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Nitric oxide (NO), a signaling molecule, participates in defense responses during plant–
pathogen interactions. S-Nitrosoglutathione (GSNO) is found to be an active intracellular
NO storage center and regulated by S-nitrosoglutathione reductase (GSNOR) in plants.
However, the role of GSNOR in NO-induced disease resistance is not clear. In this
research, the effects of NO and GSNOR inhibitor (N6022) on the defense response
of harvested peach fruit to Monilinia fructicola infection were investigated. It was
found that the disease incidence and lesion diameter of peach fruits were markedly
(P < 0.05) reduced by NO and GSNOR inhibitor. However, the expression of GSNOR
was significantly inhibited (P < 0.05) by NO only during 2–6 h. Analyses using iodo-
TMT tags to detect the nitrosylation sites of GSNOR revealed that the sulfhydryl group
of the 85-cysteine site was nitrosylated after NO treatment in peach fruit at 6 and
12 h, suggesting that exogenous NO enhances disease resistance via initial inhibition
of gene expression and the S-nitrosylation of GSNOR, thereby inhibiting GSNOR
activity. Moreover, NO and GSNOR inhibitor enhanced the expression of systemic
acquired resistance (SAR)-related genes, such as pathogenesis-related gene 1 (PR1),
nonexpressor of PR1 (NPR1), and TGACG-binding factor 1 (TGA1). These results
demonstrated that S-nitrosylation of GSNOR protein and inhibition of GSNOR activity
contributed to the enhanced disease resistance in fruit.

Keywords: Prunus persica, nitric oxide, S-nitrosoglutathione reductase, brown rot, nitrosylation

INTRODUCTION

Peach [Prunus persica (L.) Batsch] fruit is rich in nutrients that provide favorable growth conditions
for pathogenic bacteria. In addition, due to the high temperature and environmental humidity
during the picking period of the peach fruit, the infection and growth of pathogenic bacteria are
accelerated, causing a large amount of decay of the peach fruit, resulting in huge economic losses.
Brown rot caused by Monilinia fructicola is severely destructive to stone fruits, involving in cherries,
plums, and peaches (Hu et al., 2011).

At present, cold storage and chemical fungicides are widely used to inhibit brown rot
development of peach fruit. Studies have shown that cold storage can effectively control
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M. fructicola disease by delaying spore germination (Sommer,
1985). However, peach fruit is very sensitive to low temperature,
resulting in chilling injury during cold storage. Chemical
fungicides can inhibit brown rot (Adaskaveg et al., 2005),
but long-term use of chemicals may induce several problems
such as fungicide resistance, chemicals residues on fruits, and
environmental pollution. Therefore, the development of safe and
effective methods is necessary to control brown rot in stone fruit.

Induced resistance based on biotic or abiotic activation of
certain cellular defense responses is considered a sustainable
strategy to inhibit pathogen invasion and reduce postharvest
decay (Romanazzi et al., 2016). Nitric oxide (NO) is an active
molecule with high fat solubility that can diffuse rapidly through
the cell membrane. NO is also a gaseous radical. NO and NO-
derived molecules are collectively referred to as reactive nitrogen
species (RNS) (Corpas et al., 2007). Less is known about the
role of NO-derived molecules in the interactions of plants with
pathogens (Chaki et al., 2009). However, the function of NO
as an important RNS in plants has been extensively studied
(Corpas et al., 2007; Besson-Bard et al., 2008). NO is involved
in various physiological processes in plants, including seed
germination, growth, development, maturation, senescence, and
stress response (Arasimowicz and Floryszak-Wieczorek, 2007).
Moreover, during plant–pathogen interactions, NO participates
in defense responses (Romero-Puertas et al., 2004). Salicylic acid
(SA)-mediated activation of signaling pathways is an important
manifestation of NO-induced resistance in plants (Domingos
et al., 2015). Studies have shown that exogenous NO treatment
has obvious inhibitory effects on pathogens including Penicillium
expansum, Botrytis cinerea, and Colletotrichum gloeosporioides of
postharvest fruits (Zheng et al., 2011; Lai et al., 2014; Hu et al.,
2019). However, mechanisms of disease resistance induced by
NO in harvested peach fruit are not well understood.

Stamler (1994) first proposed the concept of protein
nitrosylation modification, that is, the NO group is covalently
bonded to the cysteine (Cys) residue of the protein to produce
S-nitrosothiol (SNO). Nitrosylation can influence the structure,
activity, and function of target proteins (Stamler et al., 2001;
Chen et al., 2006), thereby affecting the corresponding signal
transduction pathways in the cell. Numerous studies confirm
that S-nitrosylation plays a wide range of roles in different
pathological and physiological processes (Hess and Stamler,
2012). Recently, it is found that NO may accomplish long distance
signal transduction by protein nitrosylation in plants (Skelly and
Loake, 2013; Kulik et al., 2015). S-nitrosoglutathione reductase
(GSNOR), classified as the alcohol dehydrogenase family, which
exists in all species from bacteria to humans, is an important
regulatory protein in NO turnover (Liu et al., 2001). Feechan et al.
(2005) found that GSNOR, associated with protein nitrosylation
in Arabidopsis, plays a critical role in disease resistance. GSNOR
has attracted more and more attention as an important regulator
of nitrosylation of proteins.

