural genes (Figures 5B,C). Similar to
co-expression analysis PdMYB74 can promote the expression
of PAL, CSE, HCT, and LAC. The expression of genes in
the lignin biosynthetic pathway, including 4CL, C4H, CCR,
and CSE, appeared strong downregulation in PdMYB55 and
PdMYB160 transient overexpression lines compared to control
plants (Figure 5C).

DISCUSSION

Typical poplar wood contains about 33% (vol/vol) vessel
elements, 53%–55% fibers, 11–14% ray parenchyma, and about
1% axial parenchyma (Mellerowicz et al., 2001; Groover et al.,
2010). In our study, there were significant differences in the
number of vessels, the width of cambium region, and the
xylem cell wall among five black poplar cultivars (Figure 1).
Vessel, tracheary elements, transport water and soluble minerals
from the roots throughout (Yamaguchi et al., 2011). Its size
and number contribute to define wood density (Leal et al.,
2011). Cell death is transcriptionally regulated as a part of
an overall xylem maturation, which includes secondary cell
wall formation (Bollhoner et al., 2012). The DEGs of Pn1
compared with the other four cultivars were enriched in cell
death and death and also involved in molecular function such
as kinase activity, nucleotide binding, and receptor activity
(Figure 2D). And we recognized many related genes which
influence the cell death and SCW of xylem vessels and
fibers, such as accelerated cell death2 (ACD2), programmed
cell death 4-like, XYLEM CYSTEINE PEPTIDASE1 (XCP1) and
XCP2, metacaspase9 (MC9), and BIFUNCTIONAL NUCLEASE1
(BFN1) (Supplementary Table S8). VND and NST regulate
vessel element and fiber differentiation (Mitsuda et al., 2005,
2007; Yamaguchi et al., 2011; Tan et al., 2018). VND6 and
VND7 directly control PCD and autolysis in the element
differentiation as transcriptional master switches (Escamez and
Tuominen, 2014). XYLEM NAC DOMAIN1 (XND1) and VND-
INTERACTING2 (VNI2) are NAC transcription factors that
suppress secondary wall formation and cell death of vessel
elements, suggesting they were negative regulators of xylem
vessel formation (Grant et al., 2010; Yamaguchi et al., 2010).
While in our study XND1and VNI2 were highly expressed in
P. euramericana and P. deltoides. We thought the difference
of vessel development may be due to the interaction of
NAC and PCD related genes, thus affecting the transport of
nutrients and plant growth. We found ERF1 (Potri.008G166200),
WRKY75 (Potri.012G101000), and disease resistance protein
[CC-NBS-LRR class (Potri.T052300) and TIR-NBS-LRR class
(Potri.011G014700 and Potri.019G114500)] highly expressed in
Pn1 (Supplementary Figure S5), which participated in disease
and defense response. And these genes were not expressed in the
xylem of P. tremula by AspWood. The results suggest Pn1 should
have stronger resistance and adaptability.

Phenotypic differences are often caused by the differential
expression of genes. Only few number of DEGs (339)
were identified between Pd1 and Pd2, suggesting their close
relationship—they were progeny of P. deltoides ‘55/65’ ×
P. deltoides ‘2KEN8’ (Zhang et al., 2008; Hu et al., 2013).
And all of them participated in the metabolic process,
which might be the reason of radial growth differences
between the two cultivars. DEGs between Pe1 and Pd1 are
related with microtubule cytoskeleton (Figure 2D), which is
a dynamic filamentous structure participating in nuclear and
cell division, deposition of cell wall, cell expansion, organelle
movement, and secretion processes in cell morphogenesis
(Hussey et al., 2002).
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FIGURE 4 | Co-expression network of lignin biosynthetic genes based on our RNA sequencing (RNA-Seq) dataset. (A) The subnetwork was extracted from our
RNA-Seq co-expression analysis. Yellow and red nodes represent lignin biosynthetic genes and transcription factors, respectively. Purple and green edges represent
positive and negative correlation, respectively. The blue letter labeled the known key regulators in the first layer and the second layer of secondary cell wall formation
regulatory network (Zhang et al., 2018a). See Supplementary Table S7 for detailed node information. (B) Expression confirmation of eight critical genes using
quantitative Real-Time PCR (qRT-PCR). Transcripts per million (TPM) values and relative expression of target genes by qRT-PCR of eight critical genes were shown.
Each sample was conducted four biological replicates and four technical replicates.
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FIGURE 5 | Novel transcription factors regulate the expression of the secondary wall biosynthetic genes. (A) Transactivation analysis of MYB in yeast. Full-length
MYB55, MYB74, and MYB160 were fused with the GAL4 DNA binding domain and expressed in the yeast strain Y2HGold harboring the His3 reporter gene under
the control of GAL4-responsive promoter elements. (B) Semiquantitative RT-PCR analysis of MYB55, MYB74, and MYB160 expression in tobacco. (C) The
quantitative Real-Time PCR (qRT-PCR) of structural genes in lignin biosynthesis. Error bars ± SD from three biological replicates. Lowercase letters (a, b, c, and d)
indicate the results of Duncan’s multiple range test (significant differences at P < 0.05).

