
fpls-11-00559 May 30, 2020 Time: 19:18 # 1

METHODS
published: 03 June 2020

doi: 10.3389/fpls.2020.00559

Edited by:
Wanneng Yang,

Huazhong Agricultural University,
China

Reviewed by:
Bo Li,

University of the West of England,
United Kingdom

Ji Zhou,
National Institute of Agricultural

Botany (NIAB), United Kingdom

*Correspondence:
Hongbao Ye

yhb2008@zaas.ac.cn
Guijun Yang

guijun.yang@163.com

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Technical Advances in Plant Science,
a section of the journal

Frontiers in Plant Science

Received: 02 January 2020
Accepted: 14 April 2020

Published: 03 June 2020

Citation:
Zhou C, Hu J, Xu Z, Yue J, Ye H

and Yang G (2020) A Novel
Greenhouse-Based System

for the Detection and Plumpness
Assessment of Strawberry Using an
Improved Deep Learning Technique.

Front. Plant Sci. 11:559.
doi: 10.3389/fpls.2020.00559

A Novel Greenhouse-Based System
for the Detection and Plumpness
Assessment of Strawberry Using an
Improved Deep Learning Technique
Chengquan Zhou1†, Jun Hu1,2†, Zhifu Xu1, Jibo Yue3, Hongbao Ye1* and Guijun Yang4,5*

1 Institute of Agricultural Equipment, Zhejiang Academy of Agricultural Sciences, Hangzhou, China, 2 Food Science Institute,
Zhejiang Academy of Agricultural Sciences, Hangzhou, China, 3 International Institute for Earth System Science, Nanjing
University, Nanjing, China, 4 Key Laboratory of Quantitative Remote Sensing in Agriculture of Ministry of Agriculture P. R.
China, Beijing Research Center for Information Technology in Agriculture, Beijing, China, 5 National Engineering Research
Center for Information Technology in Agriculture, Beijing, China

The automated harvesting of strawberry brings benefits such as reduced labor costs,
sustainability, increased productivity, less waste, and improved use of natural resources.
The accurate detection of strawberries in a greenhouse can be used to assist in the
effective recognition and location of strawberries for the process of strawberry collection.
Furthermore, being able to detect and characterize strawberries based on field images is
an essential component in the breeding pipeline for the selection of high-yield varieties.
The existing manual examination method is error-prone and time-consuming, which
makes mechanized harvesting difficult. In this work, we propose a robust architecture,
named “improved Faster-RCNN,” to detect strawberries in ground-level RGB images
captured by a self-developed “Large Scene Camera System.” The purpose of this
research is to develop a fully automatic detection and plumpness grading system for
living plants in field conditions which does not require any prior information about
targets. The experimental results show that the proposed method obtained an average
fruit extraction accuracy of more than 86%, which is higher than that obtained using
three other methods. This demonstrates that image processing combined with the
introduced novel deep learning architecture is highly feasible for counting the number
of, and identifying the quality of, strawberries from ground-level images. Additionally, this
work shows that deep learning techniques can serve as invaluable tools in larger field
investigation frameworks, specifically for applications involving plant phenotyping.

Keywords: strawberry detection, deep learning, improved faster-RCNN, plumpness assessment, ground-based
imaging system

INTRODUCTION

Strawberry is a perennial root herb and one of the most important berry products in the world
(Sønsteby and Heide, 2017). Compared with other types of berries, it has a faster fruit-bearing
speed, earlier maturation, smaller plant size, and shorter reproductive cycle. As a cash crop with
low investment and high income potential, it has been widely planted all over the world. China
has the most abundant wild strawberry resources in the world (103 accessions of wild strawberry
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genotype), with an annual strawberry production of over eight
million tons (Morris et al., 2017). Since the 1980s, through
the introduction of hybrid breeding and mutation breeding,
many high-yield strawberry varieties have been developed. In
strawberry collection, labor costs have always represented by far
the highest proportion of the total expenditure (Lu et al., 2017).
In the process of strawberry picking and fruit grading, significant
numbers of experienced skilled workers are required to perform
manual work. Recently, intelligent machines, named strawberry-
harvesting robots, have been introduced in the strawberry
industry (Bargoti and Underwood, 2017). First, an RGB camera
or depth camera is used to capture 2D or 3D images in order to
distinguish strawberries from the background. Then, the central
control system operates a manipulator to complete strawberry
picking based on the results of the fruit location algorithm
(Khosro et al., 2018). Numerous studies have achieved the non-
destructive recognition and picking of ripe fruit. For example, Ji
et al. (2012) developed an automatic visual recognition system for
an apple-harvesting robot; they combined a vector median filter
with an image segmentation method based on region-growing
and color features and finally achieved a recognition success rate
of approximately 89%. Furthermore, Liu et al. (2018) proposed
a method based on block classification to recognize apples in
plastic bags; an edge detection–based watershed algorithm and
a support vector machine (SVM) were used to extract color and
texture features from blocks, and the recognition of apples in
plastic bags was finally realized. Moreover, Savakar and Anami
(2009) introduced a classifier named the back-propagation neural
network (BPNN) to recognize and classify different kinds of fruit.
The obtained average accuracies of 94.1, 84.0, and 90.1% for the
selected targets show that the system was efficient and reliable.
Additionally, Zhang et al. (2007) proposed a method for the
recognition of cucumbers in greenhouses involving the automatic
picking of fruits by robots. After successful image preprocessing
and network training, the plant images were segmented.

