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Rapidly determining leaf vein network patterns and vein densities is biologically
important and technically challenging. Current methods, however, are limited to vein
contour extraction. Further image processing is difficult, and some leaf vein traits of
interest therefore cannot be quantified. In this study, we proposed a novel method
for the fast and accurate determination of leaf vein network patterns and vein density.
Nine tree species with different leaf characteristics and vein types were applied to verify
this method. To overcome the image processing difficulties at the microscopic scale,
we adopted the remote object-oriented classification method applied comprehensively
in the field of remote sensing research. The key to this approach is to determine
the universally applicable leaf vein extraction threshold values (scale parameter, shape
parameter, compactness parameter, brightness feature, spectral feature and geometric
feature). Based on our analysis, the following recommended threshold values were
determined: the scale parameter was 250, the shape parameter was 0.7, the
compactness parameter was 0.3, the brightness feature value was 230∼280, the
spectral feature value was 180∼230, and the geometric feature value was less than
2. With the optimal extraction parameters applied, the extraction precision was above
96.40% on average for the nine species studied. The leaf vein density calculation
rate increased by more than 87.3% compared to that of the traditional methods.
The results showed that this method is accurate, fast, flexible and complementary to
existing technologies. It is an effective tool for the fast extraction of vein networks and
the exploration of leaf vein characteristics, particularly for large-scale studies in plant
vein physiology.

Keywords: leaf vein network, leaf vein density, object-oriented method, remote sensing, extraction

INTRODUCTION

The leaf vein network, an important morphological structure, is widely distributed on the leaf
surface. It affects the mechanical support, water balance and resource circulation of the entire leaf
(Wright et al., 2004; Brodribb and Holbrook, 2005; Lavorel and Grigulis, 2015; Cai et al., 2018). One
important trait of the network is vein density, the total length of the leaf vein per unit area, which
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is a crucial index among the functional traits of the vein networks
(Nardini et al., 2003). The leaf vein network characterizes the
distribution, arrangement and orientation of the veins in the
leaves, which is closely related to the transport efficiency of
water and photosynthetic products during transpiration and
photosynthesis (Nardini et al., 2003; Fu and Chi, 2006; Walls,
2011; Zhang et al., 2018). In addition, leaves are the most
important functional organs of plants for photosynthetic carbon
capture, and the morphological and functional diversification
of plant leaves are often reflected by the high diversity of vein
networks (McKown and Dengler, 2009; Feldman et al., 2017).

In many instances, leaf vein density has important theoretical
significance for understanding leaf formation and adaptation
mechanisms. It also provides a mechanism to explain the general
trend of global plant ecological geography (Blonder et al.,
2010; Brodribb and Field, 2010; Sack and Scoffoni, 2013). The
research on the network structure of veins can be traced to
1861. Ettingshausen, an international ecologist, applied the vein
network structure to plant classification (Hickey, 1973; McKown
et al., 2010). For a long time, the leaf vein network structure
has played an important role in plant classification. Different
plant groups have diverse types of vein network structures
(Hickey, 1973; Melville, 1976; Sieburth, 1999). For example,
dichotomous venation is more common in pteridophytes, and
the leaf vein system of dicotyledons is mostly netted venation,
while parallel venation appears only in monocotyledons (Sack
and Frole, 2006). In recent years, studies on the functional
traits of leaf veins and their relationships with leaf water,
leaf photosynthetic capacity and leaf carbon construction have
received extensive attention from international researchers
(Beerling and Franks, 2010; Blonder et al., 2010; Roth-Nebelsick
et al., 2001; Sack et al., 2012). With the deepening of research,
a pattern is emerging between the functional traits of the
vein network and the environment, as well as the relationship
between the functional traits of the vein network and the
evolutionary trends of the plant system (Boyce et al., 2009;
Field et al., 2011; Sack and Scoffoni, 2013). In addition, the
vein network is important for understanding the mechanism
of plant regulation of the environment (Field et al., 2011).
Studies have shown that when plants are susceptible to adverse
environmental stress, they often adapt to environmental changes
by adjusting their functional traits (Corpataux et al., 2002;
Kang et al., 2007; Mcelwain et al., 2016). For example, in a
high-temperature environment or one in which water resources
are very scarce, plants usually have a well-developed vein
network structure, ensuring water supply balance and improving
plant survival adaptation and competitiveness (McKown and
Dengler, 2009; Baylis et al., 2013). In-depth study of leaf
vein functional traits and their ecological characteristics is
of far-reaching significance for exploring plant responses to
global climate change. Furthermore, the field applications of
research on leaf vein network functional traits are expanding.
Plant functional traits are of great significance for community
species composition, species ecological responses, maintenance
of plant diversity, and material cycling in ecosystems (Lavorel
and Garnier, 2002; Hooper et al., 2005; Price et al., 2014).
Therefore, in-depth study of the functional properties of the

