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In sub-Saharan Africa, one of the major challenges to smallholder farmers is soil
with low fertility and inability to apply nitrogen fertilizer externally due to the cost.
Development of maize hybrids, which perform better in nitrogen depleted soils, is one
of the promising solutions. However, breeding maize for nitrogen use efficiency (NUE) is
hindered by expensive phenotypic evaluations and trait complexity under low N stress.
Genome-wide association study (GWAS) and genomic prediction (GP) are promising
tools to circumvent this interference. Here, we evaluated a mapping panel in diverse
environments both under optimum and low N management. The objective of this study
was to identify SNPs significantly associated with grain yield (GY) and other traits through
GWAS and assess the potential of GP under low N and optimum conditions. Testcross
progenies of 411 inbred lines were planted under optimum and low N conditions in
several locations in Africa and Latin America. In all locations, low N fields were previously
depleted over several seasons, and no N fertilizer was applied throughout the growing
season. All inbred lines were genotyped with genotyping by sequencing. Genotypic and
GxE interaction variances were significant, and heritability estimates were moderate to
high for all traits under both optimum and low N conditions. Genome-wide LD decay at
r2 = 0.2 and r2 = 0.34 were 0.24 and 0.19 Mbp, respectively. Chromosome-specific LD
decays ranged from 0.13 to 0.34 Mbps with an average of 0.22 Mbp at r2 = 0.2. GWAS
analyses revealed 38 and 45 significant SNPs under optimum and low N conditions,
respectively. Out of these 83 significant SNPs, 3 SNPs on chromosomes 1, 2, and 6
were associated either with different traits or the same trait under different management
conditions, suggesting pleiotropic effects of genes. A total of 136 putative candidate
genes were associated with the significant SNPs, of which seven SNPs were linked with
four known genes. Prediction accuracies were moderate to high for all traits under both
optimum and low N conditions. These results can be used as useful resources for further
applications to develop hybrids or lines with better performance under low N conditions.
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INTRODUCTION

Low N stress is a widespread problem for maize production in
sub-Saharan Africa (SSA) particularly in smallholder farmers.
The average fertilizer use in SSA was around 8 kg ha−1, which
is far below compared to other regions in the developing world
(Morris et al., 2007; Das et al., 2019). Even though in 2006, all
members of the African Union pledged to increase the level of
fertilizer use substantially by 2015 (African Development Bank,
2006), till now, the fertilizer use in SSA remains less than 10 kg
ha−1 (FAOSTAT, 2017). Fertilizers in SSA are very expensive,
and smallholder farmers can hardly afford the application of right
amount and kind of fertilizer required for the normal growth and
development of maize (Lafitte and Edmeades, 1994; Das et al.,
2019). In SSA, smallholder farmers grow maize with less or no
fertilizer on already severely N depleted soils; as a result, yield
decreases drastically to <2 tons per hectare (t/ha). Nevertheless,
developing maize varieties that can perform better under low
N conditions can offer better intervention to increase yields in
the field of smallholder farmers’ (Cairns et al., 2012). Currently
very few breeding programs are targeting on developing low-
N tolerance varieties (Das et al., 2019). Classical breeding based
correlation studies point to distinct genetic mechanisms for grain
yield (GY) under optimum and under low N stressed conditions
(Bänziger et al., 1997; Worku et al., 2007, 2008). Further, most
of economically important traits are controlled by multiple
quantitative trait loci (QTLs) and are difficult to investigate only
with conventional approaches per se.

Molecular markers brought most significant developments
in the field of genetics and plant breeding (Soto-Cerda and
Cloutier, 2010). Specifically genetic mapping and linking markers
to candidate genes or functional loci facilitated genome-aided
breeding for crop improvements including nitrogen use efficiency
(NUE) and drought tolerance (Yu and Buckler, 2006). Linkage
analysis has been widely used in dissecting the genetic basis
of economically important complex traits in plants. Several
such studies have been conducted to understand the genetic
architecture of GY and other agronomic traits under different
environmental conditions (Ribaut et al., 2007). Despite many
studies on linkage analysis conducted in various crop plants to
dissect the quantitative traits, only a few QTLs were cloned or
tagged at the gene level (Moose and Mumm, 2008) as cloning of
QTLs is time consuming and laborious (Yan et al., 2011). Since
only two alleles per locus and a few recombination events are
considered to identify the QTL, this leads to limited mapping
resolution (Soto-Cerda and Cloutier, 2010).

Genome-wide association mapping can be able to capture
complex trait variation down to the sequence level by exploiting
both historical as well as evolutionary recombination events
(Nordborg and Tavare, 2002). This approach was initially
started in human disease studies and then was extended
to plants, substantially increasing the mapping resolution
over the traditional linkage mapping (Flint-Garcia et al.,
2003). Association mapping detects the correlation between
genotype and phenotype in unrelated individuals based on
linkage disequilibrium (LD). It identifies QTL by probing the
marker–trait associations, which is attributed to the strength

of LD between markers and functional polymorphisms in
diverse germplasm (Zhu et al., 2008). With association studies,
mapping resolution increased, and reduced in time to develop
population/s, and accounts for a greater allele number (Flint-
Garcia et al., 2003; Yu and Buckler, 2006) compared to the
traditional linkage analysis.