However, the automation of strawberry harvesting presents a
number of unique difficulties:

• During the picking process, complete images of
strawberries cannot be obtained due to occlusion by
leaves and stems.
• Dynamic illumination conditions and surface

reflection change the color features of the strawberries
and the background.
• Strawberries must be picked at the right time, as they do

not ripen significantly once removed from the plant. Any
automated system is commanded to pick out all ripe fruit.

Fruit recognition and localization processes play important roles
in the development of strawberry-harvesting robots (Gongal
et al., 2015). A successful recognition and location model
should avoid the misjudgment of strawberries and select suitable
fruit for harvesting according to their appearance (Srivastava
and Sadistap, 2018). A number of color-pattern recognition
methods have emerged in the field of strawberry field-image
processing, for example, the K-Nearest Neighbor algorithm,
Principle Component Analysis, Linear Discriminant Analysis,

and Non-Negative Matrix Factorization (Wu et al., 2017). Luo
et al. (2018) designed a vision system to detect cutting points
on the peduncles of double-overlapping grape clusters in a
vineyard; they used three main steps to detect the cutting point—
namely, K-means clustering, edge detection, and geometric
information decision-making—and demonstrated the effective
practical performance of the system. Wang et al. (2017) combined
supervised classification technology with a geometric center–
based matching method and built a recognition and matching
system for mature litchi fruits. Zhao et al. (2011) proposed an
image-based vision servo-control system for harvesting apples.
By using an SVM with a radial basis function, the algorithm
was able to detect and locate apples in a tree with a successful
identification rate of 77%.

Recently, artificial neural networks have been widely used in
information processing, pattern recognition, intelligent control,
and system modeling, due to their advantages of distributed
storage, parallel processing, and self-learning ability (Chaki et al.,
2019). Inkyu et al. (2016) presented a fruit detection method
using Faster Region–based CNN (Faster-RCNN). They combined
information obtained from color and Near-Infrared images, and
the final results can be used as a key element for fruit yield
estimation and automated harvesting. Furthermore, Madeleine
et al. (2016) introduced a novel multi-sensor framework to
identify every piece of fruit combined with a state-of-the-
art Faster-RCNN detector. They used LiDAR to generate
image masks for each canopy so that each fruit could be
associated with the corresponding tree. Additionally, Bauer et al.
(2019) developed an open-source platform named AirSurf to
measure phenotyping information from remote sensing images.
A computer vision algorithm was combined with deep learning
architecture to realize the quantification of a large number
of lettuces using the normalized difference vegetation index
(NDVI). However, if the plant varieties and growing conditions
are changed, none of the abovementioned methods will be valid.
To reliably detect strawberries in the growth stage from RGB
images, several changes must be made to the segmentation
model, such as changes in the color temperature of the light,
changes in reflectance before and after wetting the soil, and
lack of typical images of strawberries in universal datasets (e.g.,
ImageNet) (Deng et al., 2009). Therefore, a robust model must
be established, all of whose parameters should be trained using
labeled image data.

Fruit quality is a complex parameter that is influenced by
the synthesis and action of hormones. The metabolism of sugars
and acids is also responsible for the rate of ripening. A small
number of researchers have focused on the rapid and non-
destructive testing of fruit quality. For example, Zhang et al.
(2017) proposed a quadratic polynomial regression model for
the assessment of the maturity of peaches based on near-
infrared spectroscopy. The experimental results demonstrated
a high correlation coefficient between fruit firmness and the
index of absorbance difference (IAD). Furthermore, Misron
et al. (2017) used a resonant frequency technique to identify
the maturity of oil palm fruit bunches; they investigated the
resonance frequency of the air coil and tested samples of fresh
oil palm fruit bunches. Moreover, researchers have investigated
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the use of different objective methods to evaluate the internal
quality of strawberry; however, the non-destructive and low-
cost assessment of the external quality of strawberry (e.g., size
and plumpness) is still a challenge due to the unique shape and
changing appearance of this fruit.