vein network and its ecological characteristics is of great
significance for predicting the response of plants and ecosystems
to global changes (McGill et al., 2006; Violle et al., 2007;
Webb et al., 2010). Based on previous studies, we found that
veins contain important physiological information for plants.
Quantification of the vein network is the primary prerequisite
to the study of leaf vein traits, as well as one of the key
steps in plant modeling and plant identification. Therefore, it is
particularly important to study an efficient and fast method to
quantify vein networks.

With the development and popularization of computer
image processing technology, quickly extracting the required
information from an image has become a popular research
topic in the field of remote sensing (Sezgin and Sankur, 2004;
He et al., 2009; Blaschke, 2010; McKown et al., 2010). Based
on previous research, we found that image analysis software
such as Photoshop and Image J were generally used in the
calculation of leaf vein structure (Hüve et al., 2010; Kengni
et al., 2016). These methods were not only time-consuming
and laborious but also likely to cause great human error.
At present, the research objects for leaf vein quantification
are mainly digitized scans of fresh leaves, and the methods
are mostly based on artificial neural networks, directional
energy and K-means clustering (Nardini and Jansen, 2013; Price
et al., 2014; Bühler et al., 2015). Some research is limited
to the extraction of vein contours, and the measurement
of its related indicators (e.g. leaf vein density) cannot be
achieved (Zhang et al., 2015). Obtaining the leaf vein density
still needs to be done with the traditional method, which
increases the workload unnecessarily. Compared with using
a flatbed digital scanner (Price et al., 2014), leaf vein
images taken by an optical compound microscope provides
richer information, such as shape, spectrum and brightness.
eCognition is the world’s first object-oriented classification
software (Vallis and Colton, 1996). The object-oriented method
can fully consider the features of the target object, including
brightness features, spectral features, geometric features and
texture features. After multiscale segmentation of the image,
a series of subunits that do not cross each other and
do not overlap each other is formed, which reduces the
fragmentation rate of the object (Fayad et al., 2002; Jing
and Cheng, 2012). Therefore, in this study, we proposed
a novel method of leaf vein extraction. We regarded vein
microscopic images as remote-sensing images and explored
the application of remote-sensing image processing technology
in the classification and extraction of veins to calculated
leaf vein density.

In this study, vein images of nine common deciduous
and evergreen species representing both monocotyledons and
dicotyledons (Populus tomentosa Carr., Sophora japonica L.,
Fraxinus pennsylvanica Var., Koelreuteria paniculata Laxm., Acer
truncatum Bunge, Ailanthus altissima (Mill.) Swingle, Caryota
ochlandra Hance, Cordyline fruticosa (L.) A. Cheval, and Rhapis
excelsa (Thunb.) Henry ex Rehd.) with different leaf areas,
leaf growth characteristics, vein types, covering monocotyledons
and dicotyledons were taken as research objects. Large-scale
vein images were identified, classified and extracted based on
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brightness features, spectral features and geometric features to
achieve efficient quantification of leaf vein density.

TRAINING SAMPLE ACQUISITION AND
EXTRACTION PROCESS

Leaf Image Acquisition
The sampling sites in this study are located at Beijing Forestry
University and the Guangxi University campus. Beijing, the
capital of China, is located between longitudes 115◦125’ and
117◦130’ E and between latitudes 39◦28’ and 41◦05’ N. The
climate is typical of the semi-humid continental monsoon
climate in the northern temperate zone. The annual average

temperature is 10∼14◦C, the average summer temperature is
27.5◦C, and the annual average precipitation is approximately
600 mm. Nanning City, the capital of Guangxi Province,
China, is located between longitudes 107◦45’ and 108◦51’E and
between latitudes 22◦13’ and 23◦32’N. The climate belongs
to a subtropical humid monsoon climate. The annual average
temperature is 12.8∼28.2◦C. The average annual precipitation
is 1300 mm. As shown in Table 1, to eliminate the difference
in leaf vein extraction caused by leaf growth characteristics,
nine tree species with different leaf sizes, leaf textures, leaf
vein definitions and vein types in typical tree species used
for urban greening with new growth were selected as training
samples. The healthy mature leaves of the canopy were randomly
collected in August 2018 in fine weather from 09:00 to 11:00.