Plant cell walls are also a source of renewable biomass for
conversion to biofuels and bioproducts (Li et al., 2012). Lignin
impregnate with cellulose and hemicellulose simultaneously
to provide additional mechanical strength, hardness, and
hydrophobicity to the secondary wall (Zhong and Ye, 2015).
Zhang et al. (2018a) systematically reviewed the complex
regulatory network of SCW biosynthesis, which includes a series
of NAC and MYB TFs. We identified a SCW-associated module
(turquoise) by WGCNA. Most genes in this module are structural
genes involved in the biosynthesis of lignin and cellulose, such as
PAL, 4CL, CCR, and CesAs, etc. In addition, we identified a large
number of transcription factors, which are known as three layers
of transcription factors in the regulatory network in secondary
wall thickening and lignification in wood plants, including VND,
SND, and WND in the first layer, master switches MYB46 and

MYB83 in the second layer, and MYB4, MYB61, and MYB103,
etc. in the third layer (Figure 4, Supplementary Figures S2, S3).
The high expression of these genes in Pd1 is related to the
development state of xylem and finally leaded the thickest wall
of Pd1. Evolutionary trees show the relationship between known
and novel TFs (Supplementary Figure S3). For example, the
deposition of lignin and thickening of secondary walls were
influenced in overexpressing PtoVNS11 transgenic poplar (Yang
et al., 2015). Splicing variants of PtrVND6-C1IR and PtrSND1-
A2IR function together to cross-regulate the VND and SND
families to maintain the wood formation and plant development
(Lin et al., 2017). PtrWND2B and PtrWND6B influenced
the expression of SCW-associated TFs and structural genes
and, concomitantly, the ectopic deposition of cellulose, xylan,
and lignin (Zhong et al., 2010). PtoMYB156 and PtoMYB189
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negatively regulate secondary cell wall biosynthesis during wood
formation in poplar (Yang et al., 2017; Jiao et al., 2019). While
PtrMYB152 and PtoMYB92 have been reported as activators
of lignin biosynthesis (Wang et al., 2014; Li et al., 2015). In
our study, SCW-associated modules were identified, including
orthologs of PtrSND2/3-B1, PtrSND1 and its target PtrMYB021,
which influenced the thickness of secondary cell wall of xylem
fiber and the content of cellulose and lignin in stem (Li
et al., 2012; Wang et al., 2013). PdMYB55 and PdMYB74 were
clustered with PtrMYB121, PtrMYB74, and PtoMYB170 which
were identified as the downstream targets of wood-associated
NAC domain TFs to influence wood formation (Zhong et al.,
2011; Xu et al., 2017) (Figure 4, Supplementary Figure S3),
so PdMYB55 and PdMYB74 may also positively regulate lignin
biosynthesis. Although MYB160 has the furthest relationship
with others, it may participate in the development of secondary
wall as a member of SCW module. Those results suggested
some uncharacterized NAC and MYB TFs may participate in the
SCW biosynthesis.