In this paper, a low-cost image acquisition system was
developed in order to obtain images of each strawberry in
a greenhouse. In order to avoid interference in the training
results due to changing illumination and leaf occlusion, we
captured the strawberry images under different illumination
intensities. A deep learning model based on transfer learning
was used to identify and count the number of target fruits.
Additionally, shape information was used to measure strawberry
ripeness, which can be useful for studies of precision picking.
The experimental results demonstrate that the Improved Faster-
RCNN can achieve the suitable recognition and measurement
of strawberries in a greenhouse without requiring any prior
information. The results of tests on several species of strawberry
are presented in this paper, which exemplify the usefulness
of the proposed method for the acquisition of phenotypic
information for breeding research. From the results, it can be
concluded that our method has the potential to assist in the
improvement of strawberry varieties as well as in providing
decision information for harvesting robots, which is essential in
the soft fruit industry. The remainder of this paper is structured
as follows: in the materials and methods section, we describe
the study area, the image acquisition system, and the data
preprocessing process. The images were captured by two near-
ground cameras in the greenhouse and were then used to build
our original dataset. In the results and discussion section, we
analyze the performance of the model by comparison with
three other methods. We also provide the results of a method
to assess the plumpness of strawberries which involves the
application of the minimal external rectangle method. Finally,
in the conclusion section, we summarize the significance of the
present study and suggest future applications of the method
proposed herein.

MATERIALS AND METHODS

Study Area
The strawberry images were captured at the Zhejiang Academy
of Agricultural Sciences (ZAAS) Yangdu Scientific Research
Innovation Base, Haining County, Zhejiang Province, China
(30◦27′ N, 120◦25′ E). The greenhouse was made of a steel
frame and covered by a 0.1-mm-thick polyethylene (PE) film.
All strawberries were planted in raised beds placed 0.5 m above
the ground which were covered with 0.03-mm-thick PE mulch
and were set 0.2–0.3 m apart in rows with a distance of 1.5 m
between each row. The soil available phosphorous content was
20 mg kg−1, the soil content of rapidly available potassium was
300 mg kg−1, and the soil content of alkali-hydrolyzable nitrogen
was 300.2 mg kg−1. The strawberry samples consisted of three
varieties, namely, Red Cheeks, Sweet Charlie, and Yuexin, which
are the most widely planted strawberry varieties in Zhejiang
Province. There were three plots for each variety, each with

an area of 60 m2 (30 m × 2 m), and all plants were watered
daily (Figure 1).

Field Experiments and Image Acquisition
The workflow of the image acquisition is shown in Figure 1.
In the experiment, the images were first captured from the
left and right directions by two MV-SUF1200M-T industrial
cameras with a 1′′-CMOS and a resolution of 12.0 megapixels
(MindVision Technology, Co., Ltd., Shenzhen, China), which
are collectively called the “Large Scene Camera System.” The
system was installed on top of a four-wheel mobile platform
and was set to continuous shooting mode to ensure the stability
of shooting. For the acquisition of the original dataset, the
Large Scene Camera System was positioned 1.5 m above ground
level and the system was set looking forward at an angle of
45 degrees to the vertical, resulting in a spatial resolution of
0.05 cm per pixel. The camera aperture was set at an International
Standardization Organization (ISO) of 125, and the focal lengths
of the cameras were varied from 18 to 55 mm. The two cameras
were controlled by an electronic shutter connected to a laptop
by a USB 3.0 interface, and the shooting frequency was 1
picture per second. The final original image dataset consisted
of 400 images. Then, the panoramic images were generated by
calculating the similarity between the corresponding pixels of
two overlapping images (obtained synchronously by the two
cameras, with each camera pointing in a different direction).
The mosaic method consisted of the following three main
parts: (1) feature-point extraction and matching based on scale-
invariant feature transform (SIFT) (Rublee et al., 2011); (2)
image registration; and (3) image fusion. The open-source
source codes of the image mosaic algorithm are available at
http://www.lfd.uci.edu/∼gohlke/pythonlibs/. The aim of image
mosaicking was to obtain more abundant information and then
generate combination images with new characteristics. The final
digitized panoramic strawberry images were stored in JPEG
format on a hard disk (Figure 2).

Image Preprocessing
Noise Reduction
The image acquisition process in the greenhouse was affected
by material properties, the transmission medium, and voltage
fluctuation in the cameras (Brekhna et al., 2017). This meant that
the images contained noise and could not be directly used for
interpretation and analysis. Consequently, a median filter with
a size of 3 × 3 pixels was used to remove high-frequency noise
from the images. This window size was chosen according to the
numbers of strawberry-containing pixels. The denoised images
were obtained through the integration of the red, green, and blue
denoised channels.

Data Augmentation
The data augmentation process can be divided into two
categories: offline augmentation and online augmentation
(Parihar and Verma, 2016). In offline augmentation, the
number of enhanced data is changed into the product of the
value of augmentation factors and the original dataset. Such
augmentation is generally used for small datasets. Meanwhile,
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FIGURE 1 | Strawberry field experiment. (A) Greenhouse appearance and plot design; (B) location of the experimental base.

