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Autophagy is an intracellular degradation process, which is highly conserved in
eukaryotes. During this process, unwanted cytosolic constituents are sequestered
and delivered into the vacuole/lysosome by a double-membrane organelle known
as an autophagosome. The autophagosome initiates from a membrane sac named
the phagophore, and after phagophore expansion and closure, the outer membrane
fuses with the vacuole/lysosome to release the autophagic body into the vacuole.
Membrane sources derived from the endomembrane system (e.g., Endoplasmic
Reticulum, Golgi and endosome) have been implicated to contribute to autophagosome
in different steps (initiation, expansion or maturation). Therefore, coordination between
the autophagy-related (ATG) proteins and membrane tethers from the endomembrane
system is required during autophagosome biogenesis. In this review, we will update
recent findings with a focus on comparing the selected core ATG complexes and the
endomembrane tethering machineries for shaping the autophagosome membrane in
yeast, mammal, and plant systems.
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INTRODUCTION

Macroautophagy (hereafter referred to as autophagy) is an evolutionarily conserved degradative
process required for maintaining cellular homeostasis. In this pathway, detrimental or unwanted
cellular materials are engulfed by a de novo formed double-membrane autophagosome
and delivered into the vacuole (in yeast and plants) or lysosome (in animals) for
degradation/recycling (Mizushima et al., 2011; Liu and Bassham, 2012). The autophagosome
biogenesis process can be divided into four major stages: initiation of a cup-shaped membrane
sac (phagophore/isolation membrane), expansion of the phagophore, autophagosome closure,
and autophagosome-vacuole/lysosome fusion (Soto-Burgos et al., 2018; Zhuang et al., 2018). To
form a mature autophagosome, a number of autophagy-related (ATG) proteins are employed to
orchestrate the membrane shaping of the autophagosome in the different steps of autophagy (Soto-
Burgos et al., 2018; Zhuang et al., 2018). In addition, membrane tethers from the endomembrane
system have also been implicated to participate in membrane remodeling processes during
autophagosome biogenesis. Exciting findings have shed new light on the non-ATG regulators
in shaping the autophagosome membrane in plants, such as cytoskeleton, phospholipids, and
membrane tethering machineries (e.g., the exocyst complex), which have been reviewed in several
recent excellent publications (Tzfadia and Galili, 2013; Pecenkova et al., 2017; Wang et al., 2017;
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Soto-Burgos et al., 2018; Chung, 2019) and therefore will not
be covered here. In this mini review, we will discuss the
recent advances of the core ATG machineries as well as the
related endomembrane tethering machineries in shaping the
autophagosome membrane (Table 1).

PHAGOPHORE INITIATION

In yeast, autophagy is initiated as a pre-autophagosomal structure
(PAS) by the hierarchical recruitment of a number of Atg
proteins, in particular the Atgl complex and Atg9 (Yamamoto
etal., 2016). The PAS in yeast is often detected in close proximity
to both the ER and the vacuole, and a vesicle delivery model
has been proposed, contributed by Atg9 vesicles and COPII
vesicles (Figure 1A, left; Otomo et al., 2018; Hollenstein et al.,
2019). Key players like Yptl and the transport protein particle
(TRAPP) GEF (guanine-nucleotide exchange factors) complex
are both reported to participate in this process (Lipatova et al.,
2016). In yeast, 4 types of TRAPP complex (TRAPPI-IV) have
been identified, and most homologs of TRAPP subunits are
also found in mammal and plants (Lipatova et al., 2016). Upon
autophagic induction, the TRAPPIII complex consisting Trs85
is recruited to the PAS for the activation of Yptl (Lynch-Day
etal., 2010). Of note, it is shown that Trs33, which was originally
considered to be a subunit exists in all TRAPP complexes,
may assemble into a distinct TRAPP complex in the absence
of Trs85 for Yptl-mediated autophagy as well (Lipatova et al.,
2016). Subsequently, Yptl triggers the assembly of Atgl-Atgl3-
Atgl7-Atg31-Atg29 complex on the PAS for the clustering
of Atg9 vesicles and COPII vesicles to produce a membrane
sac (Figure 1A, left). Structural studies have revealed that the
Atgl7-Atg31-Atg29 subcomplex forms an S-shaped scaffold to
bridge two Atg9 vesicles together, while such a crescent-shape
structure perfectly matches the size of Atg9 vesicles (~20-30 nm)
(Ragusa et al., 2012). Additionally, COPII subunits also bind
to Yptl and Atg9, as well as the Atgl7-Atg31-Atg29 tethering
complex for phagophore initiation (Wang et al., 2014).