A number of association mapping studies have been
conducted to investigate the causal variants linked with many
important traits in maize, including flowering time (Wallace
et al., 2016), forage quality (Anderson et al., 2007), carotenoid
content (Harjes et al., 2008), provitamin A (Azmach et al., 2013),
and kernel size (Li et al., 2010). Despite the widespread use of
association mapping for the dissection of complex traits, little
was done for the dissection of the genetic architecture of NUE
in maize. NUE is a complex trait that is a product of N uptake
and N utilization efficiency. In addition to limited work on NUE,
genome-wide association studies (GWASs) are constrained by
the power of statistical tools to identity true associations, calling
for better computer software packages for data analysis.

The application of GWAS has been limited by the presence
of false positives and false negatives. Significant results from
different association studies have hardly been reproducible due
to false positives resulting from population structure, which is
a major problem for association mapping (Zhu et al., 2008).
In general, association panel has a set of lines with different
geographical origins, local adaptation, and breeding history; as
a result, these lines usually contain both population structure and
familial relatedness (Yu and Buckler, 2006). In order to avoid
spurious results, LD generated by the population structure within
the panel has to be considered in the analysis. In a mixed linear
model (MLM), both the population structure and kinship among
individuals are incorporated as covariates to control the false
positives. However, the confounding effect between the covariates
and the test marker weakens the signals of QTNs (quantitative
trait nucleotides); as a result, false negatives increase (Liu et al.,
2016). Recently, a user-friendly R GWAS package known as
FarmCPU (Fixed and random model Circulating Probability
Unification) implemented a method to address the “confounding
effect” and increase the speed and save memory by using several
programming strategies, which makes FarmCPU to be adapted
for big data sets (Liu et al., 2016). In this study “the state-of-
the-art” analytical package was used to identify the marker–trait
association in testcrosses of 411 tropical inbred lines evaluated
under optimum and low N conditions.

Genomic selection (GS) is another potential tool that uses
uniformly distributed dense molecular markers across the
genome to predict the performance of individuals of known
genotype but unknown phenotype (Zhang et al., 2015). GS has
been widely used in maize breeding, on GY, and other traits
(Zhang et al., 2015, 2017; Beyene et al., 2019; Yuan et al.,
2019), which clearly demonstrated its potential in improving
quantitative traits. GWAS empowers the detection of QTNs for
the target trait by using a diverse set of breeding lines, whereas
GS enables the selection of superior individuals by considering
the effects of multiple genes controlling a target trait (Crossa
et al., 2017; Yuan et al., 2019). Combining GWAS and GS
with marker assisted selection (MAS) accelerates the breeding
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efficiency to develop the lines or hybrids with better performance
for GY and other complex traits under diverse management
conditions. Therefore, the full potential of these two tools needs
to be assessed using a set of elite lines and/or practical breeding
populations for NUE.

The objectives of the study were to (1) evaluate the diverse
set of tropical and subtropical maize lines for their responses
to GY and other yield-related traits under optimum and low
N stress conditions; (2) identify the genomic regions, QTNs,
and putative candidate genes associated with these traits under
both management conditions; and (3) assess the potential of
GS within and across management conditions. This study will
provide useful information for uncovering the genetic basis of
NUE and design the MAS scheme for breeding high NUE maize.

MATERIALS AND METHODS

Plant Material
Four hundred and eleven inbred lines used for this study were
derived from a panel of 424 diverse tropical maize inbred lines
established by the Improved Maize for African Soils (IMAS)
project to dissect the genetic basis of NUE and for marker
discovery. All the inbred lines were CIMMYT maize lines
developed by CIMMYT through conventional breeding methods.
The list of the inbred lines, the source germplasm, and the
method employed for the development of the lines can be
found at http://www.data.cimmyt.org.Single cross hybrids were
generated for the evaluation of the inbred lines by crossing with
CML539, a broadly adapted CIMMYT maize inbred line tester
from heterotic group A.

Field Experiments and Statistical
Analysis
Testcross progenies were evaluated across 9 optimum and 13
managed low N stressed sites in Africa and Latin America. The
list of the trials, testing sites, and the management practices
employed for each trial are presented in Table 1. For managed
low N sites, the soil was depleted up to 6 years by planting
sorghum in high density. An alpha-lattice design was used, with
two replications. Experiments were planted in one-row plots,
with a final planting density of 6.67 plants/m2 (Mexico) and
5.33 plants/m2 (Kenya, South Africa, Zambia, and Zimbabwe).
At all locations, two seeds per hill were sown, and then thinned
to one after emergence. For optimal trials, the recommended
amount of fertilizer was applied at planting as basal application,
and a second application was applied 3–4 weeks after sowing.
For low N trials, all plots received recommended P (100 kg/ha)
and/or K (50 kg/ha), followed by the suggested weed and insect
control measures.