FIGURE 2 | The design of the Large Scene Camera System. (A) Design of the system; (B) the appearance of the four-wheel mobile platform. (a) MV-SUF1200M-T
industrial camera; (b) mobile platform; (c) sensor bracket; (d) storage device.

online augmentation focuses on “batches” and is often used
in training using large datasets. The generalization ability of
the model can be improved by increasing the amount of data
without changing the image category. There are two main
approaches for data augmentation with natural images: geometric

transformation and pixel transformation. The most commonly
used geometric transformation methods are horizontal flip (or
mirror), displacement, tailoring, and rotation. During pixel
transformation, researchers often use color jittering and noise
augmentation to improve the robustness of datasets. In this

Frontiers in Plant Science | www.frontiersin.org 4 June 2020 | Volume 11 | Article 559

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-11-00559 May 30, 2020 Time: 19:18 # 5

Zhou et al. Deep-Learning Based Strawberry Monitoring System

paper, the original images were processed using eight methods:
brightness augmentation and attenuation, chroma augmentation
and attenuation, contrast augmentation and attenuation, and
sharpness augmentation and attenuation. In these methods, the
brightness, chroma, and contrast of the image are attenuated to
1.2 times that of the original image, the sharpness is enhanced to
2 times that of the original image, and the brightness, chroma,
contrast, and sharpness of the image are reduced to 60, 60, 60,
and 10% of that of the original image, respectively. Additionally,
in order to simulate the noise that the equipment may produce
during image acquisition, Gaussian noise with a variance of 0.01
was added to the original images. Through the augmentation
process, the dataset was expanded by 10 times, reaching 4000
pictures. In order to ensure the credibility of the training results,
images were divided into training (80%) and testing (20%) sets
(3200 training samples and 800 testing samples).

Annotation and Resizing
To verify the performance of the algorithm, all of the images
were labeled by three experts. Many open-source tools are
available for image annotation, such as Labelme, labelmg,
yolo_mark, Vatic, and the Video Object Tagging Tool (Microsoft
Corporation). Each of these tools has its own suitable work
scenario and task category. Since strawberry recognition in
field conditions is a static multi-target detection task, we chose
the Video Object Tagging Tool as the labeling tool due to its
simplicity and convenience. For each labeled image, there was an
additional extensible markup language (XML) file containing the
coordinates of the annotated bounding box (see Supplementary
Material). Each box was represented as a four-dimensional
array—(xmin, ymin, xmax, ymax)—in order to determine its relative
position on the graph. Through the above treatment, each image
contained about 100–150 boxes, which represents the number of
strawberries. Due to limitations in GPU memory and capacity,
in this study, images were resized to an appropriate size in
order to improve the efficiency of the algorithm and reduce the
computational burden. In order to reduce information loss, the
images were split into local patches with a size of 256 × 256
pixels (according to the size of the strawberry displayed in the
image) (Figure 3A).

Training and Validation Model
Convolutional neural network (CNN) techniques have gradually
replaced traditional machine-learning architectures in target
recognition applications since they do not need to consider
the effectiveness of feature extraction (McCann et al., 2017).
The basic Faster-RCNN (Ren et al., 2017) is mainly composed
by three parts: (1) basic feature extraction network, (2) region
proposal network (RPN), and (3) fast RCNN, while RPN
and fast RCNN share the feature to extract the convolution
layer. Based on previous studies of fruit recognition and
classification by using Faster-RCNN, we focused on three popular
feature extraction architectures, namely, VGG16, ResNet50, and
the proposed Improved Faster-RCNN model (combined with
ResNet50). This study uses a deep learning method based on
image processing technology to detect strawberries in images

acquired in a greenhouse and attempts to expand its application
to an agricultural intelligent system.

The VGG16 Model
The VGG16 architecture follows the same design pattern as the
basic VGG architecture, which was proposed by researchers at the
University of Oxford, United Kingdom Simonyan and Zisserman
(2014). VGG16 is a 16-layer model with input data dimensions of
224 × 224 × 3. Other parameters in the network are as follows:
the size of the convolution core is 3× 3, the pooling size is 2× 2,
the maximum pooling step is 2, and the depths of the convolution
layer are 64, 128, 256, 512, and 512, respectively. The convolution
blocks in the network consist of 2–3 convolution layers, which
can increase the perception ability of the network and reduce
the number of parameters. Additionally, the multiple use of the
Rectified Linear Unit (ReLU) activation function strengthens the
learning ability of the model. In this paper, we experiment with a
VGG16 net which contains 13 convolutional layers and in which
the output from the convolution layers is a high-dimensional
feature map which is sub-sampled by a factor of 16 due to the
strides in the pooling layers.

The ResNet50 Model
ResNet is a complete network formed by the repeated
accumulation of residual learning modules. The original ResNet
model was proposed by Dr. He Kaiming of the Microsoft
Research Institute (He et al., 2016). The ResNet model has high
accuracy and is easy to integrate with other network structures.
ResNet allows the original input information to be transmitted
directly to the next layer by adding a direct link (known as a
highway network) to the network. The introduction of residual
modules solves the problem of gradient dispersion and enhances
the feature learning ability and recognition performance. The
structure of the residual modules is shown in Figure 3B. Set x as
the input and F (x, W1, W2) as the output after the convolution
between W1 and W2. The activation function is set as ReLU, so
the final output of the residual module unit y can be expressed as
follows:

y = F(x,W1,W2)+Wsx (1)

where W1 and W2 represent the weighting parameters to be
learned and Ws represents a square matrix that transforms x from
the input residual module dimension to the output dimension.
Two kinds of residual modules are used in the ResNet network
structure; one is connected by two 3× 3 convolution networks in
series, while the other is connected by three convolution networks
with sizes of 1 × 1, 3 × 3, and 1 × 1, respectively. ResNet can
be set to have different numbers of network layers—with the
most commonly used numbers being 50, 101, and 152—which
are stacked together by the residual modules mentioned above.
Considering the training efficiency and the hardware processing
capability, we chose a ResNet network with 50 layers for testing,
which is known as ResNet50.