TABLE 1 | Leaf traits and leaf vein characteristics of nine tree species with different leaf areas, leaf thicknesses, leaf textures, pubescence, leaf vein clarity (visibility of vein
on leaf surface) and vein types.

Tree species Leaf area /cm2 Leaf thickness/mm Leaf texture Pubescence Vein clarity Vein type

Populus tomentosa Carr. (101.38 ± 19.32)b (0.23 ± 0.12)b Thick oriaceous leaf Smooth leaves Clear Netted venation

Acer truncatum Bunge (30.50 ± 4.21)d (0.15 ± 0.04)c Oriaceous leaf Smooth leaves Clear Netted venation

Fraxinus pennsylvanica Var. (21.82 ± 3.24)e (0.21 ± 0.08)b Paper-based leaf Trichome-covered leaves Clear Netted venation

Ailanthus altissima (Mill.) Swingle (36.99 ± 6.14)d (0.24 ± 0.06)b Thin oriaceous leaf Trichome-covered leaves Clear Netted venation

Koelreuteria paniculata Laxm. (23.24 ± 2.35)e (0.18 ± 0.06)c Paper-based leaf Trichome-covered leaves Blurry Netted venation

Sophora japonica L. (8.93 ± 1.50)f (0.16 ± 0.03)c Paper-based leaf Trichome-covered leaves Blurry Netted venation

Caryota ochlandra Hance (98.23 ± 15.30)b (0.26 ± 0.05)b Thin oriaceous leaf Smooth leaves Blurry Parallel venation

Cordyline fruticose (L.) A. Cheval (128.46 ± 21.53)a (0.33 ± 0.13)a Grass-based leaf Trichome-covered leaves Blurry Parallel venation

Rhapis excelsa (Thunb.) Henry ex Rehd. (58.66 ± 11.24)c (0.25 ± 0.10)b Thin oriaceous leaf Smooth leaves Blurry Parallel venation

Different lowercase letters in the table mean significant differences at p < 0.05 level.

FIGURE 1 | Process of leaf vein extraction and optimization based on object-oriented classification. This operation is generally divided into three main steps: image
segmentation, feature selection and classification based on object features.
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A total of 30 trees of each species were selected, and 10
leaves per tree were gathered from all cardinal directions.
We used a traditional method for acquiring a leaf image
(soak + microscope photography method). The leaf samples
were cleared of chlorophyll by soaking in a 5% NaOH
solution for 7 days in a dark environment until the leaf was
transparent (the solution was changed every 24 h). We added
1 drop of toluidine blue (TB) stain to make a temporary
slide after rinsing it with distilled water. We placed the slides
under an optical microscope (Leica DM6000B, Monroe, LA,
United States) at 40 × magnification (2.2013 × 1.6468 mm. In
this experiment, three pictures of each slide were randomly taken
for experimental analysis. A total of 120 images were collected
from each tree species.

Vein Image Processing
Extraction Process
The remote-sensing classification method is performed with
eCognition Developer 64 software. It takes a pixel object
containing multiple spatial relationships among semantic
information as the processing unit. This tool can classify
higher-level remote-sensing images and extract target object
information (Schönmeyer et al., 2006). Therefore, we can
use such relationship features in the software to make a
distinction between the veins and background in the image.
For instance, veins have a special strip shape as well as
unique spectral information compared with the background in
microscopic images. As shown in Figure 1, the object-oriented
taxonomy consists of two main functional modules, the image
segmentation module and the target object extraction module.
The extraction process of the vein network mainly includes
steps such as image preprocessing, multiscale segmentation,
knowledge base construction, feature selection and leaf vein
extraction (Schnack et al., 2001; Schönmeyer et al., 2006).
The purpose of image segmentation is to generate target
objects, which is the most critical step in object-oriented
classification (Schnack et al., 2001). Segmentation methods
based on object-oriented methods mainly include chessboard
segmentation, quadtree segmentation, contrast segmentation,
multiscale segmentation, spectral difference segmentation,
multi-threshold segmentation and contrast filter segmentation
(Biberthaler et al., 2003). Multi-scale segmentation uses the
region-growing segmentation algorithm. It can divide the
image into several subregions that do not intersect each
other. This is to have the same characteristics according to
the heterogeneity of the target object and non-target object
(Mckinney and Cai, 2002). Multiscale segmentation is the
most commonly used segmentation method in eCognition’s
object-oriented classification technology and plays a critical
role in image segmentation (Feng, 2010). According to the
leaf vein characteristics of the tree species, the reason we
choose the multiscale segmentation method in this study is
to achieve the maximum weight homogeneity of the target
object after segmentation. In the multiscale segmentation
process, the segmentation parameters mainly include scale
parameters, shape parameters and compactness parameters. To

ensure the best fit of the vein objects, we need to constantly
adjust the scale, shape and compactness parameters, i.e. the
segmentation threshold.