Unlike yeasts which contain a single PAS, multiple PAS
have been detected in mammalian cells. The current model
for phagophore nucleation involves an intimate membrane
association among an omega-shape structure called the
omegasome, which emerges from the ER, as well as ATG9
vesicles and COPII vesicles (Figure 1A, middle; Axe et al.,
2008). It appears that ATG9 vesicles are more likely to supply
proteins/lipids, instead of being directly incorporated into the
phagophore membrane. This is supported by a recent study
showing that ATG9 vesicles deliver the PI4-kinase, PI4KIIIp,
to the autophagosome initiation site for the recruitment of
the ULK1/2 complex (counterpart of yeast ATG1 complex)
(Judith et al., 2019). In addition, the TRAPPIII complex in
mammal is required for the relocalization of ATGY vesicles
from peripheral recycling endosomes to the early Golgi during
autophagy (Lamb et al., 2016). Using high-resolution imaging
analysis, it has been observed that ULK and FIP200 are recruited
onto the ER membrane prior to their association with the ATG9
vesicles (Karanasios et al., 2016). After that, the ULK1 complex

translocates to the ATG9A-positive autophagosome precursors
in a PI3P-dependent manner, while ATG9 is phosphorylated by
ULK]1, thus further promoting ATG9 trafficking under starvation
conditions (Zhou et al., 2017). Interestingly, recently it is showed
that FIP200 dimerizes as a C-shaped hub for the assembly of the
ULK1 complex, but whether the C-shape would fit the ATG9
vesicles to promote phagophore nucleation remains an open
question (Shi et al., 2019).

In plant cells, omegasome-like structures have also been
observed during autophagy (Zhuang et al., 2013) and conserved
ATGI complex subunits have been identified in the plant genome
(Huang et al, 2019; Figure 1A, right). It has been reported
that mutation of all ATG1 isoforms significantly compromised
autophagosome formation (Huang et al, 2019). Conversely,
depletion of plant ATGY results in abnormal ATG8-positive
tubules connecting to the PI3P-enriched ER subdomain, and
similar defects are also observed in afgll mutant, indicating
that they both act downstream of ATGI to organize phagophore
assembly (Zhuang et al., 2017; Huang et al., 2019). Interestingly,
structural analysis showed that ATG9 may form a trimer,
suggesting that ATG9 may recruit additional ATG9-containing
vesicles via self-tethering during phagophore nucleation (Lai
et al., 2019). However, to get a better understanding of how the
ATG1 complex and ATG9 vesicles are assembled at the initiation
site, future investigations are needed to examine their hierarchical
order (Figure 1A, right).

PHAGOPHORE EXPANSION

Later the phagophore will elongate to expand its membrane
size for cargo sequestration, and this also requires a subset
of membrane remodeling proteins to transport lipids/proteins
from the membrane donors. Membrane donors including the
ER, ATG9 vesicles, COPII vesicles, as well as other endosomes
have also been implicated as contributing to phagophore
elongation (Gomez-Sanchez et al, 2018; Osawa et al., 2019;
Shima et al, 2019; Figure 1B, left). During phagophore
expansion, the PI3K complex mediates the production of
PI3P, which further recruits PI3P effectors (e.g., ATG18), as
well as the ATGI12-ATG5-ATG16 conjugate (Simonsen and
Tooze, 2009; Romanov et al, 2012). Afterward, cytosolic
ATG8 is conjugated to phosphatidylethanolamine (PE) to form
ATGS8-PE (LC3-II in mammal) that decorates the phagophore,
which may contribute to cargo recognition and phagophore
closure (discuss later) (Fujita et al., 2008). In yeast, Atg8 may
function in autophagosome expansion, as mutation of afg8
leads to reduced-sized or even no autophagosome production
(Xie et al., 2008).