The Improved Faster-RCNN
The traditional Faster-RCNN achieves target detection using a
RPN which can automatically extract candidate regions (Sun
et al., 2018). Since strawberry recognition is functionally similar
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FIGURE 3 | Flowchart of the deep learning algorithm used for strawberry detection. The algorithm consists of two main parts: image preprocessing and model
training. (A) Architecture of the training models; (B) the structure of the residual module in ResNet. RPN, region proposal network; ROI, region of interest.

to common target recognition and there is presently no training
set related to strawberry recognition, we adopted the already-
trained ResNet50 model as the feature extraction network and
used the weights obtained from the existing ImageNet universal
target training set as the initial value. In supervised learning
mode, a large amount of data is needed to train the residual
network model. However, at present, there are only a few broccoli
image data with labels, which cannot meet the training needs of
the depth network model. Therefore, in order to improve the
accuracy and generalization ability of the ResNet-50 model, a
transfer learning method based on middle-level expression was
adopted which combines transfer learning with deep learning.
First, ImageNet was used to pre-train the ResNet-50 network in
order to allow it to extract image features and the trained network
parameters were used as network models. Then, the precise
segmentation of broccoli head images was realized by adjusting
the parameters of the ResNet-50 network. A three-layer adaptive
network was used to replace the full connection layer and the
classification layer of the ResNet-50 model, and LReLUSoftplus
was adopted as the activation function of the architecture. The
computing formulas of ReLU and LReLUSoftplus are given in Eqs
2 and 3, respectively, as follows.

f (x) = max(0, x) (2)

f (x) =
{

ln(ex + 1)− ln 2, x ≥ 0;
ax, x < 0

(3)

where x indicates the input value and a is set as 0.01. A general
scheme of the proposed method is shown in Figure 4. M1, M2,
M3, and M4 are the four residual blocks in the ResNet-50 model
while N1–N3 are the three components of the adaptive network.
The number of neurons in layers N1, N2, and N3 is 1000, 256,

and 7, respectively, while the activation function of each layer is
LReLUSoftplus.

In transfer learning, since the morphology of strawberries is
different from that of general targets, the direct application of the
model will reduce the accuracy and speed of detection. Therefore,
this study improves the area generation network in the Faster-
RCNN network framework in the following aspects:

• There are few pictures of strawberries in ImageNet. In this
training, a dropout layer was added after the first fully
connected layer in order to enhance the generalization
ability of the network. The output of a certain proportion
of neurons in this layer was randomly inhibited during
the training process, and this layer was moved in the
testing process. To maintain the corresponding order
of magnitude and physical significance of the input in
the latter layer, the output value of the above layer was
multiplied by the probability of random discarding.

To reduce over-fitting, only one fully connected layer with 2048
output neurons was used to extract the target.

In order to enable a fair comparison between the results of
all the experimental configurations, the hyper-parameters for
all experiments were standardized as follows: the loss function
was set to dice loss due to this function’s good performance in
dichotomous problems. The base learning rate was 0.001 in the
first 3000 iterations and was changed to 0.0005 in the subsequent
2000 iterations. The values of momentum and dropout were 0.9
and 0.5, respectively. The number of epochs was 200, and the
batch size was 64.

Evaluation Index
To evaluate the performance of the proposed method,
strawberries that were manually segmented using the Video
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FIGURE 4 | The general scheme of the ResNet based on transfer learning.

Object Tagging Tool were compared with the recognition results
of the models mentioned in Section “Errors and Limitations.” We
used three indexes, namely, Precision, Intersection-over-Union
(IOU), and Average Running Time (ART). The computational
formulas of these evaluation indexes are shown in Eqs 4–6:

Accuracy =
TP + TN

TP + TN + FP + FN
(4)

IOU =
CandidateBox ∩ GroundTruth
CandidateBox ∪ GroundTruth

(5)

ART=
Nt

NI
(6)

where TP, TN, FP, and FN represent the numbers of true positives,
true negatives, false positives, and false negatives, respectively; a
true positive represents the correct classification of a region as
a strawberry, a true negative represents the correct classification
of a region as a background, a false positive means the incorrect
classification of a region as a strawberry, and a false negative
indicates the incorrect classification of a region as background.
IOU is a standard metric that represents the overlap rate between
a candidate box and a ground truth bound; the ideal scenario is
complete overlap, in which case IOU is equal to 1. In addition
to detection accuracy, another important performance index
for target detection algorithms is detection speed; real-time
detection, which is extremely important for some applications,
can only be achieved with high-speed detection. ART represents
the time taken by different models to process a certain picture
using the same hardware. Nt represents the total running time
for all the images, and NI represents the number of images.