S-Nitrosoglutathione (GSNO) is a storage site for the
biological activity of NO. GSNOR regulates the levels of GSNO
and other S-nitrosothiols (SNOs) and protein nitrosylation in
eukaryotic cells (Liu et al., 2001). As a key factor in plant disease
resistance response, GSNOR causes changes in intracellular redox

status by regulating GSNO content, which in turn leads to
S-nitrosylation of defense-related proteins (Sakamoto et al., 2002;
Dìaz et al., 2003; Lee et al., 2008). Post-translational modification
of these proteins can cause different defense responses in plants
(Rustérucci et al., 2007; Kwon et al., 2012). However, the study of
GSNOR in post-harvest fruits has not been reported. Therefore,
it is of great significance to elucidate the role of GSNOR in the
disease resistance of post-harvest peach fruit.

MATERIALS AND METHODS

Fruit Materials and Treatments
Peach fruit (cultivar “Zhonghuashoutao”) were collected from
Yiyuan, Shandong Province, China, and selected for uniform
size and no mechanical damage. According to previous methods,
peach fruit were soaked in either deionized water (served as
control), NO solution (15 µmol L−1; diluted with a saturated
NO solution made from NO gas), or GSNOR inhibitor [N6022,
bought on MCE official website (MedChemExpress)1] solution
(60 µmol L−1), respectively, for 20 min and dried at room
temperature (Gu et al., 2014). A 3 mm × 3 mm × 3 mm
wounded site was made on each fruit and inoculated with 20 µl
of 1 × 105 spores ml−1 of brown rot spore suspension. Then,
the fruits were stored in a constant temperature and humidity
chamber [23◦C, 85–90% relative humidity (RH)] to observe the
disease development in peach fruit. The disease incidence and
lesion diameter were measured at 48 and 72 h, respectively.
Six repetitions are set for each treatment, and each repetition
contained 30 peaches. Samples of three peach fruits at each time
point were taken out from each repetition and cut into small
pieces. Then, the pieces were frozen with liquid nitrogen, grinded
into power, and stored at −80◦C. Moreover, samples of three
fruits of each repetition were taken at 0, 6, 12, 24, 48, and 72 h
for RNA and protein extraction, enzyme assay, and the content
of SNOs, GSNO, glutathione of reduced state (GSH), glutathione
disulfide (GSSG), and endogenous NO measurement.

Measurement of GSNOR and GR Activity
in Different Treated Peach Fruit
Glutathione reductase (GR) activity was measured according
to Knorzer et al. (1996). One half gram peach powder was
homogenized in 4 ml of 50 mM phosphate-buffered saline
(PBS) [pH 7.0, containing 20% (v/v) glycerol, 2 mM DL-
dithiothreitol (DTT), 2 mM ethylene diamine tetraacetic acid
(EDTA), 2% polyvinylpyrrolidone (PVP)]. The supernatant
obtained after centrifugation at 20,000 × g for 30 min
at 4◦C was used to determine the enzyme activity. The
reaction system included 100 µl supernatant, 3 ml reaction
liquid [pH 7.5, containing 50 mM Tris–HCl, 0.5 mM GSSG,
5 mM MgCl2, and 0.2 mM reduced nicotinamide adenine
dinucleotide phosphate (NADPH)]. The changes in absorbance
at 340 nm were determined.

S-nitrosoglutathione reductase activity was measured
following the means of Sakamoto et al. (2002). One half gram

1https://www.medchemexpress.cn/
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peach powder was extracted with 3 ml assay mixture containing
50 mM HEPES (pH 8.0), 20% (v/v) glycerol, 10 mM MgCl2,
1 mM EDTA, 1 mM ethylene glycol-bis(2-aminoethylether)-
N,N,N′,N′-tetraacetic acid (EGTA), 1 mM benzamidine, and
1 mM ε-aminocaproic acid at 4◦C and then centrifuged at
16,000× g for 15 min. Three hundred microliters of supernatant
was incubated in 3 ml assay mixture containing 20 mM Tris–HCl
(pH 8.0), 0.5 mM EDTA, and 0.2 mM NADH, and the GSNO was
mixed to a final concentration of 400 mM to initiate the reaction.

Measurement of SNOs and NO Levels in
Differently Treated Peach Fruits
The SNO content was measured according to Frungillo et al.
(2013) with some modifications. One half gram peach powder
was homogenized in 4 ml of 100 mM phosphate buffer (pH 7.2,
containing 100 mM EDTA, 100 mM EGTA), after which
centrifugation was carried out at 20,000 × g for 30 min at
4◦C to obtain the supernatant. One milliliter supernatant was
reacted with solution I [containing 1% sulfanilamide, 0.1% N-
(1-naphthyl) ethylene-diamino dihydrochoride] or solution II
[containing 1% sulfanilamide, 0.1% N-(1-naphthyl) ethylene-
diamino dihydrochoride, 2 mM HgCl2] in a ratio of 1:1. After
incubating in the dark for 10 min, the reaction solution was
centrifuged at 12,000 × g for 5 min. The SNO content in plants
was quantified by determining the absorbance difference between
solutions II and I at 540 nm. The absorbance at 540 nm was
determined using different concentrations of GSNO instead of
the enzyme solution, and a standard curve was prepared. The
content of SNOs in the plants was calculated according to the
value of the standard curve.