Recent studies have demonstrated that the isolation
membrane (IM) expands via lipid transfer from the ER at
the IM-ER contact (Gomez-Sanchez et al., 2018). In yeast,
Atg2-Atgl8 interacts with Atg9 vesicles to mediate Atg9 vesicle
recycling, while ATG9 directs Atg2 to the IM-ER contact sites
(Figure 1B, left; Gomez-Sanchez et al., 2018). Loss of Atg2-Atg9
interaction compromises the formation of the IM-ER contact site
(Gomez-Sanchez et al.,, 2018). Interestingly, Atg2 also recognizes
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TABLE 1 | Core regulators in autophagosome biogenesis in yeast, mammals, and plants*.

Process Complex/ protein Pivotal subunits/proteins Putative roles in Sc and Putative roles in At
Hs
Sc Hs At
Phagophore Atg1 complex Atg1 ULK1/2 ATG1 (a, b, ¢, 1) Ser/Thr kinase Ser/Thr kinase
initiation Atg17-Atg31-Atg29 FIP200 ATG11 Membrane scaffold /
Atg13 ATG13 ATG13a/b ATG9 vesicle recruitment /
TRAPP complex Trs85 TRAPPC8 TRS85 GEF effector for Ypt1/RAB1 /
activation
Trs33 - TRS33 /
GTPase Ypt1 RAB1A/B RAB1/RABD Atg1 and ATG9A vesicle /
recruitment
Phagophore Atg9 complex Atg2 ATG2A/B ATG2 Lipid transfer, ATGO vesicle /
recruitment
expansion Atg18 WIPI1/2/3/4 ATG18a-h PI3P effector PI3P effector
Atg9 ATGOA/B ATG9O Lipid source Lipid source
PI3K complex Atg14-Atg6-Vps34-Vps15 ATG14L-Beclin1-VPS34- ATG14a/b-ATG6-VPS34- PI3P generation PI3P generation
VPS15 VPS15
AP closure ATG8-PE Atg8 LC3A/B/C, GABARAR, ATG8a-i Cargo recognition; Cargo recognition
GABARAPL1/L2 Membrane tethering and
hemifusion
ESCRT complex / ESCRT-I (VPS37A) ESCRT-I (FREET) Assembly of ESCRT Assembly of ESCRT
complex complex
ESCRT IIl (Snf7, Vps4) ESCRT-IIl (CHMP2A) ESCRT-IIl (CHMP1) Membrane scission Membrane scission
GTPase Rab5 RABSA/B/C RABS5 (ARA6/7, Recruitment of ESCRT to /
RHA1/RABF2a) PAS
AP-vacuole/ SNARE complex Vti1-Vam3-Vam7-YKT6 STX17-SNAP29-VAMP7/8 VTI11/12/13 Membrane tethering, Membrane tethering,
recruitment of HOPS recruitment of HOPS
complex complex
lysosome fusion / STX7-SNAP29-YKT6 / Membrane tethering, /
recruitment of HOPS
complex
HOPS complex Vps39,Vpsa VPS39, VPS41 VPS39, VPS41 Vesicles fusion /
Mon1-Ccz1 complex Mon1-Ccz1 Mon1-Ccz1 MON1-CCZ1 GEF complex for Rab7 GEF complex for Rab7
GTPase activation GTPase activation
GTPase Ypt7 RAB7a/b RAB7 (RABG3a-f) HOPS complex recruitment HOPS complex recruitment