Data were collected for GY, anthesis date (AD), anthesis
silking interval (ASI), plant height (PH), ear height (EH), ear
position (EPO), ears per plant (EPP), and senescence (SEN). GY
was calculated from field weight by adjusting the grain moisture
to 12.5% and a shelling percentage of 80%. AD was recorded as
the number of days from planting to when 50% of the plants in
the plot started shedding pollen on the main axis of the tassel.

ASI was calculated as the difference between the number of days
when in 50% of the plants in a plot with 2–3 cm silk emerged
and pollen shedding occurred. PH and EH were measured in
centimeters as a distance from the base of a plant to the first
branch of the tassel and the upper most ear from 10 representative
plants, respectively. EPO was calculated as the ratio between PH
and EH. SEN was recorded by visual assessment using a 1 to 10
scale, where 1 indicates that all leaves of all plants in a plot were
green and 10 indicates that all leaves were dead. At harvest, edge
plants were removed from all rows from trials planted under low
N to avoid border effects.

Analyses of variance for each and across environments
under each management condition were determined by the
restricted maximum likelihood (REML) method using the R
program embedded in META-R software (Alvarado et al.,
2015). Experiments in the same location at different years were
treated as different environments. All variance components were
determined by the following linear mixed model:

Yijko = µ+ Lj + Rk(Lj)+ B0 [Rk(Lj)] + Gi + GLij + εijko

where Yijko is the phenotypic performance of the ith genotype at
the jth environment in the kth replication of the oth incomplete
block, µ was an intercept term, Gi was the genetic effect of
the ith genotype, Lj was the effect of the jth environment, GLij
was the interaction effect between genotype × environment,
Rk(Lj) was the effect of the kth replication within the jth
environment, B0[Rk(Lj)] is the random effect of incomplete
block o within replicate k and location j and is assumed to be
independently and identically normally distributed with mean

zero and variance σ2
B(RL), and

εijko is the random residual error

assumed independent and identically normally distributed with
mean zero and variance σε

2.
All effects are treated as random except for the effects of

replications, which were treated as fixed. Heritability on an
entry-mean basis was estimated from the calculated variance
components as the ratio of genotypic to phenotypic variance.
Further, best linear unbiased prediction (BLUP) and best linear
unbiased estimation (BLUE) of each entry across environments
within each management were calculated for all the traits. BLUEs
were used for GWAS and GS analyses.

DNA Extraction and Genotyping
With all the inbred lines in the IMAS association panel,
genomic DNA was extracted from young leaves collected
in a bulk of 10 plants per entry using a modified version
of the CIMMYT high-throughput mini-prep Cetyl Trimethyl
Ammonium Bromide (CTAB) method (Semagn, 2014). DNA
samples were genotyped at the Institute of Biotechnology at
Cornell University1, United States using ApeKI as the restriction
enzyme and 96-plex multiplexing (Elshire et al., 2011). Raw GBS
data for a total of 955,120 SNP loci distributed across the 10
maize chromosomes were received from the Institute of Genomic
Diversity (IGD), Cornell University, United States. Different

1http://www.biotech.cornell.edu/brc/genomics-facility
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TABLE 1 | Information on trials used for the genome-wide marker traits association study.

Country Location Coordinates Elevation (masl) Management Years/seasons

Kenya Kiboko −2.250, 37.730 990 Optimum 2011A, 2012A

Low N 2011A, 2011B, 2012A

Embu −0.500, 37.450 1492 Low N 2011A, 2011B, 2012A

Kibos −0.070, 34.820 1184 Optimum 2012A

Kitale 1.010, 35.000 1859 Optimum 2011A, 2011A

Kakamega 0.270, 34.740 1526 Optimum 2011A, 2012B

Low N 2011A

Mexico Agua Fria 20.530, −97.430 90 Optimum 2012A

Low N 2011A

Tlatizapan 18.680, −99.130 940 Low N 2010A

South Africa Cedara −29.530, 30.280 1100 Optimum 2011B

Low N 2011B

Zambia GART-Lusaka −14.170, 28.370 1173 Low N 2011B

Zimbabwe Harare −17.800, 31.050 1498 Low N 2010B, 2011B

A, main season; B, off-season; masl, meters above sea level; Low N, managed low N stress site.

filtering criteria were applied to the raw data to get input data for
LD analyses and GWAS. For LD, the raw data were filtered based
on no missing data and >10% minor allele frequency (MAF). For
GWAS, the genotype data were filtered with MAF of >5% and
a minimum count of SNPs on 90% of the sample size using the
Trait Analysis by Association, Evolution, and Linkage (TASSEL
v.5.2.24) software (Bradbury et al., 2007).