The NO content was performed according to the means of Shi
et al. (2015). One half gram peach powder was extracted in 3 ml
50 mM glacial acetic acid buffer [pH 3.6, containing 4% (w/v) zinc
acetate], then centrifuged at 10,000 × g for 15 min at 4◦C. Equal
volumes of extraction and Griess reagent (Sigma-Aldrich, St
Louis, United States) were mixed and reacted at 25◦C for 30 min.
The optical density (OD) value at 540 nm was determined.

Measurement of the Content of
Endogenous GSNO, GSSG, and GSH in
Peach Fruit
The contents of GSNO, GSSG, and GSH were measured
according to Hodges and Forney (2000) with minor
modifications. One half gram peach powder was dissolved
with 5 ml of 5% (w/v) 5-sulfosalicylic acid and then centrifuged
at 12,000 × g for 15 min at 4◦C. Solution A (containing 100 mM
Na2HPO4·7H2O, 40 mM Na2HPO4·H2O, 1.8 mM 5,5′-dithiobis-
(2-nitrobenzoic acid) (DTNB), 15 mM EDTA, and 0.04% (w/v)
bovine serum albumin (BSA)] and solution B (including 1.0 mM
EDTA, 50 mM imidazole, and 0.02% (w/v) BSA] were prepared
and then adjusted to pH 7.2. The GSNO content was measured
by mixing 800 µl solution A, 640 µl solution B, 800 µl of
1:25 dilution of extract in 0.5 M K2HPO4 buffer (pH 7.0), and
160 µl of 3.0 mM NADPH. The changes in the OD value of the
mixed solution at 412 nm were recorded. The GSH content was
measured by adding 300 µl of 10 U mol−1 glutathione reductase

(GR) (100 U) to the above reaction system for 1 min, and the
change of OD value at 412 nm for 5 min was measured. The
measurement method of GSSG was as follows. 1.0 ml extract was
diluted into 1:10 in 0.5 M K2HPO4 buffer (pH 6.5, containing
20 µl 2-vinylpyridine) at 25◦C for 1 h. Then, 400 µl of solution
A and 320 µl of solution B was added, and the change in OD
value was determined at 412 nm. The standard curve of GSNO,
GSSG, and GSH was prepared, and the content of GSNO,
GSSG, and GSH in the sample was calculated according to the
standard curve.

Transcript Analyses of GR, GSNOR, and
Defense-Related Gene Expression by
Real-Time Quantitative PCR
Total RNA extraction was conducted from samples at various
time intervals. One hundred milligrams of the sample was taken,
and the RNAprep Pure Polysaccharide Polyphenol Plant Total
RNA extraction kit (DP441) produced by Tiangen (Shanghai,
China) was used for extraction of the total RNA. The CWBIO
HiFiScript cDNA Synthesis Kit (CW2596) was use to synthesize
complementary DNA (cDNA) by incubating at 42◦C for 50 min,
then at 85◦C for 5 min. The primers of GR, GSNOR, PR1,
NPR1, and TGA1 were designed based on their genetic sequences
(Table 1). TEF2 (TC3544) and tubulin-α (DY650410) from peach
fruit were used as reference genes (Tong et al., 2009). Real-
time (RT-PCR) was performed using of the CWBIO UltraSYBR
Mixture (CW0957) kit with reaction volumes of 25 µl.

Nitrosylation Site Detection
Some experimental methods involved in the detection of
nitrosation sites mainly refer to Gong and Shi (2019) and Xie et al.
(2016) with slight modifications. The experimental methods and
steps were as follows.

Protein Extraction From Peach Fruit
The peach fruit treated with NO, inoculated with M. fructicola
then stored for 4, 6, 12, and 24 h, was ground into
powder in liquid nitrogen. The sample with lysis buffer
[including 8 M urea, 100 mM triethylammonium bicarbonate
buffer (TEAB, Sigma-Aldrich, St Louis, MI, United States),

TABLE 1 | Primers used for real-time qPCR analysis.

Gene name Primer sequences Tm (◦C) Product

size (bp)

GR F: CCTTCAATCTGGGCTGTA 55 158

R: ATTGGTGGCTGGGAAA

GSNOR F: TGTTCATGATGTTAGTGTTGCG 58 121

R: TGATTCTACTTTTGCCGTGTTC

PR1 F: TCTAACACTTGTGCCGATGAC 58 126

R: ATAGTTGCACCCGATGAAGG

NPR1 F: CAGATGATGTGAACTTGTGAA 55 71

R: GTAAGCCGCAGCATAATG

TGA1 F: GCCTCAGCATCAATGATAGTTG 58 105

R: TGCTTCTTGGTCATACTTGCTA
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50 mM Iodoacetamide (IAM, Sigma-Aldrich, St Louis, MI,
United States), 1% Protease Inhibitor Cocktail (Merck Millipore,
Billerica, MA, United States), and 1% Triton X-100] added was
sonicated three times on ice. The lysate was incubated at room
temperature without light for 30 min, and then, centrifugation
was performed at 20,000 × g at 4◦C for 10 min to remove the
remaining debris. Finally, cold 20% TCA was used to precipitate
the protein at −20◦C for 2 h. The precipitate obtained by
centrifugation was washed three times with cold acetone. HES
buffer [50 mM TEAB, 1 mM EDTA, and 0.1% sodium dodecyl
sulfate (SDS)] was used to redissolve the protein. The protein
concentration was measured according to the instructions of the
BCA kit (Beyotime Biotechnology, Shanghai, China).