PdMYB55, a homolog of AtMYB55, could influence the
expression of key genes in lignin biosynthetic pathway in
our transient expression assay. AtMYB55, as a brassinolide-
inducible gene, participates in basal cell of mature leaves and
downregulated by the Aux/IAA protein in an organ-specific
manner (Nakamura et al., 2006; Schliep et al., 2010). PtrMYB74
and AtMYB50 as downstream genes of NAC102 participate in
the formation of secondary walls in xylem fiber and vessels (Ko
et al., 2007; Zhong et al., 2011). The expression of structural genes
may be upregulated by direct action in PdMYB74, suggesting
it was a positive regulator of SCW. PdMYB55 and PdMYB74
are closely related in evolutionary relationship, but it is possible
that their functions are not completely consistent because it
regulates interaction with lignin pathway genes by protein kinase
and zinc finger. PdMYB160 belongs to c-myb-like MYB3R4
subfamily. MYB3R4 can bind to MSA motifs in promoters of
B-type cyclins (CYCB) to regulate the cell cycle in Arabidopsis
and tobacco (Haga et al., 2011; Kobayashi et al., 2015; Olszak
et al., 2019). Although PdMYB160 has transcriptional activity
and represses the expression of structural genes, which may
be due to the indirect effect of regulation and needs further
study in the future. PdMYB55, PdMYB74, PdMYB160, and
other SCW TFs are highly expressed in Pd1. Three MYBs and
other TFs jointly regulate structural gene expression in lignin
biosynthesis. These results indicate that three novel TFs are
participated in the regulation of lignin biosynthetic pathway.
The results of the case study prove that our dataset provides
a great resource to discover novel regulators in the lignin
biosynthetic pathway.

CONCLUSION

Secondary cell wall biosynthesis is a biological process of
producing wood, which is an important renewable material and
energy raw material. The chemical structure and the content of
lignin directly affect the costs of pretreatment and conversion
efficiency in biofuel production from cellulosic biomass. In this

study, we compared the xylem anatomical structures of five
poplar cultivars in China and analyzed the transcriptome-wide
gene expression profiles of developing xylem. A large number of
TFs co-expressed with lignin biosynthetic genes were identified
by K-means clustering and co-expression analysis. Furthermore,
transient expression showed that MYB55, MYB74, and MYB160
may function as novel regulators in lignin biosynthesis pathway.
This study provides a useful resource for future studies seeking
for the molecular mechanisms of xylem development and
utilization of bioenergy.
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FIGURE S1 | Microscopic analysis of xylem form five black poplar cultivars.
(A) The region for vessel count. Scale bars = 200 µm. (B) Average diameter of
vessel. (C) The cell wall thickness of fiber. At least 50 cells per sample were
measured. Means ± SD from four biological replicates. Lowercase letters (a, b, c,
and d) indicate the results of Duncan’s multiple range test (significant differences at
P < 0.05).

FIGURE S2 | Construction of co-expression modules by WGCNA. (A) The cluster
dendrogram of genes. Each branch in the figure represents one gene, and every
color below represents one co-expression module. (B) The percentage of
module-to-cluster in module. Node color represents the percentage in module.
Node size represents gene number. (C) Gene Ontology (GO) enrichment analysis
of genes in different modules. Node color represents -log10 transformed FDR
corrected P-value. Node size represents rich factor. The heatmap of MYBs (D)
and NACs (E) in module turquoise.
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FIGURE S3 | Phylogenetic trees of NACs (A) and MYBs (B) from different plant
species by the neighbor-joining method with 1000 bootstraps. The bootstrap
values are indicated as percentages at the nodes.

FIGURE S4 | The differentially expressed genes related to monolignol biosynthesis
(A) and laccase phenoloxidases (B) in five cultivars.

FIGURE S5 | The differentially expressed genes related to defense response
genes. The average TPM of four biological replicates. ERF1: Potri.008G166200,
WRKY75: Potri.012G101000, RPP4: Potri.019G114500, CC-NBS-LRR: Potri.
T052300 and TIR-NBS-LRR: Potri.011G014700.

DATA SHEET S1 | Summary of all differentially expressed genes (DEGs) TPM,
cluster, modules and other information.

TABLE S1 | The primers used in this study.

TABLE S2 | Summary of the RNA-Seq results.

TABLE S3 | GO enrichment analysis of all differentially expressed
genes (DEGs).

TABLE S4 | GO enrichment analysis of 20 clusters.

TABLE S5 | Identification of 671 transcription factors (TFs) representing 47 gene
families in the 20 clusters.

TABLE S6 | Common genes between turquoise module in this study and
SCW-associated modules in AspWood.

TABLE S7 | The genes in co-expression network of lignin biosynthetic.

TABLE S8 | Differentially expressed of vessel differentiation and
PCD related genes.
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