Population Structure and Linkage
Disequilibrium
Population structure in the current association panel was
investigated using classical multidimensional scaling (principal
coordinate analysis) embedded in TASSEL v.5.2.24 software
(Bradbury et al., 2007). TASSEL was also used for the analysis of
kinship, genetic distances (Identity by state—IBS), and principle
component analyses (PCAs).

Genome-wide and chromosome-specific LDs were estimated
as a squared allele frequency correlation coefficient (r2) between
all possible pairs of SNPs using TASSEL v5.2.31 (Bradbury
et al., 2007). For genome-wide LD, 4,479 SNPs distributed across
the 10 chromosomes, filtered based on no missing data per
marker and >10% of MAF, were used. For chromosome-specific
LD estimation, the SNPs were filtered with no missing data
per marker and >1% of MAF. Full matrix LD analysis was
performed with no imputation for missing data and setting
heterozygous calls to missing. After analysis, all LD estimates
with a missing value for distance were removed, and only LD
estimates having P < 0.001 were considered significant (Pasam
et al., 2012) and used for further analysis. LD decay rates were
estimated by plotting localized regression curves (LOESS) of the
r2 values versus the corresponding physical distances between
the SNP pairs, followed by observation of the intersection
point between the fitted LOESS curve and critical r2 values
(Breseghello and Sorrells, 2006). For estimating LD decays within
and across chromosomes, two background critical r2 values
were considered for comparison. For the first baseline, critical
r2 was determined by taking the parametric 95th percentile

of the distribution of r2 values for unlinked SNPs. SNPs on
different chromosomes and SNPs beyond 50 Mbp apart on
the same chromosome are treated as unlinked (Pasam et al.,
2012). The second baseline r2 value was 0.2, an arbitrary value
often used to describe LD decay (Flint-Garcia et al., 2003; Zhu
et al., 2008). Estimated LD decays were plotted in scatter plots
and fitted with smooth curves by using LOESS function in R
(R Core Team, 2016).

Genome-Wide Association Analysis
Genome-wide association study analysis was done with the
R package “FarmCPU—Fixed and random model Circulating
Probability Unification” (Liu et al., 2016). The minimum input
data required to run FarmCPU are genotypic data (GD),
phenotypic data (Y), and genotypic map (GM) data. It takes
genotypic data in numerical format; the “hmp” format was
converted to numeric (0, 1, 2) using the “GAPIT” package (Lipka
et al., 2012). The first three PCs obtained from TASSEL (Bradbury
et al., 2007) were used as an input for GWAS in FarmCPU.
The kinship was calculated with the default kinship algorithm
in FarmCPU. The analysis was performed with maxLoop of
five, a p threshold of 0.01, a QTN threshold of 0.01, and
a MAF threshold of 0.05. The maxLoop refers to the total
number of iterations used. The p threshold, QTN threshold,
and MAF threshold refer to the p values selected into the
model for the first iteration, the p-value selected into the model
from the second iteration, and the minimum MAF of SNPs
used in the analysis, respectively. For the p-values threshold,
0.01 refers to the Bonferroni threshold (0.01/number of the
total markers used). In addition, the Bonferroni test threshold
(0.01/number of markers) was used to set a significant level in
Manhattan plots. “FarmCPU” also uses the “GAPIT” function
to produce results, such as the Manhattan plot, the quantile–
quantile (QQ) plot, GWAS results, and a marker effects table of
user-provided covariates. Further, identifying putative genes in
LD with significant SNPs and studying the function of those genes
are useful for selecting significant SNPs to integrate into breeding
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programs. Putative genes were searched on the ensemble2 and
maize gdb3 websites.

Genomic Prediction
For the GP analysis, BLUEs across locations were used. Ridge-
regression BLUP (RR-BLUP) with fivefold cross-validation was
applied. From the GBS data, a subset of 5,929 SNPs with
no missing values, distributed uniformly across the genome,
and minor allele frequency > 0.04 were used for GP in
an association panel. Details of the RR-BLUP model and its
implementation are described by Zhao et al. (2012). With respect
to the prediction accuracy for lines in the testing set, two GP
approaches were evaluated: (1) “within-population and within-
management” prediction, where lines within the association
mapping panel were sampled to form both a training set and
a testing set, and prediction was carried out within optimum
and low N stress management; (2) “within-population and
across-management” prediction, where trait data for the training
set are sampled from optimum management condition and a
testing population is sampled from low N stress conditions.
The second approach is mimicking the indirect selection for
GY for low N stress conditions. The prediction accuracy was
calculated as the correlation between the observed phenotypes
and genomic estimated breeding values (GEBVs) divided by
the square root of the specific trait heritability (Dekkers, 2007).
Sampling of the training and testing sets was repeated 100 times
for each approach.