Iodo-TMT Labeling
One milligram protein per treatment was redissolved in 1 ml
HES buffer and processed with the iodo-TMT kit (Thermo Fisher
Scientific, Waltham, MA, United States). In short, iodo-TMT
reagent dissolved in 10 µl MS grade methanol was mixed to the
redissolved protein solution; then, 20 µl of 1 M sodium ascorbate
was added and mixed briefly. The mixed solution was incubated
in the dark at 37◦C for 2 h. The reaction was quenched by the
addition of 40 µl of 0.5 M DTT (20 mM final concentration) and
incubated in darkness at 37◦C for 15 min.

Trypsin Digestion
Six volumes of prechilled (−20◦C) acetone were used to
precipitate the mixed labeled protein at −20◦C for at least 2 h
and then centrifuged to discard the supernatant. The protein
precipitate was dissolved in 8 M urea after washing with cold
acetone three times. The protein solution after reduction with
5 mM DTT for 30 min at 56◦C was alkylated with 11 mM
IAM for 15 min at room temperature without light. The protein
samples were diluted with 100 mM TEAB, and the final urea
concentration was below 2 M. Trypsin was added at a trypsin-to-
protein mass ratio of 1:50 overnight, and a second digestion was
performed at a mass ratio of 1:100 trypsin to protein for 4 h. Strata
X C18 SPE column (Phenomenex, Torrance, CA, United States)
was used for desalting of trypsin-digested peptides. Finally, the
peptide was dried under vacuum.

HPLC Fractionation
Fractionation of the samples was carried out by high pH
reverse-phase HPLC (EASY-nLC 1000, Thermo Fisher Scientific,
Waltham, MA, United States) applying 300 Extend C18 column
(5 µM particles, 4.6 mM ID, and 250 mM length; Agilent
Technologies, Santa Clara, CA, United States). First, the peptides
were dissociated into 80 fractions with a gradient of 2–
60% acetonitrile (ACN) in 10 mM NH4HCO3 (pH 10) over
80 min. Then, the peptides were combined into four fractions
and vacuum dried.

Affinity Enrichment
Tryptic peptides were dissolved in TBS buffer (pH 7.5, 150 mM
NaCl, 250 mM Tris–HCl) and incubated with prewashed anti-
TMT antibody beads (Thermo Fisher Scientific, Waltham, MA,
United States) at 4◦C overnight to enrich cysteine nitrosylation
peptides The beads were cleaned once with disinfected deionized

water after three times with TBS buffer. The peptide bound
to the beads was eluted with elution buffer (0.4% TFA, 50%
ACN). The eluted peptides were mixed and vacuum dried. The
peptides obtained after C18 ZipTips (Millipore, Boston, MA,
United States) washing were analyzed by liquid chromatography
tandem mass spectrometry (LC-MS/MS).

LC-MS/MS Analysis
Refer to the means of Yang et al. (2018) with minor modifications.
The peptides were resuspended in solvent A (containing 0.1%
FA and 2% ACN) and separated using an EASY-nLC 1000 UPLC
system (Thermo Fisher Scientific, Waltham, MA, United States).
The gradient of solvent B (containing 0.1% FA and 98% ACN)
included an increase from 6 to 25% over 26 min, 25 to 40% in
8 min, and climbing to 80% in 3 min, then remaining at 80% for
the last 3 min. The flowrate was maintained at 400 nl min−1.
The peptides were injected into the NSI source for ionization
and then analyzed using tandem mass spectrometry (MS/MS)
on an Q ExactiveTM Plus (Thermo Fisher Scientific, Waltham,
MA, United States) coupled online to the ultraperformance liquid
chromatography (UPLC).

Statistical Analysis
The MaxQuant search engine (v.1.5.2.8) was used to analysis
the resulting MS/MS data. The UniProtKB Prunus persica
(sequences: 28234. Version: 2016.5.30) database was connected
to the reverse decoy database to search for tandem mass
spectra. IodoTMT-6plex was selected as the quantification
method. The fold-change threshold was set when peptides
with quantitative ratios over 1.2 or under 1/1.2 are considered
significant. Intensive bioinformatic analyses were then carried
out to annotate those quantifiable lysine acetylated targets in
response to NO solution treatment, including Gene Ontology
(GO) annotation, subcellular localization, Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathway annotation, etc. Based
on the results, further studies following the quantitative cysteine
nitrosylation analysis were suggested. Three repetitions were used
in nitrosylation measurement. The compilation and mapping of
experimental data were performed using Microsoft Excel 2013
and Sigma Plot 10.0 software. IBM SPSS version 20.0 was used
for statistical analysis, and significant (P < 0.05) level test was
performed using least significant difference (LSD) test.