Object-Oriented Leaf Extraction and
Optimization
Image Preprocessing
To enhance the contrast between the veins and the background
of the microscopic image, we performed a 1% linear stretch of
the visual parameters on all training samples in the eCognition
software to ensure the relative consistency of the initial features
of all training samples to achieve better segmentation.

Image Segmentation
Image segmentation is the most critical step in object-oriented
taxonomy. The quality of segmentation in this process directly
influences the accuracy of extraction (Nguyen et al., 1999;
Feng, 2010). Because the characteristics of the leaf veins are
different from those of the background, we choose the multiscale
segmentation method here. It is the most effective method
of information acquisition at different scales. This uses the
region-merger method with the least heterogeneity of the object
and the non-object to minimize the weight heterogeneity of
the segmented veins. The object-oriented method can separate
regions of arbitrary resolution according to the characteristics
of different objects, thus extracting objects of different scales
(Jing and Cheng, 2012). Therefore, we need to constantly adjust
the segmentation parameters to control the threshold of the
merging algorithm to find the optimal image segmentation
parameters (Figure 2).

Leaf Vein Extraction Optimization
As shown in Figure 3, except for Populus tomentosa Carr.,
Acer truncatum Bunge, Caryota ochlandra Hance and Rhapis
excelsa (Thunb.) Henry ex Rehd., which were glabrous, all the
species tested were pubescent. Therefore, during the process of
photographing the vein microscopic image, the veins may be
discontinuous or interrupted due to the occlusion from leaf hairs.
To reduce the error caused by such phenomena, we need to
splice the interrupted vein parts into a complete network. In this
paper, we used the “circulating growth method” to determine
the direction of interrupted veins. This method was used by
the object-oriented classification technology of the eCognition
software to find a universal rule and threshold range for leaf
vein extraction.

Generating a straight vein segment
The leaf vein objects called temp01 were divided into several
straight leaf veins. Only in this way could we ensure the correct
direction of vein growth. As shown in Figure 3, the steps were as
follows: (1) Set the initial segment scale parameter fg01 = 150. (2)
Set the segmentation algorithm as multiscale segmentation. The
segmentation parameters were as follows: the segmentation scale
value of fg01, the shape parameter of 0.7 and the compactness
parameter of 0.9. The purpose was to generate a leaf object that
was as straight as possible. (3) Among the generated temp01
class objects, the objects with a compactness parameter <2
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FIGURE 2 | Leaf vein multiscale segmentation interface based on eCognition software.

FIGURE 3 | Flow of the generation of a straight leaf segment in the eCognition software. “Temp01” is the name of the initial vein object set in the software, and
“Temp02” is the final spliced complete vein.
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FIGURE 4 | Flow of the growth of interrupted veins in eCognition software.
This fusion growth is to connect the segmented leaf veins.

were classified as temp02 and no longer participated in the
classification. (4) The division scale was set to self-decreasing,
and then fg01 = fg01 × 0.9 was set. (5) The loop was set. When
fg01 > 10, the program would return to step (2) to continue
segmenting; otherwise, it would exit the loop. By choosing this
segmentation algorithm, the leaf object (temp01) could be broken
down to generate a straight temp02 class. The segmentation
process is reproduced below (Figure 3).

Leaf vein growth
The background objects around the veins were of different
shapes and sizes, making it difficult to carry out fusion growth.
Here, the purpose of fusion was to connect interrupted veins.
We used pixelated boundary objects to enable the veins to
grow correctly in this study. The growth process is shown in
Figure 4.