RESULTS

Phenotypic Data
The frequency distribution and descriptive statistics for GY and
other traits revealed a wide variation for both optimum and low
N stress conditions (Figure 1). The variation for GY ranged from
5.7 to 9.5 t/ha (mean = 7.74 t/ha) under optimum and from
2.2 to 3.6 t/ha (mean = 3.1 t/ha) under low N stress (Table 2).
The mean performance for AD showed 2 days earliness in low
N stress compared to optimum conditions. The range is higher
for ASI under low N stress compared to optimum conditions.
The means of PH and EH were reduced significantly under low
N stress compared to optimum conditions. Further, the range
of distribution reduced drastically for SEN under low N stress
compared to optimum conditions.

The analysis of variance indicated that the effects of genotype,
environment, and their interaction are significant (P ≤ 0.05) for
GY and other seven traits both under optimum and low N stress
conditions (Table 2). The extent of variation was higher for GY,
PH, EH, and SEN under optimum conditions, whereas for AD
and ASI, the magnitude of variation was higher under low N
stress conditions. The heritability estimates were moderate to
high both under optimum and low N conditions.

The correlation coefficients illustrated significant positive
correspondence of GY with AD, PH, EH, EPO, and EPP

2http://plants.ensembl.org/biomart/martview/ce35c2dc12e78418361fb4cffa43bdbe
3http://www.maizegdb.org/

(r = 0.19–0.46) under optimum conditions, whereas they
negatively correlated with ASI and no significant correlation
was found with AD, PH, EH, and EPO under low N stress
(Figure 2). Further, SEN was consistently significant and
negatively correlated with GY under both managements, whereas
it significantly and negatively correlated with AD, ASI, PH, and
EH only under optimum condition.

Summary of SNP and Inbred Lines
The summary of 182,252 SNPs used in this study is presented
in Table 3. From 955,120 GBS SNPs used to genotype 411
inbred lines, only 19% were retained after filtering with the
twin criteria of >5% MAF and <10% missing per marker. The
number of markers retained ranged from 12,338 on chromosome
10 to 29,248 on chromosome 1. For all the retained markers,
alleles with a frequency below 50% were considered minor. The
percentage of missing markers per individual inbred line varied
from 0 to 10%, and the overall average was 4.2%.

The proportion of heterozygosity of SNPs (the number of taxa
that are heterozygous for a given SNP divided by the total number
of individuals) ranged from 0 to 0.77, with an overall average
of 0.10. The minimum proportion of heterozygous SNPs was
found on chromosome 2 and the maximum on chromosome 1.
The heterozygosity of inbred lines (the number of heterozygous
markers per inbred line divided by the total number of markers)
ranged from 0.002 to 0.354 with an overall average of 0.103.
About half of the inbred lines showed heterozygosity of less
than 0.05, and 67% of the inbred lines had heterozygosity of
less than 0.125.

Population Structure, Kinship, and
Genetic Distance
The 411 individuals in the current association panel showed
moderate structure (Supplementary Figure S1), which is one
of the possible causes for false-positive results during marker
trait association analysis. In FarmCPU, the first three PCs are
recommended to be added in the GWAS model to minimize the
risk of false positives (Liu et al., 2016) arising from the population
structure. Even though 79 PCs were required to explain 50% of
the variance in the inbred lines, only 3 PCs (explaining > 10% of
the variance) were included in the FarmCPU GWAS analysis. The
FarmCPU method output includes the effects of user-provided
PCs, which turned out to be small for all the traits analyzed.

Another important parameter that affects the GWAS is
kinship among the tested inbred lines. About 99% of the pairwise
kinship comparisons among 411 inbred lines had a value of
<0.5, indicating the low relatedness among the inbred lines used
for GWAS. The kinship heatmap (Supplementary Figure S2)
generated using the vanRanden algorithm in the “GAPIT” basic
scenario also indicated low levels of relatedness among most pairs
of inbred lines. In the heatmap, the count of the kinship values
reached a maximum at the value of zero, further confirming
low levels of relatedness among the tested inbred lines. In
addition, genetic distance among 84,255 pairwise comparisons
ranged from 0.004 to 0.339 with an average of 0.311. The
proportion of pairwise comparisons with values higher than
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FIGURE 1 | Phenotypic distribution for eight tested traits tested in multiple locations under optimum and low N conditions. GY, grain yield; AD, days to anthesis; ASI,
anthesis-silking interval; PH, plant height; EH, ear height; EPO, ear position, EPP, ears per plant; and SEN, senescence.

TABLE 2 | Quantitative genetic parameters for testcross progenies of IMAS association mapping panel evaluated in nine locations under optimum and 13 locations
under low N conditions.