RESULTS

Effect of NO and GSNOR Inhibitor on
Disease Incidence and Lesion Diameter
of Peach Fruit Inoculated With
M. fructicola
The disease incidence and lesion diameter of peach fruit
inoculated with M. fructicola were significantly (P < 0.05)
suppressed by NO and GSNOR inhibitor (N6022), and the
inhibitory effect of GSONR inhibitor on M. fructicola was better
than that of NO solution treatment (Figure 1). At 36 h, the
disease incidence of the control fruit was approximately 15%, and
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FIGURE 1 | Effect of nitric oxide (NO) or S-nitrosoglutathione reductase (GSNOR) inhibitor treatment on the (A) disease development (at 48 h after inoculation), (B)
disease incidence, and (C) lesion diameter of peach fruit after inoculation with M. fructicola spore suspension (1 × 105 spores ml−1) and then stored at 23◦C. Bars
represent standard deviations of the means (n = 6). Different letters represent significant differences (p < 0.05) according to least significant difference (LSD) test.

the average lesion diameter was 2.3 mm, however, the disease
symptom was not present on GSNOR inhibitor-treated fruit.
During the investigated period, the lesion development on NO-
treated or GSNOR inhibitor-treated fruit was lower than that on
the control (Figure 1A). Moreover, 36 and 48 h, the NO and
GSNOR inhibitor-treated fruit exhibited significantly (P < 0.05)
lower disease incidence than the control (Figure 1B). The lesion
diameter on the control fruit was 2.1, 1.5, and 1.6 times of NO-
treated fruit, and even at 72 h, the lesion diameter on the control
fruit was almost 3.1 times that of GSNOR inhibitor-treated peach
fruit (Figure 1C). These results indicate that treatment with NO
and GSNOR inhibitor reduces disease incidence and the extent
of lesions. GSNOR inhibitor was the most effective at inhibiting
brown rot development.

Effect of NO and GSNOR Inhibitor on the
Activity and Gene Expression of GR and
GSNOR in Peach Fruit
The activity and gene expression of GR and GSNOR were
measured in peach fruit after inoculation with M. fructicola
(Figure 2). Compared with the control, NO and GSNOR
inhibitor obviously (P < 0.05) enhanced the activity of GR.
The enhancement effect of NO on GR activity was very obvious

at 6–24 h, but the GR activity was slightly different from the
control at 48 and 72 h. The effect of GSNOR inhibitor on GR
activity was more obvious than that of NO and GR activity,
showing a downward trend at 0–72 h (Figure 2A). The activity
of GSNOR showed a tendency of increase first and then decrease.
Both NO and N6022 inhibited the activity of GSNOR, and the
inhibitory effect of N6022 treatment was stronger than that
of NO treatment (Figure 2B). Furthermore, higher levels of
GR expression were observed in both NO-treated and GSNOR
inhibitor-treated fruit than the control (Figure 2C). GSNOR
expression in peach fruit treated with NO and GSNOR inhibitor
was obviously (P < 0.05) lower than the control at 2–6 h. The
expression of GSNOR in all three treatments stabilized at 12 h.
GSNOR inhibitors have the most marked inhibitory effect on
GSNOR gene expression (Figure 2D).

Determination of the S-Nitrosylation Site
of GSNOR in Peach Fruit After Treated
With NO
Nitric oxide-treated and non-treated peach fruits inoculated with
M. fructicola were quantitatively measured for nitrosylation using
iodo-TMT tags. The sulfydryl in Cys-85 of GSNOR was identified
as an S-nitrosylated residue in peach fruit treated with NO at 6
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FIGURE 2 | Effect of nitric oxide (NO) or S-nitrosoglutathione reductase (GSNOR) inhibitor treatment on the activity of (A) glutathione reductase (GR) and (B) GSNOR
and the (C) gene expression of GR and (D) GSNOR of peach fruit storage at 23◦C. Vertical bars represent the standard deviation of the means (n = 6). Different
letters represent significant differences (P < 0.05) according to least significant difference (LSD) test.

and 12 h (Figure 3A). The peptide sequences of nitrosylation was
KILYTALCHTDAYTWGGKD. To get the 3D structural model
of GSNOR, find the GSNOR (M5VJ61) information page on
the UniProt official website and click M5VJ61 under “Structure”
(Figure 3B). From the structure of the model, GSNOR is a dimer
containing two subunits, and its ligands include two zinc ion and
two nicotinamide adenine dinucleotide.

The content of endogenous NO and SNOs increased from
0 to 12 h and then decreased in both treated and the control
fruit from 12 to 48. At 72 h, the content increased slightly but
did not change much. The change in endogenous NO content
is similar to SNOs (Figure 4). Treatment with NO and GSNOR
inhibitor increased the levels of SNOs and NO in peach fruit
compared to the control (Figures 4A,B). GSNOR inhibitor
treatment had a stronger effect on the content of SNOs and NO
than exogenous NO treatment.