The specific steps were: (1) Combine the background classes
into one object. (2) At the boundary between the background
object and the temp02 class, to make the boundary pixelized,
we used chessboard segmentation to divide the background
object into one group of pixels, which was convenient for leaf
vein growth. (3) We used the image object fusion algorithm
to grow the interrupted vein. Then, we set the length fitting
function as follows: the target weight was 1, the seed weight
was −1, the candidate’s background weight was 0, and the
length fitting function threshold was Length > 0 Pxl. The
length fitting function was TL-SL > 0 (TL was the target
object length, and SL was the seed object length). The software
automatically performed calculations based on this function to
obtain the best blending method so that the straight objects
in the temp02 class would grow in the main direction. (4)
The region-growing algorithm was set to integrate the temp02
class into the background object class, which was adjacent
to the temp02 class, and merge it into temp02. The purpose
of this step was to speed up the integration process, in
particular to integrate vein objects that were removed as
speckles. The background objects were repeatedly divided and
merged by the above rules, and the process was stopped
after eight cycles.

TABLE 2 | Difference analysis of vein image segmentation results under different
segmentation parameters and extraction rules.

Source of variation Inter-parameters Inter-species

F P F P

Segment parameters 43.102 0.0001 23.134 0.8680

Brightness features 68.322 0.0005 29.302 0.3851

Spectral features 35.021 0.0029 26.001 0.3871

Geometric features 20.105 0.0001 13.134 0.8402

F is the calculated test statistic used to assess differences between groups. P-
value is an indicator to measure if there is a difference between the control group
and the experimental group.

Calculation of Leaf Vein Density and
Accuracy Analysis
The traditional measurement method of leaf vein density is based
on image-processing software such as Photoshop and Image J.
The biggest defect of these methods is that they need to calculate
vein one by one, which not only takes a lot of time, but also
brings large human error, especially for images with higher
vein density. In this study, we adopt the remote-sensing object-
oriented method approach to calculate leaf vein density. After
determining the optimal extraction threshold for the veins in the
eCognition software, we could measure the leaf vein density in
batches by selecting the category of classified objects under the
related class (length-classified objects).

A total of 120 microscopic leaf images were randomly selected
from each type of tree for analysis. A total of 60 images
per tree species were used for object-based classification for
batch calculation, and the remaining 60 images were measured
using traditional measurement methods (Image J software). We
compared our technique of vein extraction to one that uses
Image J. The Image J extraction technique involves tracing veins
manually using the polygon selection tool. Using the root-mean-
square error, the accuracy of the results was tested (Feng, 2010)
according to

R =

√√√√ 1
n

n∑
i=1

(P1 − P0) (1)

P′ =
P1 − R
P1

× 100% (2)

In the formulas, the following abbreviations are used: n—
Number of samples, P

′

—Extraction accuracy, P1—Measured
value (traditional method), P1−Measured mean (traditional
method), P0—Extracted value, R—Root-mean-square error.

RESULTS AND ANALYSIS

Scale Parameters
The scale parameter is the most critical segmentation
parameter of multiscale segmentation, and it directly affects
the segmentation of the entire image. Table 2 shows that
there were significant differences in the accuracy of the final
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FIGURE 5 | Segmentation results of veins under different scale parameters. Setting the scale parameter too small or too large will affect the segmentation
accuracy of vein.

FIGURE 6 | Segmentation result of veins under different shape parameters.
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FIGURE 7 | Segmentation result of veins under different compactness parameters.

extraction of leaf veins by different scale parameters (P ≤ 0.05),
but there were no significant differences among different tree
species (P > 0.05). As shown in Figure 5, each parameter
in the image segmentation affects the segmentation result to
a certain extent. Therefore, according to the characteristics
of each class of objects, the segmentation parameters should
be reasonably selected and set to make the segmentation
effect more noticeable. When the scale parameter was set
to be too small, the internal image was broken to a large
extent. It not only prolonged the segmentation process but
also caused the characteristic difference in the target object
(the leaf vein) to be strongly influenced by the non-target
object, thereby reducing the degree of separation between
categories. Conversely, when the scale parameter was set to
be too large, the image segmentation was relatively rough,
and the boundary of the veins was low. At the same time,
under large-scale conditions, non-leaf vein structures around
the veins were merged into the target object, which greatly
reduced the accuracy of the segmentation and the final
classification accuracy.

In this study, we set scale parameters of 10, 50, 90, 130,
170, 210, 250, 300, and 500 for the segmentation test. Through
the comparison of the measured results, the classification
accuracy of the veins was found not to be linear with the size
of the segmentation scale. After continuous adjustment, the
classification accuracy was the highest when the scale was 250.