GY AD ASI PH EH EPO EPP SEN

Optimum

7.74 73.6 0.39 224.2 106.8 0.47 1.01 2.56

Mean (range) (5.79 to 9.54) (70.6 to 76.0) (−1.14 to 1.77) (200.4 to 253.5) (87.7 to 132.7) (0.43 to 0.53) (0.95 to 1.10) (1.56 to 4.16)

σ2
G 0.42** 1.25** 0.19** 80.66** 55.20** 0.001* 0.001** 0.14**

σ2
GxE 0.67** 0.90** 0.001* 27.19** 14.99** 0.001* 0.003** 0.12**

σ2
E 3.02** 142.10** 0.47** 711.61** 121.17** 0.002** 0.007** 0.17**

σ2
e 1.61 4.28 2.36 131.20 79.18 0.001 0.018 0.20

h2 0.72 0.79 0.60 0.89 0.90 0.84 0.48 0.85

LSD 2.49 4.06 3.01 22.45 17.44 0.07 0.26 0.87

CV 16.39 2.81 37.76 5.11 8.33 7.17 13.32 17.29

Low N

3.07 71.6 2.60 165.8 71.8 0.43 0.88 2.27

Mean (range) (2.24 to 3.59) (66.7 to 77.1) (0.75 to 4.47) (144.9 to 189.4) (57.3 to 95.1) (0.36 to 0.51) (0.83 to 0.91) (2.17 to 2.41)

σ2
G 0.06** 3.99** 0.56** 62.47** 34.39** 0.001** 0.0001* 0.01**

σ2
GxE 0.16** 1.01** 0.55** 17.12** 10.47** 0.0001* 0.001** 0.02**

σ2
E 0.94** 69.79** 3.23** 1015.11** 369.05** 0.002** 0.007** 0.86**

σ2
e 0.64 3.59 2.30 127.56 72.12 0.002 0.020 0.28

h2 0.64 0.95 0.81 0.91 0.91 0.88 0.33 0.38

LSD 1.57 3.71 2.97 22.14 16.65 0.07 0.27 1.04

CV 26.21 2.64 56.77 6.80 11.81 8.91 15.96 23.39

*, **Significance at P < 0.05 and P < 0.01, respectively; σ2
G, genotypic variance; σ2

GxE, genotypic × environment interaction variance; σ2
E, environmental variance; σ2

e,
error variance; h2, broad sense heritability. GY grain yield, AD days to anthesis, ASI anthesis-silking interval, PH plant height, EH ear height, EPO ear position, EPP ears
per plant, and SEN senescence.

0.3 was 14.95% and with values higher than 0.2 was more
than 99%, indicating the amount of genetic diversity in this
association panel.

Linkage Disequilibrium
The distance over which LD persists will control the marker
number and density, as well as the appropriate experimental

design to perform an association analysis (Flint-Garcia et al.,
2003). The genome-wide and chromosome-specific LDs in this
study were estimated at two critical r2 levels (r2 = 2.0 and
r2 = 0.34; Table 4). In the genome-wide LD analysis, the r2 values
for only 6% of the total pairwise comparisons were significant
(P < 0.001). The proportion of significant r2 values for the 10
chromosomes were in the similar range (3–4%). Among the
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FIGURE 2 | Correlations among eight tested traits. Correlation between traits under optimum condition are listed on the left, and those under low N condition are
listed on the right. The correlation level is color-coded according to the color key plotted on the extreme right. Correlations with >?0.10 and >0.16 were significant
at 0.05 and 0.01 levels, respectively. GY, grain yield; AD, days to anthesis; ASI, anthesis-silking interval; PH, plant height; EH, ear height; EPO, ear position; EPP, ears
per plant; and SEN, senescence under optimum (Opt) and low N (LN) conditions.

TABLE 3 | The distribution of SNPs, percentage of missing markers, minor allele frequency, and heterozygous markers across the 10 maize chromosomes in diverse
tropical maize inbred lines.

Chr. Raw Data Filtered *Mean Distance Missing (%) MAF Heterozygous

Mean Minimum Maximum Ave Minimum Maximum Mean

1 148752 29248 0.029 0.042 0.00 0.10 0.21 0.00 0.77 0.103

2 115173 22180 0.022 0.042 0.00 0.10 0.21 0.00 0.37 0.104

3 108224 20921 0.021 0.041 0.00 0.10 0.21 0.00 0.43 0.100

4 94726 17263 0.017 0.041 0.00 0.10 0.21 0.00 0.56 0.100

5 110328 21566 0.022 0.042 0.00 0.10 0.21 0.00 0.48 0.104

6 76475 14336 0.014 0.042 0.00 0.10 0.21 0.00 0.45 0.102

7 80517 15323 0.015 0.043 0.00 0.10 0.20 0.00 0.43 0.098

8 81431 15602 0.016 0.041 0.00 0.10 0.21 0.00 0.61 0.101

9 72368 13475 0.013 0.042 0.00 0.10 0.21 0.00 0.72 0.103

10 67126 12338 0.012 0.042 0.00 0.10 0.21 0.00 0.45 0.100

Total 955120 182252 0.018 0.042 0.00 0.10 0.21 0.00 0.53 0.101

*Mean distance between adjacent markers in Mbp; Chr., chromosome; MAF, minor allele frequency; min, minimum; max, maximum. Mean distance, missing, MAF, and
heterozygosity are reported for SNPs after filtering 10% missing and 5% MAF.

significant r2 values, the proportion with r2 > 0.2 was the lowest
for genome-wide LD (3%) compared to individual chromosomes
(ranging from 5 to 8% with an average of 6%).