*Not all the regulators are listed in the table. For orthologs with no evidence supporting their roles in specific steps of autophagy or not identified (/). At, Arabidopsis thaliana; Hs, Homo sapiens; Sc, Saccharomyces
cerevisiae; AP, autophagosome.
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FIGURE 1 | Core tethering machineries in autophagosome biogenesis in yeast, mammals, and plants. (A) The phagophore initiation is mediated by the recruitment
of Atg1 complex to the pre-autophagosomal structure (PAS) in yeast. Atg9 vesicles can interact with Atg1 complex and provide a membrane source by nucleation to
form a cup-shape phagophore. In mammals, trafficking of ATG9 to PAS is mediated by the TRAPPIIl complex, and the S-shaped ULK1 complex is recruited to
the ATG9-positive ER membrane for phagophore initiation. Another membrane source, COPII vesicles, are involved in the initiation process in both yeast and mammals.
(Continued)
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FIGURE 1 | Continued

In plants, the ER is one of the assembly sites for phagophore initiation, which requires the ATG1 complex and ATG9 vesicles, but the roles of the TRAPPIII complex
and COPII vesicles remain unknown (dashed and question mark). (B) In yeast, Atg9 directs the Atg2-Atg18 complex onto the phagophore, which mediates the
formation of IM-ER contacts for phagophore expansion. In mammals, WIPI2 interacts with ULK1/FIP200-VAPs complex assembled on the ER membrane to mediate
the IM contact with the ER. ATG2-WIPI4 complex interacts with mitochondrial proteins to establish the IM-MAM contact and to recruit ATG9 vesicles to MAM. In
plants, ATG18 transiently associates with ATG9 but the function of ATG18-ATG2 in phagophore extension remains unknown (dashed and question mark). In
addition, COPII vesicles have been implicated to contribute to phagophore expansion, although their role in plants is unclear (dashed and question mark). (C) Atg8
and ESCRT complex are potential candidates in regulating autophagosome closure. Atg8-PE is likely to promote hemifusion by tethering lipid membrane or another
Atg8-PE for the closure process in both yeast and mammals. But it is also suggested that specific LC3 isoforms interact with ATG2 which are anchored to the ER to
close the autophagosome in mammals. ESCRT subunits might also participate in the final fission process to seal the autophagosome. (D) In yeast and mammals,

distinct pairs of SNAREs are recruited to the autophagosomal membrane and the vacuole/lysosome, respectively. Upon the activation of GTPase, the HOPS
complex is recruited to assist in SNARE complex assembly and tethering events for autophagosome-vacuole/lysosome fusion. In Arabidopsis, how Rab GTPase,
SNARE complex and HOPS complex are coordinated to regulate autophagosome-vacuole fusion remains elusive (dashed and question mark).

PI3P, and Atgl8 alone cannot bind to PI3P on IM unless Atg2
is present (Gomez-Sanchez et al, 2018; Kotani et al.,, 2018).
Mutation of the Atg2 lipid-binding site leads to shorter IM
(Osawa et al., 2019). Moreover, fluorescence-based liposome
binding assays have showed that Atg2 has a stronger membrane
tethering ability to small liposomes (with high curvature) that
are consistent with the size of Atg9 vesicles, suggesting that
Atg9 vesicles might be the membrane donor in phagophore
expansion (Osawa et al., 2019). Similar to the lipid transport
protein vacuolar protein sorting 13 (Vps13), Atg2 also contains
a hydrophobic cavity in the conserved N-terminal region, which
allows Atg2 to solubilize lipid for lipid transfer (Kumar N. et al.,
2018; Osawa et al., 2019).

The ability of lipid transfer is conserved in mammalian
ATG2. Structural analysis has revealed that ATG2 is a rod-like
protein that forms a complex with WIPI1 (WD repeat domain
phosphoinositides-interacting protein 1), WIPI2 and WIPI4
(mammalian homologs of Atgl8) to bridge IM-ER contact
(Chowdhury et al.,, 2018; Maeda et al., 2019). Unidirectional
lipid transfer from the ER to the PI3P-enriched IM is facilitated
by ATG2 with the assistance of WIPI proteins (Figure 1B,
middle; Chowdhury et al., 2018; Maeda et al., 2019). In addition,
ER receptor vesicle-associated membrane protein-associated
proteins (VAPs) have also been reported to mediate the IM-ER
contact formation via interaction with FIP200 and ULKI1
(Zhao et al., 2018). Then, WIPI2 tethers the ER with the
IM via binding to PI3P on IM and the ULK1/FIP200-VAPs
on the ER (Figure 1B, middle). VAPs probably stabilize the
complex for membrane contacts and loss of VAPs results in
impairment of phagophore growth (Zhao et al., 2018). Of
note, a recent study also reported accumulation of ATG2 at
mitochondria-associated membrane (MAM) (Tang et al., 2019).
It has been suggested that after having been directed to MAM
by TOM40 on mitochondria, ATG2 will recruit ATG9 vesicles to
mediate lipid transfer from ATG9 vesicles to the IM (Figure 1B,
middle; Tang et al., 2019). This is supported by the observation
that loss of ATG2-ATGY interaction resulted in a failure of
ATG9 vesicle delivery and defects in phagophore expansion
(Tang et al., 2019).