Shape Parameters
The shape parameter is the weight that the shape standard
should have when defining the segmentation image, which
determines the boundary fit for the image object. In general,
the higher the value, the smaller the effect of color during
the segmentation process. After the first step of multiscale

segmentation and the determination of the optimal scale
parameters, we adjusted the shape parameters with the optimal
scale parameter of 250 and then determined the optimal shape
parameter threshold. In the range of 0∼1, we found that the
degree of coincidence of the leaf vein boundary first increased
and then decreased with increasing shape parameters. Under
the condition that the scale parameters were certain, we set
the shape parameter to 0.1, 0.3, 0.5, 0.7, and 0.9. As can
be observed in Figure 6, when the shape parameter weight
was set to be too small, the entire image boundary was very
fragmented, and many background objects were segmented.
Conversely, when the shape parameter weight was set to be
too large, this reduced the spectral homogeneity inside the
vein, causing some of the veins to be incorrectly grouped
with the background object. After the repeated adjustment
of parameters, we found that when the shape parameter
was 0.7, the segmentation effect on the vein contour was
best (Figure 6).

Compactness Parameters
The compactness parameter is used to define the weight of
the compactness standard, which determines the degree of
compactness in the objects generated after image segmentation.
In general, the higher the value is, the more compact the
boundaries of the image object. In the range of 0∼1,
the segmentation coincidence degree of the vein network
first increases and then decreases with the increase of
the compactness parameter. Therefore, after determining
the optimal scale parameters and shape parameters, we
continuously adjusted the compactness parameters to maximize
the segmentation quality.

The compactness parameters define the weight of the
compactness criterion. The higher the value is, the more compact
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FIGURE 8 | Segmentation accuracy of nine tree species at different segmentation scales. The value of ordinate refer to the difference between the density calculated
by eCognition software and the density calculated by Image J software. (A–C) show the vein density under different scale parameters, different shape parameters
and different compactness parameters, respectively.

TABLE 3 | Image object information on brightness, spectral and geometric features.

Characteristic category Main content Main application

Brightness features Contrast, Saturation, Lightness, Shade, Tone balance Target object recognition of the most basic features

Spectral features NDVI(Normalized Difference Vegetation Index), NDWI
(Normalized Difference Water Index), Mean, Standard
deviation, Ratio, HIS(Hue, Intensity and Saturtaion)

The most important features of target object recognition and extraction

Geometric features Length, Width, Area, Length/Width, Border length Mainly reflects the geometry of the target object

FIGURE 9 | The extraction results of the vein network based on brightness characteristics, spectral features and geometric features. (A) Brightness feature (B)
Spectral feature (C) Geometric feature.
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FIGURE 10 | Leaf vein network optimization results. (A) Before optimization (B) Chessboard segmentation (C) After optimization.

FIGURE 11 | Extraction results of leaf vein images of nine tree species at the optimal extraction threshold. The blue part is the vein, and the green part is the
mesophyll. All colors are set in the software. (A) Populus tomentosa Carr. (B) Sophora japonica L. (C) Fraxinus pennsylvanica Var. (D) Koelreuteria paniculata Laxm.
(E) Acer truncatum Bunge (F) Ailanthus altissima (Mill.) Swingle. (G) Caryota ochlandra Hance (H) Cordyline fruticosa (L.) A. Cheval (I) Rhapis excelsa
(Thunb.) Henry ex Rehd.

the image objects may be. As shown in Figure 7, when the
compactness parameter weight was set to be too small, although
the boundary coincidence degree was relatively high, some veins
were not divided. In contrast, when the compactness parameter

weight was set to be too large, this led to a dense partitioning
interface as well as many mis-segmentations. Therefore, we
needed to constantly adjust the parameters and observe the
quality of segmentation under different parameters. We found
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FIGURE 12 | Vein extraction accuracy based on multiple features. The X-axis is a single test image sample. (A) Populus tomentosa Carr. (B) Sophora japonica L. (C)
Fraxinus pennsylvanica Var. (D) Acer truncatum Bunge (E) Koelreuteria paniculata Laxm. (F) Ailanthus altissima (Mill.) Swingle (G) Caryota ochlandra Hance (H)
Cordyline fruticose (L.) A. Cheval (I) Rhapis excelsa (Thunb.) Henry ex Rehd.

that when the compactness parameter was 0.3, the segmentation
quality of the vein network was highest (Figure 8).

Knowledge Base Construction, Leaf
Extraction and Optimization
In the vein extraction process, knowledge base construction is
essential for the extraction of the image after segmentation.