Genome-wide LD decays at r2 = 0.20 and r2 = 0.34 were
0.24 and 0.19 Mbp, respectively (Supplementary Figure S3).
Chromosome-specific LD decays ranged from 0.13 to 0.34 Mbps
with an average of 0.22 Mbp at the critical r2 = 0.20 and
ranged from 0.04 to 0.18 Mbps with an average of 0.10 Mbp. At
r2 = 0.34, LD decay was fastest for chromosome 10 (0.13 Mbp)
and extended for chromosome 9 (0.34 Mbp). At r2 = 0.34, the LD
decayed fast for chromosome 6 (0.04 Mbp) and again delayed for

chromosome 9 (0.18). The LD decay at the arbitrary r2 = 0.2 was
less variable than the LD decay at the calculated r2 = 0.34.

Genome-Wide Marker Traits Association
Analyses
The Q–Q plot of the FarmCPU model resulted in a sharp
deviation from the expected P-value distribution in the tail area,
demonstrating that false positives and negatives were adequately
controlled (Supplementary Figure S4). GWAS analyses revealed
38 and 45 significant SNPs under optimum and low N conditions,
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TABLE 4 | Genome-wide and chromosome wise LD decay at two critical r2 values (0.2 and 0.34).

Chr No of SNPs No. of Pairwise Comparisons r2 (%) LD Decay

P < 0.001 >0.2 Avg r2 = 0.2 r2 = 0.34

1 1261 794430 3 5 0.09 0.23 0.14

2 979 478731 3 5 0.09 0.20 0.09

3 1003 502503 4 6 0.09 0.17 0.11

4 781 304590 3 7 0.10 0.22 0.07

5 885 391170 3 6 0.09 0.20 0.12

6 618 190653 3 5 0.09 0.17 0.04

7 695 241165 4 5 0.09 0.25 0.10

8 717 256686 4 6 0.09 0.26 0.09

9 576 165600 4 8 0.11 0.34 0.18

10 659 216811 4 8 0.11 0.13 0.10

GW 4479 10028481 6 3 0.08 0.24 0.19

Chr., chromosome; GW, genome-wide; LD, linkage disequilibrium; Avg., average.

respectively, at 5% Bonferroni significance level (P < 2.7× 10−7,
Tables 5–7 and Supplementary Figure S4). For all eight traits,
the number of significant SNPs dropped to 33 under optimum
and 27 under low N conditions when a stringent Bonferroni 1%
significance level (P < 5.4 × 10−8) was used. The distribution
of significant SNPs across chromosomes varied between 2 in
chromosome 9 and 15 in chromosome 1 at a Bonferroni
threshold of 5% and ranged from 2 (chromosome 9) to 12
(chromosome 1) at a Bonferroni threshold of 1%. The MAF
for significant SNPs ranged between 8 and 35% at a Bonferroni
threshold of P < 1% and between 13 and 35% at a Bonferroni
threshold of P < 5%.

Association analyses for GY identified five significant SNPs
under optimum condition and six significant SNPs under low
N condition at a Bonferroni 5% threshold. The allelic effect
(difference in mean performance for GY between testcross
hybrids with major allele and minor allele) for these significant
SNPs ranged from −0.16 to 0.39 under optimum conditions
and −0.10 to 0.11 under low N conditions. A positive value

TABLE 5 | Number of markers significantly associated with grain yield and other
traits at 5 and 1% Bonferroni threshold levels.

Trait Bonferroni Threshold
(Low N)

Bonferroni Threshold
(Optimum)

Total

P < 0.01 P < 0.05 P < 0.01 P < 0.05

GY 5 6 4 5 11

AD 7 8 4 6 14

ASI 4 7 10 11 18

EH 9 10 1 2 12

EPO 5 6 3 4 10

EPP 1 4 – – 4

PH 2 4 2 5 9

SEN – – 3 5 5

Total 33 45 27 38 83

GY, grain yield; AD, days to anthesis; ASI, anthesis-silking interval; PH, plant height;
EH, ear height; EPO, ear position; EPP, ears per plant, and SEN, senescence.

indicates that the minor allele was the favorable allele associated
with the increase in GY, and a negative value indicates that the
major allele was the favorable allele associated with GY. The
significant SNPs for GY were found on chromosomes 1, 2, 4,
5, 7, 8, and 10 with the most significant one being located on
chromosome 10 (P = 1.78 × 10−12). Chromosomes 4, 8, and
10 had SNPs identified only under optimum conditions, while
chromosomes 1 and 7 housed SNPs detected only under low N
conditions. Chromosomes 2 and 5 hosted SNPs identified under
both optimum and low N conditions. Information on all the
significant SNPs, their corresponding MAF, and the allelic effect
are listed in Table 6.