Arabidopsis atg2, atg9, and atgl8 mutants all show defects
in autophagosome formation and display an early senescence
phenotype, implying that a conserved plant ATG2-ATG18-ATG9
complex might function in autophagosome expansion as well

(Figure 1B, right) (Hanaoka et al., 2002; Zhuang et al., 2017;
Kang et al., 2018). Particularly, the levels of both the unlipidated
and lipidated ATGS8 are significantly increased in all atg2,
atg9, and atgl8 mutants, suggesting a failure in autophagosome
formation (Kang et al., 2018). It is worth noting that in the atg2
mutant, numerous tiny autophagic structures are detected in the
cytosol and their delivery into the vacuole are blocked (Kang
et al,, 2018). Intriguingly, extending tubules positive with both
ATG8 and ATGI18, which are sensitive to PI3P inhibitor, are
accumulated in atg9 mutant (Zhuang et al., 2017). One possible
scenario is that ATGY9 vesicles may regulate the retrieval of
ATG18 and ATG?2 from the PAS to prevent excessive expansion
of the phagophore.

AUTOPHAGOSOME CLOSURE

The closure of the phagophore into an autophagosome is a
process involving outer membrane fusion along a “rim of a cup,’
while an inner autophagic vesicle is separated from the outer
membrane, which is topologically identical to the membrane
fission process (Zhou et al., 2019).

In yeast, Atg8-PE itself has been shown to facilitate membrane
tethering and hemifusion (Figure 1C, left) (Nakatogawa
et al., 2007). In mammalian cells, a similar function for the
LC3/GABARAP protein family (the homolog of Atg8) in
autophagosome closure has been reported. Knockdown of
all six LC3/GABARAP isoforms results in the accumulation
of open IMs (Nguyen et al., 2016). Moreover, inhibiting LC3
lipidation also induced the accumulation of open autophagic
structures (Fujita et al, 2008). Structural analysis showed
that the unique N-terminal region of LC3/GABARAP can
bind to both lipid and protein (e.g., another LC3/GABARAP)
(Wu et al, 2015), suggesting a multimerization ability of
the LC3/GABARAP family for hemifusion. Interestingly,
another study revealed a distinct role of ATG2-GABARAP
interaction in autophagosome closure (Bozic et al., 2019). Both
ATG2A and ATG2B contain LC3 interacting region (LIR)
motifs for interaction with LC3/GABARAP. In atg2a/atg2b
double knock out cells, or even expressing mutated ATG2A
lacking the interaction region to GABARAP, the number of
unsealed autophagosomes is significantly increased. However,
such defects cannot be complemented in atg2a/atg2b double
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knock out cells expressing ATG2 which abolishes WIPI4
interaction. Therefore, the ATG2-GABARAP interaction
might represent a novel mechanism in autophagosome
closure, which is independent of the association of ATG2-
WIPI in phagophore expansion. In plants, the great
expansion of ATGS8 family, which comprises 9 isoforms,
hinders the characterization of the specific roles of different
ATGS8 isoforms in autophagosome formation (Liu and
Bassham, 2012). However, future efforts are needed to
utilize different tools like in wvitro assays and structural
analysis to obtain more detailed information on the ATGS8
family in plants.