Effect of Different Treatments on the
Content of GSH, GSSG, and GSNO
The level of GSH increased from 0 to 72 h in the treated fruit.
However, GSH levels in control fruits increased from 0 to 48 h
and decreased at 72 h (Figure 5A). GSNOR inhibitor treatment

enhanced GSH level maximum, NO treatment was the second,
and the GSH level of the control peach fruit was relatively low
(Figure 5A). The change in GSSG content is opposite to that of
GSH. GSSG content showed a downward trend within 0–48 h
after inoculation with M. fructicola. The GSSG content of the
control fruits increased at 72 h, but a decrease in GSSG levels
was still found in the treated peach fruit (Figure 5B). The level of
GSNO increased significantly at 0–6 h, and then decreased. It can
be seen from the figure that NO and GSNOR inhibitor treatment
could obviously (P < 0.05) increase the level of GSNO during 0–
24 h. However, GSNO content in the three treatment fruits had
no significant difference (P> 0.05) at 48 h. At 72 h, the content of
GSNO in peach fruits treated with GSNOR inhibitor was higher
than the other two groups (Figure 5C).

Effect of NO and GSNOR Inhibitor on the
Expression of Several Defense-Related
Genes in Peach Fruit
The expressions of three defense-related genes in peaches
pretreated with NO and GSNOR inhibitor were investigated by
RT-PCR. NO and GSNOR inhibitor increased the expression
levels of PR1, NPR1, and TGA1 genes (Figure 6). The expression
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FIGURE 3 | (A) Cys-85 of S-nitrosoglutathione reductase (GSNOR) was identified as an S-nitrosylated residue by site-specific proteomic mass spectrometry, and (B)
3D structure model of GSNOR protein of peach was predicted in Uniprot. Illustrated in the figure is the cysteine located at position 85 of the amino acid sequence.

trend of PR1 was similar to that of NPR1, gradually increasing
during 0–48 h. It decreases when it reaches the maximum at
48 h (Figures 6A,B). The expression level of TGA1 in the
control fruit was relatively stable, but NO and GSNOR inhibitor
significantly (P < 0.05) induced TGA1 gene expression from 24
to 72 h (Figure 6C).

DISCUSSION

Nitric oxide involves participating in plant responses to biotic
and abiotic stresses as an important signaling molecule (Mur
et al., 2006; Carreras and Poderoso, 2007). It is reported that
NO has a direct and effective inhibitory effect on a variety
of microorganisms (Schairer et al., 2012). However, in our
previous studies, low concentration of NO solution could
effectively restrict disease development but had no significant

inhibition against M. fructicola in vitro (Gu et al., 2014). In
recent years, more and more studies have shown that NO has
obvious inhibitory effects on post-harvest diseases. Treatment
of tomato fruit with L-arginine, a precursor of NO, inhibits
the expansion of lesion diameter caused by B. cinerea (Zheng
et al., 2011). In apple fruit, NO donor sodium nitroprusside
(SNP) treatment could inhibit virulence of P. expansum, causing
obviously lower disease incidence and smaller lesion diameter
compared to the water treatment (Lai et al., 2014). Hu et al.
(2019) showed that NO could significantly increase the resistance
of pitaya fruit to C. gloeosporioides after harvest, which is
consistent with the results observed on the present result in
peach fruit.

The pyrrole group located in N6022 is an efficient GSNOR
inhibitor with potent inhibitory ability (Sun et al., 2011). The
inhibitory effect of N6022 on GSNOR activity has been shown
to be safe and effective in animal models of asthma and
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FIGURE 4 | Effect of nitric oxide (NO) or S-nitrosoglutathione reductase (GSNOR) inhibitor treatment on the content of (A) SNOs and (B) NO of peach fruit storage at
23◦C. Vertical bars represent the standard deviation of the means (n = 6). Different letters represent significant differences (P < 0.05) according to least significant
difference (LSD) test.

inflammatory disease. As a tight bonding inhibitor, N6022 is
currently under application for early clinical research in humans
(Green et al., 2012). However, it has not been used in postharvest
fruits. The present results show that the GSNOR inhibitor N6022
reduces disease incidence significantly (P < 0.05) and enhances
the resistance of peach fruit to brown rot while reducing the
activity of GSNOR of peaches.

S-nitrosoglutathione reductase regulates the levels of GSNO
and SNOs in eukaryotic cells by specifically recognizing and
degrading GSNO that can be decomposed into GSSG and
ammonia (NH3) (Liu et al., 2001). As the most abundant
of endogenous intracellular SNOs, GSNO is considered as a
potential NO storage site or transport center in the cell (Butler
and Rhodes, 1997; Mayer et al., 1998; Liu et al., 2001). It can
transfer NO to the target protein to change the function of
the protein (Liu et al., 2001). The present results show that
NO-treated fruit had markedly (P < 0.05) higher content of
GSNO than the control, which contributed to promoting the
nitrosylation of the target protein of GSNOR (Figures 3A,
5C). Studies have shown that when plants are infected with
pathogenic bacteria, the content of SNOs will increase, suggesting
that SNOs play a vital role in signal transduction and host
defense (Feechan et al., 2005; Chaki et al., 2009). The present
results showed that the content of SNOs increased at 0–12 h,
and both NO and GSNOR inhibitor treatments promoted the
production of SNOs, which was helpful for the improvement
of disease resistance of peach fruit (Figure 4A). It is reported
that the concentration of NO in the cells increased, and NO
could bound to GSH to form GSNO under stress conditions (Liu
et al., 2001). Under the catalysis of GR, the oxidized form of
glutathione (GSSG) can be readily converted to the reduced state
(GSH). GSH is a major intracellular antioxidant that eliminates
reactive oxygen species (ROS) (Macdonald et al., 2003). GR
maintains a high GSH/GSSG ratio by reducing GSSG to play a
key role in the antioxidant defense process (Foyer and Noctor,
2005; Patel and Patra, 2015). The present result showed that