The vein micrograph contains a variety of information that
can be used to classify the target object (Table 3). After
generalizing and describing the characteristics of the veins,
we converted these characteristics into extraction rules to
perform the extraction of veins. The main classification features
of microscopic image objects included brightness features,
spectral features, geometric features and texture features.
Based on the characteristics of the veins and microscopic
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images of leaves of different morphologies, textures and
types, we selected brightness features, spectral features and
shape features to construct a vein extraction knowledge base.
These three features were transformed into the rules for the
extraction below.

Brightness Features
In the eCognition software, all the objects in the vein image
were divided into two main types–the leaf vein and background.
The selected leaf vein unit showed the brightness value of
the vein. After summarizing the luminance of all the vein
units, the maximum and minimum values were used as the
extraction threshold range. Table 2 shows that the threshold
value of the brightness rule has a significant difference in the
extraction precision of the veins, and there was no significant
difference among different tree species. As shown in Figure 9A,
after repeated adjustment of 540 images, it was found that the
brightness of the veins could largely distinguish the target object
(vein) from the background when the brightness of the veins
was in the range of 230 to 280. In addition to the veins, we
found that there were more lustrous mesophyll backgrounds that
were also divided, most of which belonged to dense stomata or
guard cell contour boundaries. For leathery leaves, the veins were
prominent, but the developed stomatal structure also formed
a line that was relatively consistent with the veins on the

microscopic image. At this point, there were more false positives,
and it was difficult to extract the vein objects by brightness
features only. The reason for this may be that there were some
differences in the brightness of the microscopic images due to the
uneven thickness of the leaves. Therefore, we needed to further
extract the vein network by means of extra features.

Spectral Features
Table 2 shows that the threshold value of the spectral feature
rule has a significant effect on the extraction precision of the
veins (P ≤ 0.05), but there was no significant difference among
different environments and different tree species (P > 0.05).
As shown in Figure 9B, the process of vein extraction
still shows partial misclassification or leakage based on the
brightness features, so it was necessary to further classify
the veins according to the spectral features. Through the
analysis of the microscopic image properties, we found that
the red band threshold of the vein was 180∼230, while the
red spectral band value of the background was largely below
185. Therefore, by setting the spectrum (red band value)
to 180 or more, the veins could be separated from the
background to a large extent. However, when the veins were
extracted based on spectral features, we found that a very small
number of veins were still not extracted or were mistaken
for the background. We suspect that this phenomenon may

TABLE 4 | Analysis of the extraction value of the leaf vein.

Tree species Extraction value (mm·mm−2) Measured value (mm·mm−2) Difference value (mm·mm−2) Accuracy (%)

Populus tomentosa Carr. 0.6936 ± 0.4110 0.6794 ± 0.1302 0.0142 ± 0.0034 97.95

Acer truncatum Bunge 0.8686 ± 0.3241 0.8373 ± 0.3621 0.0313 ± 0.0026 96.40

Fraxinus pennsylvanica Var. 1.1272 ± 0.3569 1.1006 ± 0.4853 0.0266 ± 0.0032 97.64

Ailanthus altissima (Mill.) Swingle 0.8933 ± 0.1753 0.9104 ± 0.2423 0.0171 ± 0.0013 98.12

Koelreuteria paniculata Laxm. 1.1972 ± 0.3934 1.1631 ± 0.5164 0.0541 ± 0.0036 97.15

Sophora japonica L. 1.2251 ± 0.2543 1.2542 ± 0.5521 0.0291 ± 0.0040 97.68

Caryota ochlandra Hance 2.3294 ± 0.6731 2.2378 ± 0.7224 0.0916 ± 0.0045 96.07

Cordyline fruticose (L.) A. Cheval 1.3467 ± 0.4357 1.3213 ± 0.6734 0.0254 ± 0.0012 98.11

Rhapis excelsa (Thunb.) Henry ex Rehd. 1.9659 ± 0.5804 1.8956 ± 0.7866 0.0703 ± 0.0025 96.42

The extraction value is the leaf vein density that is automatically extracted based on object-oriented classification, and the measured value a is the leaf vein density
calculated by the traditional measurement method (Image J software).

TABLE 5 | Comparison of the calculation rate of the traditional measurement method (Image J software) and the new method (eCognition software) for one picture.