The ESCRT machinery has been well characterized to function
in reverse topology scission of membrane, particularly for
the formation of the internal vesicles in the multivesicular
body (MVB) (Gao et al, 2017). In regard to the similar
topology for the invagination of the internal vesicles from
the outer membrane, the ESCRT complex would be a good
membrane scission candidate for sealing the autophagosome
membrane (Figure 1C). Indeed, in most ESCRT mutants,
abnormal autophagosome structures are often detected in the
cytosol (Takahashi et al., 2018, 2019; Zhou et al., 2019).
Recently, using a novel method to distinguish the phagophore
and nascent autophagosome by labeling LC3 with permeable
and impermeable dyes, it was shown that an ESCRT-III
component CHMP2A and an AAA-ATPase vacuolar protein
sorting-associated 4 (VPS4) translocate to the phagophore
during autophagy (Takahashi et al.,, 2018). Furthermore, more
unsealed phagophore structures and protease-unprotected GFP-
LC3-II are detected in chmp2a and vps4 cells. Recently, another
ESCRT-I subunit VPS37A, has been identified to recruit the
ESCRT machinery onto the phagophore to mediate its closure
(Takahashi et al., 2019). Another strong piece of evidence from
yeast study is that Atgl7 binds to Snf7 for its recruitment
to the phagophore in a Rab5-dependent manner (Zhou et al,,
2019). Depletion of Snf7, Vps4 and Rab5 GTPase Vps2l
all result in an accumulation of immature autophagosomes.
Particularly, with an artificially forced Atgl7-Snf7 interaction,
no defects are displayed in a wvps2I mutant, suggesting
that Rab5 GTPase catalyzes the Atgl7-Snf7 interaction for
autophagosome closure.

In plants, the essential roles of ESCRT machinery in
plant MVB-mediated pathways have been well documented
and abnormal autophagosomes are accumulated in several
ESCRT-related mutants as well (Gao et al, 2017). For
instance, in the chmpl mutant, delayed autophagosome
closure as well as abnormal pattern in plastid division is
observed, indicating that CHMP1 may function in closure
of autophagosome for sequestering plastid cargo (Spitzer
et al,, 2015). Autophagosome maturation and delivery into
the vacuole are also severely suppressed when another
plant unique ESCRT subunit, FREEI is mutated. Further
evidence demonstrates a direct link between the ESCRT
machinery and autophagic machinery via a FREE1-SH3P2
interaction (Gao et al, 2015), whereby SH3P2 has been
shown to interact with ATG8 and to translocate onto the
phagophore upon autophagic induction (Zhuang et al,

2013). However, the regulatory mechanism of plant ESCRT
in autophagosome closure awaits further investigations
(Figure 1C, right).

AUTOPHAGOSOME-VACUOLE/
LYSOSOME FUSION

In the endomembrane system, membrane tethering machineries,
including the soluble N-ethylmaleimide-sensitive factor
attachment receptor (SNARE) complex and homotypic
fusion and vacuole protein sorting (HOPS) complex, have
been well characterized to mediate the fusion between the
vacuole/lysosome and other vesicles (Itakura et al., 2012; Jiang
et al., 2014; Bas et al., 2018; Matsui et al., 2018).