RESULTS AND DISCUSSION

The performance of the newly developed deep learning method
was evaluated by conducting several field experiments under
changing light conditions and comparing the results of these
experiments to the results of the manual measurement of
strawberry numbers. All of the recognition models were
developed using the open-source TensorFlow software

library (Alphabet, Inc., Mountain View, CA, United States),
which is a fast software that can be used for deep-learning
applications. The experiments were conducted using the
Windows 10 operating system on a PC with a four-core
2.3 GHz Intel I5 processor and 4 GB of GPU Memory. The
results and comparisons were performed using the Python
programming language.

Strawberry Detection Performance
In this section, the performance of the strawberry recognition
system using the Improved Faster-RCNN is compared with
the performances of the other methods described in Section
“Training and Validation Model.” Due to the diverse nutritional
statuses and genotypes of the plants in the field experiments,
a large number of strawberry samples were used to generate
the training datasets. Here, we randomly selected 50 pictures
from the test set as samples to determine the detection accuracy
of different models, and the average number of strawberries
in each picture was about 100 (based on manual counting
results). Figure 5A shows a comparison between the number of
strawberries identified by the Improved Faster-RCNN detection
system and that identified by manual inspection (Figure 5A).

As shown in Figure 5A, compared to the other two methods,
the Improved Faster-RCNN achieved a higher R-value and a
lower normalized root mean square error (NRMSE) in the
presence of background noise and variable light intensity. Three
indexes were used to assess the recognition accuracy, namely,
Accuracy, IOU, and ART. The mean and standard deviation
(SD) of each evaluation indicator were calculated. The values
of these indicators for each of the four recognition methods
are shown in Figure 5B. As shown in the figure, the Improved
Faster-RCNN achieved a higher Accuracy (0.860) and a lower
standard deviation than the Faster-RCNN and the two other
classical models. Additionally, the average IOU of the Improved
Faster-RCNN was about 0.892, significantly higher than those
of the three other models, which shows that this model has a
better target extraction ability. Moreover, the Improved Faster-
RCNN achieved an ART of 0.158 s, compared with 0.171,
0.163, and 0.182 s for the ResNet50, VGG16, and Faster-RCNN
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FIGURE 5 | A demonstration of the strawberry detection performance of the introduced model and two other models using the test set. (A) Correlations between
the number of strawberries identified by manual counting and computer detection; (B) comparison of the strawberry detection performances of the introduced
model and two other models using the test set. A: Accuracy. B: Intersection-over-Union (IOU). C: Average Running Time (ART). In (B), the red bars represent the
mean Accuracy, the blue bars represent the mean IOU, and the green bars represent the mean ART.

models, respectively. This low ART shows that the Improved
Faster-RCNN had a good running efficiency, which can be
mostly attributed to the simplification of layers and the reduced
number of training parameters. The above results show that the
Improved Faster-RCNN can achieve real-time image processing
and guarantee the integrity of strawberry detection. Further, the
overall F-measure (Hasan et al., 2018) was computed in order to
quantify errors. F-measure is a harmonic mean of Precision and
Recall which is useful as a measure of the robustness of a model.

As shown in Table 1, compared to the other approaches,
the Improved Faster-RCNN had a higher mean quality factor
of 0.889. This indicates that the proposed algorithm could
accurately detect strawberries in complex scenes.

In order to further analyze the efficiency of the introduced
training models, we determined the loss and error rates during
the whole training process. Here, we define an “epoch” as the
process of training the model once with all of the image data in
the training set (Figure 6).

TABLE 1 | The overall F-measure of the introduced model and other models
using the test set.

Models F-measure

Improved faster-RCNN 0.889

ResNet50 0.813

VGG16 0.756

From Figure 6, it can be concluded that, although the value of
the loss metric is initially high, after several rounds of training,
the error rate is greatly reduced and the accuracy is significantly
improved. No obvious further improvement of accuracy occurred
after 200 epochs, and the value of the error rate becomes constant.

FIGURE 6 | The correlation between the number of epochs and training loss.
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After around 250 epochs, the benefit of further training appears
to be negligible according to the change in the Loss Metric.

Plumpness Assessment
The assessment of fruit quality is a core requirement for
strawberry commercialization. Plumpness—the most important
structural trait of fruit quality—can be acquired using the
minimal external rectangle method. In this study, the rectangles
were represented by labeled boxes. Figure 7 shows strawberries of
different shapes with their corresponding external rectangles. The
four-dimensional array of each box—(xmin, ymin, xmax, ymax)—
was used to determine the location of each strawberry, and the
maturity of each strawberry was estimated using the length-to-
width ratio of the box, as calculated by ymax - ymin/xmax - xmin;
the ideal value of this ratio is 1 since the selected varieties are all of
globose type (with an aspect ratio very close to 1:1). Through the
above process, the length-to-width ratio of each strawberry was
estimated, and the strawberries were classified into the following
three groups based on this ratio: Plump (0–0.5), Approximately
Plump (0.5–0.8), and Fully Plump (0.8–1) (Figure 7).