exogenous NO and N6022 treatments promoted the degradation
of GSSG by increasing the activity of GR, thereby increasing
the content of GSH, thus improving the antioxidant capacity
of peach fruit.

The accumulation of endogenous NO after inoculation of
Rhizoctonia solani in cucumber plant may be due to a decrease
in GSNOR activity (Nawrocka et al., 2019). Our study also
found the content of endogenous NO increased when GSNOR
activity was inhibited by exogenous NO and GSNOR inhibitor
(Figure 4B). Romero-Puertas et al. (2008) has identified some
S-nitrosylated proteins in Arabidopsis thaliana during defense
response of the plant, which shows that protein nitrosylation
plays an indispensable role in the process of defense reaction.
Our nitrosylation modification analysis showed that the GSNOR
protein in the NO-treated peach fruit was nitrosylated, which
indicates that exogenous NO may participate in the disease
resistance response by nitrosylation modification of this protein.
As GSNOR inhibitor or NO treatment reduced the activity
of GSNOR in peach fruit, the degrading activity of GSNOR
on GSNO declined, which leads to GSNO and other SNOs
accumulation in peach fruit. Studies have shown that nitrosation
of cysteine results in reduced GSNOR activity in Arabidopsis,
budding yeast, and humans (Guerra et al., 2016). Similar
results were shown in this research. Therefore, it can be
speculated that NO induces nitrosylation of cysteine-85 in
GSNOR, which results in lower GSNOR activity in peach
fruit. Lee et al. (2008) found that transcriptional levels or
protein abundance levels of GSNOR was not significantly
(P < 0.05) regulated under stress conditions in Arabidopsis,
suggesting that some mean of redox regulation via cysteine
modification may be a mechanism to control its activity. This
study indicated that the relative gene expression of GSNOR
in the NO-treated peach fruit was not markedly (P > 0.05)
different from the control after 6 h, but the GSNOR activity
was markedly (P < 0.05) inhibited (Figure 2). Therefore, the
nitrosylation of GSNOR may be another main regulation mode
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FIGURE 5 | Effect of nitric oxide (NO) or S-nitrosoglutathione reductase
(GSNOR) inhibitor treatment on the level of (A) GSH, (B) GSSG, and
(C) GSNO of peach fruit during storage at 23◦C. Vertical bars represent the
standard deviation of the means (n = 6). Different letters represent significant
differences (P < 0.05) according to least significant difference (LSD) test.

besides the transcriptional control that occurred to its enzyme
activity changes.

S-nitrosoglutathione reductase is a highly conserved
protein rich in cysteine. Through analysis, it is found that
the GSNOR homology between peach and Arabidopsis
reached 84.17% (Supplementary Figure S1). Xu et al.
(2013) analyzed the structure of Arabidopsis GSNOR

FIGURE 6 | Effects of nitric oxide (NO) or S-nitrosoglutathione reductase
(GSNOR) inhibitor treatment on (A) PR1, (B) NPR1, and (C) TGA1 gene
expression, determined by real-time qPCR. All experiments were run in
triplicate with different complementary DNAs (cDNAs) synthesized from six
biological replicates. Vertical bars represent the standard deviation of the
means (n = 6). Different letters represent significant differences (P < 0.05)
according to least significant difference (LSD) test.

protein and found that Cys-10, Cys-271, and Cys-370 of
AtGSNOR are solvent accessible and can provide conditions
for post-translational modification. In addition, it was
suggested that these three residues may be conserved

Frontiers in Plant Science | www.frontiersin.org 9 May 2020 | Volume 11 | Article 543

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-11-00543 May 18, 2020 Time: 16:53 # 10

Yu et al. NO Enhance Peach Disease Resistance

in regulating the activity of GSNOR. Moreover, Cys-10, Cys-271,
and Cys-370 of AtGSNOR have been identified as S-nitrosylated
residues (Guerra et al., 2016; Zhan et al., 2018). However, Cys-85
of GSNOR of peach was found to be an S-nitrosylated residues in
our identification results. Sequence analysis of GSNOR revealed
that Cys-85 corresponds to Cys-47 in Arabidopsis thaliana,
Antrodia camphorata, and tomato (Supplementary Figures S2,
S3). At the same time, Cys-85 residue was also found to be
conserved in other plant GSNORs. Huang et al. (2009) found that
Cys-47 of A. camphorata is closely related to the enzyme activity
of GSNOR. This further indicates the possible role of Cys-85
nitrosylation in the control of protein activity.