Tree species Leaf vein measurement time Increased rate /%

Traditional method /min New method /s

Populus tomentosa Carr. 2.37 8 94.9

Acer truncatum Bunge 2.32 8 94.7

Fraxinus pennsylvanica Var. 2.46 8 95.2

Ailanthus altissima (Mill.) Swingle 2.15 8 94.1

Koelreuteria paniculata Laxm. 2.56 8 95.5

Sophora japonica L. 1.95 8 94.8

Caryota ochlandra Hance 1.21 8 90.1

Cordyline fruticose (L.) A. Cheval 1.16 8 89.5

Rhapis excelsa (Thunb.) Henry ex Rehd. 1.03 8 87.3

The increased rate is the percentage increase in the calculation rate of the new method over that of the traditional measurement method.
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be due to other tissue structures around the veins, such as
trichomes, stomata and other impurities, overlapping with the
spectral characteristics of the veins. Therefore, to eliminate
such phenomena, we need to further extract the veins using
geometric features.

Geometric Features
Table 2 shows that the threshold value of the geometric feature
rule has a significant effect on the extraction precision of the
vein (P ≤ 0.05), but there was no significant difference among
different environments and different tree species (P > 0.05).
Since it was difficult to completely separate the veins from
the background by relying solely on the brightness and
spectral features, geometric features had to be used for
further extraction. Unlike the shape contours of structures
such as stomata in the background, the veins have a rather
long linear contour. Therefore, the special shape features of
the veins in the image could be used to further extract
the vein network. First, all the vein objects were merged
in the category of brightness feature extraction. Then, the
merged leaf object features were more obvious; the separated
objects were linear, while the background objects were mostly
rectangular. The density was further extracted with these
shape characteristics, and the closer the vein shape was to
linearity, the smaller the density value was. As shown in
Figure 9C, the leaf vein images of the nine species were
repeatedly tested, the category with a geometric feature value
<2 was classified as the vein so that most of the background
objects could be removed, and most of the merged veins were
completely retained.

Leaf Vein Extraction Optimization
The result is presented in Figures 10, 11. After different
segmentation parameters, layer superposition and optimization
splicing of extraction rules, the extraction accuracy was gradually
improved according to the optimized identification of the
nine tree species.

Extraction Accuracy Analysis
To obtain universally applicable extraction parameters, we
selected nine common green plant leaves with different leaf sizes,
leaf textures, leaf surface features and vein types as training
samples and thoroughly applied large-scale techniques to solve
microscale problems. At the same time, we fully considered the
unique growth characteristics of leaves, such as the problem of
leaf vein discontinuity caused by blade pubescence, and used
cycle iteration to splice the intermittent veins to ensure the
integrity of the vein network. A random selection of sixty images
in each type of tree were measured one by one using the
traditional Image J method, and the results of the automatic
extraction of the object-oriented classification method were
compared and verified. As shown in Figure 12 and Table 4,
although the leaf characteristics and leaf vein density of the
nine tree species were significantly different, the final extraction
results were not affected, and the extraction accuracy, on average,
was above 96.0%. At the same time, there was no difference
among the nine tree species we studied. This showed that through

the proper adjustment of the extraction parameters, the object-
oriented method could be used to extract the vein network and
calculate the leaf vein density. In addition, we found that the rate
of calculating leaf vein traits using object-oriented classification
techniques was much better than that of traditional measurement
methods (Image J software). As shown in Table 5, the extraction
rates of nine different tree species, for one picture, all increased
by more than 87.3%, and the highest increase was 94.9%. The
results showed that this method is accurate, fast, flexible and
complementary to existing technologies. It is an effective tool for
the fast extraction of the vein network.

CONCLUSION

In this study, we proposed a novel method for the fast
and accurate determination of leaf vein network patterns and
vein density. To overcome the image processing difficulties at
the microscopic scale, we adopted the remote object-oriented
classification method applied comprehensively in the field of
remote-sensing research. A total of nine tree species with
different leaf characteristics and vein types were tested to verify
this method. The key to this approach is to determine the
leaf vein extraction threshold values (scale, shape, compactness,
brightness, spectral characteristic, and geometric feature) that
are universally applicable. Based on our analysis, the following
recommended threshold values were determined: the scale
parameter was 250, the shape parameter was 0.7, the compactness
parameter was 0.3, the brightness feature value was 230∼280, the
spectral feature value was 180∼230, and the geometric feature
value was less than 2. We found that although the leaf growth
characteristics and vein traits are quite different, the threshold
values we obtained for the tree vein network extraction and leaf
vein density calculation of these species achieved a high precision.
The extraction precision was above 96.40% on average for the
nine tree species studied. The calculation rate of leaf vein traits
increased by more than 87.3% compared to that of the traditional
measuring methods. The proposed method is an effective tool for
the fast extraction of vein networks and the exploration of leaf
vein characteristics, particularly for large-scale studies in plant
vein physiology.
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