As shown in Figure 7, the largest average percentage of Plump
fruits (31.3%) was detected for the Red Cheeks strawberry variety,
while the lowest average percentages of Approximately Plump
and Fully Plump fruits were also detected for this variety. The
second-largest average percentage of Plump fruits (17.5%) was
detected for the Sweet Charlie variety, while this variety also
had the second-highest average percentage of Approximately
Plump fruits (27.6%). The lowest average percentage of Plump
fruits (6.9%) was detected for the Yuexin variety, while the
highest average percentage of Fully Plump fruits (66.2%) was also
detected for this variety. Thus, it is clear that the Yuexin variety
has a much faster maturation rate under the current nitrogen
application conditions than the other two varieties. Then, the
accuracy of our method was tested by comparison with the results
of manual grading by three experienced workers. As shown in
Table 2, when using the length-to-width ratio, about 85% as
many strawberries could be correctly graded compared to the
manual grading. Specifically, for the Red Cheeks, Sweet Charlie,
and Yuexin varieties, the average prediction Accuracy was 0.879,
0.853, and 0.841, respectively. Thus, the performance of the
proposed method can satisfy the requirements for practical use.
Further research should focus on the introduction of roundness
information or other parameters to build a regression model.

TABLE 2 | Accuracy of plumpness assessment results for each studied
strawberry variety.

Fully plump Approximately plump Plump

Red Cheeks 0.835 0.818 0.896

Sweet Charlie 0.844 0.855 0.862

Yuexin 0.825 0.817 0.894

Robustness Performance
Analysis of Regions With Occlusion or Adhesion
This section describes the detection and disconnection
methodology for regions with occlusion and adhesion. This
methodology consisted of two main steps: first, the RGB
strawberry images were converted into binary images, and then
shape analysis was performed to determine whether the detection
result was isolated or not; second, a watershed-based technique
was used to automatically separate the non-independent regions
of the binary images. Edge curvature analysis was used to
determine whether the fruits were adhered to or occluded
(in cases of adhesion or occlusion, the curvature of the edge
point at the junction of the fruit edge will change abruptly).
The fruit boundaries were accurately determined by removing
curvature outliers and by using the watershed algorithm. A visual
representation of this algorithm and the adjusted detection
results are displayed in Figure 8.

From Figure 8, it can be seen that, in some cases, the
strawberries cannot be recognized by the proposed architecture
due to occlusion by or adhesion with leaves or other strawberries;
in these cases, further processing is required. Thus, in both
counting and grading studies, the post-processing methodology
for regions with occlusion and adhesion had a significant impact
on the final detection accuracy. In order to understand the
significance of post-processing using edge curvature analysis,
the Accuracy and F-measure were used to express changes in
detection accuracy. For detection with the Improved Faster-
RCNN network, post-processing increased the Accuracy from
0.860 to 0.878, subsequently increasing the F-measure from
0.889 to 0.901. Therefore, the Accuracy is increased by about
1% by performing this step. Compared with the strategy
of simply using a deep learning model, the detection that
was performed using the combined workflow was much
more strongly correlated with the manual counts for each
strawberry variety.

FIGURE 7 | The results of the plumpness assessment for different varieties of strawberry. (A) Red Cheeks variety; (B) Sweet Charlie variety; (C) Yuexin variety.
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FIGURE 8 | Post-processing of fruit images with occlusion and adhesion
using edge curvature analysis. (A) Strawberry detection without
post-processing; (B) detection result after using edge curvature analysis.

Number of Original Images
To examine the utility of using a different number of original
images to train the detection algorithm, we varied the number
of original images in the learning phase and evaluated the
detection performance. All of the images were randomly
selected from the whole dataset, and this experiment was
repeated five times to take into account the differences between
samples (Figure 9).

As shown in Figure 9, using our method, the strawberry
detection Accuracy exceeded 0.8 with less than 200 original
images. This is an acceptable result considering the complex
environment, which involved, e.g., dynamic light intensity,
different vegetation canopy reflectances, shadows, and mutual
occlusion between leaves and fruits. Furthermore, the introduced
deep learning architecture achieved the highest IOU of all of
the three approaches, which shows the high training efficiency
of the presented method for the small-scale dataset. When less
than 200 training images were used, the average value of IOU was
about 0.89, which shows the significant potential of the proposed
approach in real-world applications. The results also show initial
benefits with a larger amount of data; however, these benefits
quickly diminish with an increasing number of training images,
with a difference in Accuracy of less the 0.05 in the last three
compared phases.