Pathogenesis-related gene 1 was first identified from Nicotiana
tabacum infected with tobacco mosaic virus (TMV) in the
1970s (Van Loon and Van Kammen, 1970). After that,
similar PR1 proteins from many species of both mono- and
dicotyledonous plants have been reported successively (Ohshima
et al., 1987; Tornero et al., 1997; Maleck et al., 2000; Liu
and Xue, 2006; Mitsuhara et al., 2008). Studies have confirmed
that PR1 is capable to protect plants against abiotic stress
(Rauscher et al., 1999; Cutt et al., 1989). Klessig et al. (2000)
demonstrated that NO can participate in the induction of PR1
gene expression. Inhibition of Arabidopsis GSNOR1 expression
enhances Arabidopsis resistance to Peronospora parasitica and
promotes systemic acquired resistance (SAR) and PR1 expression

(Rustérucci et al., 2007). Our research has yielded similar results,
which indicates that GSNOR may have the parallel role in post-
harvest fruits. Gene expression of PR1 is upregulated when
GSNOR is inhibited by NO and GSNOR inhibitors. NPR1 and
TGA1 are pivotal redox-controlled regulators of SAR in plants.
NO could promote the ability of NPR1 to increase DNA binding
activity of TGA1 (Lindermayr et al., 2010). When the SA-
mediated defense response is activated, changes in intracellular
redox status will lead to the revivification of NPR1 to its
active monomeric form. The NPR1 monomers interacts with the
reduced form of TGA1 to promote the binding of TGA1 to the
activation sequence-1 (as-1) element of the promoter region of
defense proteins. Studies have confirmed that this interaction
promotes the DNA combing activity of TGA1 to the as-1 of the
PR-1 gene to motivate its expression (Després et al., 2003; Pieterse
and Van Loon, 2004; Lindermayr et al., 2010). Lindermayr et al.
(2010) showed that GSNO protects TGA1 from oxygen-mediated
modifications and promotes the combing of TGA1 to the as-
1 when NPR1 is present. From our results, it can be seen that
both NO and GSNOR inhibitor treatment increased the content
of GSNO and endogenous NO, and the expressions of NPR1
and TGA1 were obviously higher than the control. Therefore,
treatment of peach fruit by NO and GSNOR inhibitors may
promote SAR by activating the SA signaling pathway, thereby
improving the disease resistance of peach fruit.

FIGURE 7 | A diagram of the action mechanism of exogenous nitric oxide (NO) and N6022 on improving disease resistance of peach fruits made according to our
research.
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S-nitrosoglutathione reductase is critical for GSNO and SNOs
homeostasis, as well as protecting against nitrosative stress.
GSNOR activity is also a major regulator of intracellular GSNO
and SNO levels, playing a key role in regulating plant resistance
(Liu et al., 2001; Lindermayr et al., 2006). Salicylic acid (SA), as
an immune activator in plants, is controlled by GSNOR1 in its
synthesis and signaling transduction, so the regulation of GSNOR
activity is closely related to plant disease resistance (Feechan
et al., 2005; Malik et al., 2011). In this study, GSNOR inhibitor
N6022 was used for soaking postharvest peach fruits that were
later inoculated with M. fructicola. It was found that N6022 could
significantly (P < 0.05) inhibit the disease spot development of
peach fruit. Moreover, the expression of GSNOR was decreased
while the expression of PR1 was significantly increased, and the
content of endogenous SNOs and glutathione (GSH) in fruits
was increased. The results indicate that partial inhibition of
GSNOR activity can lead to increase in intracellular SNOs levels,
accumulation of GSH, and enhancement of fruit defense capacity.

Plant defense response is a complex network involving the
transmission of multiple hormones and signaling molecules. Our
research mainly revealed an important defense mechanism for
GSNOR to regulate the level of nitrosation and promote the
production of SAR by regulating the levels of GSNO and NO
(Figure 7). This provides a new orientation for probing the
defense mechanism of peach fruit against M. fructicola and lays
a foundation for in-depth research on the function of GSNOR
in harvested fruit. However, it is unclear whether other signaling
pathways have an effect on this mechanism, which requires more
extensive research.

CONCLUSION

In conclusion, the results of this study point to the key role of
GSNOR in the potential molecular mechanisms of peach fruit
resistant to brown rot stress. Studies have found that NO and
N6022 have a good inhibitory effect on peach fruit brown rot.
They inhibit the GSNOR activity and cause the accumulation of
SNO, GSNO, and endogenous NO in peach fruit, and increase
the GSH accumulation through enhancing GR activity, leading

to the enhancement of antioxidant and defense capabilities of
peach fruit. In addition, NO and N6022 activate the SA signaling
pathway by promoting the expression of SAR-related genes (such
as PR1, NPR1, and TGA1), which are also important components
of peach fruit defense mechanism. Interestingly, Cys-85 residue
of GSNOR was identified as an S-nitrosylated residue in the NO-
treated peach fruit. This has not been reported in heretofore
studies. It is speculated that this may be related to GSNOR
enzyme activity, but further research is needed to support this
conclusion. Collectively, presented data uncover that inhibition
of GSNOR activity has a positive role in peach fruit response to
M. fructicola infection.
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