The SNARE complex can change its conformation to shorten
the distance between two compartments and facilitate membrane
insertion into the target membrane (Jahn and Scheller, 2006).
Two types of SNAREs, Q-SNAREs and R-SNARE, which are
localized on the membrane acceptor and the membrane donor,
respectively, assemble into a four-helix SNARE complex and
recruit the HOPS complex (Jahn and Scheller, 2006). In yeast,
the Q-SNARE on the vacuole, comprised of Vtil, Vam3, Vam?7,
cooperates with the R-SNARE on autophagosome, Ykt6, to
mediate the autophagosome/vacuole fusion (Bas et al., 2018). The
HOPS complex, which is highly conserved in yeast, mammals,
and plants, is characterized as an elongated seahorse-like tether
(Brocker et al., 2012). To activate the HOPS complex, Rab7-like
GTPase Ypt7 is recruited onto the autophagosome membrane
via the Monl-CcZ1 (monensin sensitivity protein 1 -caffeine,
calcium, and zinc 1) GEF complex, which is conserved in
yeast, mammals and plants (Cui et al., 2014; Gao et al,
2018). Importantly, Cczl consists of an LC3-interacting region
(LIR) motif which interacts with Atg8 on the autophagosome,
activating Ypt7 for its recruitment via binding to PI3P on
the autophagosome (Gao et al, 2018). However, mutation
of the PI3K subunits Atgl4 and Vps34, which facilitate the
PI3P synthesis, strongly inhibits autophagosome fusion with
the vacuole, suggesting PI3P serves as a prerequisite for the
assembly of this tethering complex (Bas et al., 2018). Ypt7
subsequently binds to the two Ypt7-binding sites at the two
ends of the HOPS complex to catalyze its flexible bending
for driving the autophagosome-vacuole fusion (Figure 1D, left)
(Balderhaar and Ungermann, 2013).

In mammalian cells, autophagosome-lysosome fusion is
mediated by a SNARE complex consisting STX17-SNAP29-
VAMP7/8 (Figure 1D, middle; Itakura et al., 2012). STX17 is
recruited to autophagosomes via binding to the immunity-related
GTPase M (IRGM) and LC3 on the autophagosomes (Kumar
S. et al, 2018). Interestingly, STX17 interacts with all the
HOPS subunits, and STX17 knockdown leads to improper
autolysosome formation (Jiang et al., 2014). Another SNARE
complex STX7-SNAP29-YKT6 also contributes to the fusion
process, and the HOPS complex is likely to be recruited by STX7
(Jiang et al., 2014; Matsui et al., 2018). Different to yeast, it is
reported that RAB7 and RAB2, which localize to the vacuole
and autophagosomes, respectively, bind to the HOPS complex to
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trigger the autophagosome-lysosome fusion (Fujita et al., 2017;
Figure 1D, middle).

Multiple SNAREs have been identified in Arabidopsis, but
the involvement and underlying mechanisms of SNAREs in
autophagy are largely unexplored (Fujiwara et al,, 2014). In
Arabidopsis, the VTT family (VT111/12/13), the homologs of yeast
Vtil, functions as Qb-SNARE and other associated Q-SNAREs
have been identified via an interactomic approach (Surpin et al.,
2003; Fujiwara et al, 2014). VTI11 interacts with syntaxin of
plants 2 (SYP2), SYP5 and VAMP?7 to form a Q-SNARE complex,
while VTI12 assembles with SYP4, SYP6, and YKT6 (Figure 1D,
right; Surpin et al, 2003; Fujiwara et al, 2014). These two
Q-SNARESs participate in trans-Golgi networking and vacuole
trafficking, as well as vacuole biogenesis (Ebine et al., 2008;
Zouhar et al., 2009). The possible involvement of these SNARE
proteins in plant autophagy is supported by the observation
that both vtil1 and vti12 mutants exhibit autophagy-associated
phenotypes and abnormal autophagosomes are accumulated in
vtil (Surpin et al, 2003). On the other hand, one Q-SNARE
subunit, VAMP713 (vesicle-associated membrane protein 713),
has been shown to interact with the HOPS complex to mediate
vacuole fusion together with RAB7 (RabG3f) in plants (Takemoto
et al., 2018). In addition, another Q-SNARE SYP22 binds the
core subunit VPS33 of HOPS complex to mediate vacuolar fusion
(Brillada et al., 2018). Importantly, proper localization of both
VPS33 and the unique subunit VPS41 of HOPS complex to the
vacuole is VTI11-dependent (Brillada et al., 2018). Therefore, it
is very likely that a coordination between the HOPS complex
and SNARE complex also operates in plant cells for heterotypic
fusion with the vacuole membrane. Further studies are needed
to investigate how they assemble and coordinate to tether the
autophagosome and vacuole membrane (Figure 1D, right).

CONCLUSION AND FUTURE
PERSPECTIVES

The de novo formation of autophagosomes needs drastic lipid
synthesis, transfer, exchange, and fusion to accomplish its
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