Light Intensity
Illumination conditions change frequently in outdoor
environments. To determine the ability of the Improved
Faster-RCNN architecture to detect strawberries under different
light intensities, the architecture was tested using images
obtained under different illumination conditions. For each

FIGURE 9 | Comparison of the detection performances achieved using different numbers of original images. (A) Improved Faster-RCNN; (B) ResNet50; (C) VGG16.
The blue line represents the mean Accuracy and the red line represents the mean IOU.
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FIGURE 10 | Comparison of training performances obtained using images acquired under different light intensities. (A) Improved Faster-RCNN; (B) ResNet50;
(C) VGG16. The blue line represents the mean Accuracy and the red line represents the mean IOU.

illumination level, the Matlab software (MathWorks, Natick,
MA, United States) was used to tune the brightness component
of each test image, and the test set was separated into five clusters
from 1000 Lx to 6000 Lx (Figure 10).

From Figure 10, it can be seen that the Improved Faster-
RCNN is less sensitive to changes in outdoor illumination than
the other models. Both of the two low-light conditions were
associated with low Accuracy and IOU values, while the normal
lighting condition was associated with higher Accuracy and IOU
values than the other lighting cases. For light intensities of 4000,
5000, and 6000 Lx, the Accuracy values were 0.852, 0.868, and
0.857, respectively. To summarize, the Improved Faster-RCNN
can adapt to different light conditions. This will allow us to use
this model to perform different tasks, such as the detection of
spikes or panicles in field environments.

Errors and Limitations
Errors
As stated in Section “Robustness Performance,” the method
employed in the present study contains some errors. These
can be attributed to (1) mutual occlusion between strawberries

and leaves and (2) irregular fruit shape and changing surface
texture. Overlapping is usually detected using the non-maximum
suppression (NMS) algorithm, which predicts the number of fruit
targets based on the statistical distribution of candidate boxes and
interactive higher-order features in dense regions. Introducing
such techniques may allow the identification of overlapping
objects. The shape and texture of fruits differ between different
varieties of strawberries and between individual fruits of the
same variety. As shown in Figure 5, the very different degrees
of plumpness which were detected between different varieties of
plants confirmed that the proposed model is particularly robust
when dealing with different varieties of strawberry. However, the
differences in shape and texture between different varieties will
make the labeling procedure more tedious and prone to errors;
this will likely lead to annotation errors, which in turn will cause
many false-positive identifications.

Limitations
Separating plants from background is a common challenge
in plant detection and evaluation, especially in natural
environments. Recent studies which used color or texture
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information for plant detection were able to successfully
distinguish between fruit and growing plants and thereby
achieved highly accurate yield estimations. However, there
are a number of limitations to the method presented in
the current study which must be addressed in future work.
The first limitation of the present study is that, when a set
of images taken by a near-ground vehicle is used for plant
detection, it is important to account for the angle at which
the images were acquired; for example, many characteristics of
strawberries cannot be observed from oblique images. Thus,
future plant-detection efforts should attempt to obtain images
from different angles.

The second limitation is that we are facing up a time-
consuming manual effort. Some of the annotation errors can
be reduced by applying a voting strategy among the different
human labelers; however, this would greatly increase the labor
cost. Automatic annotation could provide a less expensive means
to reduce labeling errors; however, manual checking would still
be required to ensure labeling accuracy.

Future Work
In this work, a strawberry detection and grading system based
on near-ground image data using a state-of-the-art framework
is presented. The use of CNNs has dramatically improved the
performance of fruit detection compared with other traditional
approaches. However, some issues need to be addressed in
future studies in order to reduce the training complexity and
improve the environmental robustness of fruit detection based on
convolutional neural networks. First, a larger sample set should
be introduced to the presented model to solve the problem
of over-fitting with fewer labeled examples. Second, the ratio
between the size of the test set and the size of the training set
should be varied to ensure that the introduced model achieves
relatively high accuracy even in extreme cases.

CONCLUSION

The continuous increase in labor cost is increasing the
expenditure requirements within the strawberry industry.
Therefore, many producers are looking toward technological
solutions such as the automated harvesting and grading of
fruit. In this research, we developed and tested a new approach
for the detection of strawberries in greenhouses using a deep
convolutional neural network. The results showed that the
proposed approach successfully detected strawberries with an
average Accuracy of 86.0% and an average IOU of 0.89.
Additionally, this study developed a process for the assessment
of fruit maturity based on the minimal external rectangle.

By varying the number of training images and varying the
light intensity, it was shown that the proposed model is
capable of accurately detecting strawberries in a complex and
changing imaging environment. Furthermore, it is shown that
the proposed algorithm has a higher accuracy and efficiency than
the ResNet50 and VGG16 models. Thus, this methodology could
be applied in multitasking automatic or semi-automatic imaging
systems which are used inside greenhouses. Depending on the
systems’ requirements, the algorithm could be adjusted without
intensive skilled human intervention. The future development
of the proposed method promises a clear advantage over
other color-based approaches and traditional machine learning
approaches as the method can be applied to other types of
applications and is not limited to greenhouse environments.
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