For AD, a total of 13 significant SNPs, 6 under optimum and
8 under low N, were detected across all chromosomes except
chromosomes 5 and 9 (Table 6). One SNP on chromosome 2
(S2_210662089; P = 1.77E-08 under low N; P = 4.87E-08 under
optimum) was common between optimum and low N conditions.
SNPs on chromosomes 2, 6, and 7 were detected under both
optimum and low N conditions, whereas all the other SNPs
were specific to either low N or optimum conditions. The allelic
effect for these significant SNPs ranged from−0.40 to 0.46 under
optimum conditions and −0.76 to 0.76 under low N conditions.
The largest numbers of significant SNPs were identified for ASI
followed by AD. For ASI, 18 significant SNPs were distributed
across all 10 chromosomes (Table 7). Chromosome 6 had an
SNP detected under low N, whereas chromosomes 5, 7, 8, and
9 had SNPs associated with ASI only for optimum conditions. All
other chromosomes carried SNPs for both optimum and low N
conditions. The SNP on chromosome 5 was the most significant
in the current study (P = 4.59E-14). Two SNPs on chromosome
3 (S3_147401613 for ASI under low N and S3_149683417 for
AD under optimum) and another two SNPs on chromosome 7
(S7_155590511 for ASI and S7_156476052 for AD; both under
optimum) were located a few Mbps away from each other. The
allelic effect for these significant SNPs ranged from −0.21 to
0.37 under optimum conditions and −0.16 to 0.17 under low N
conditions (Table 7).

PH, EH, and EPO are interrelated agronomic traits in maize.
At the 5% Bonferroni level, 9, 12, and 10 significant SNPs
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TABLE 6 | List of significant SNPs associated with GY and AD under optimum and low N managements using the FarmCPU model with a Bonferroni threshold of
P < 0.05.

Trait SNP Chr Position(bp) P value MAF Effect

GY_Opt S2_144477756 2 144477756 1.62E-07 0.09 0.23

S4_178469568 4 178469568 2.49E-08 0.37 −0.16

S5_183614607 5 183614607 7.31E-11 0.06 0.39

S8_75414416 8 75414416 2.29E-09 0.21 0.23

S10_147459915 10 147459915 1.78E-12 0.08 0.35

GY_LowN S1_25425465 1 25425465 8.51E-08 0.14 −0.09

S1_202550249 1 202550249 4.40E-08 0.40 −0.07

S2_107767802 2 107767802 7.25E-10 0.15 0.11

S5_152923661 5 152923661 3.33E-08 0.12 −0.10

S5_214168220 5 214168220 2.35E-07 0.34 −0.07

S7_128740455 7 128740455 1.57E-09 0.12 0.11

AD_Opt S2_142865720 2 142865720 2.19E-07 0.32 −0.22

S2_210662089 2 210662089 4.87E-08 0.15 0.30

S3_149683417 3 149683417 1.75E-09 0.11 −0.40

S6_102939532 6 102939532 2.51E-07 0.05 0.46

S7_156476052 7 156476052 6.10E-14 0.41 0.35

S8_170275834 8 170275834 9.43E-13 0.41 0.31

AD_LowN S1_283191977 1 283191977 2.36E-08 0.09 0.57

S2_131348717 2 131348717 2.43E-10 0.20 −0.49

S2_210662089 2 210662089 1.77E-08 0.15 0.45

S4_170809248 4 170809248 3.78E-10 0.27 −0.49

S6_150843360 6 150843360 4.26E-09 0.06 0.76

S7_123828656 7 123828656 4.87E-08 0.45 −0.37

S10_126930458 10 126930458 1.79E-11 0.08 −0.76

S10_147898784 10 147898784 2.68E-07 0.19 −0.40

Where MAF is the Minor Allele Frequency, effect is the Allele Effect, and P-value is for the mixed linear model, GY grain yield, and AD days to anthesis under optimum
(Opt) and low N stress (Low N) conditions.

were detected for PH, EH, and EPO, respectively. Among
these SNPs, 4, 10, and 6 were associated with PH, EH, and
EPO, respectively, specifically under low N conditions. An SNP
on chromosome 6 (S6_97945994; P = 4.75E-11 under low
N and P = 1.47E-08 under optimum) was common between
optimum and low N conditions for EPO. SNPs significantly
associated with the target trait under both optimum and low
N managements were found on chromosomes 3 and 4 for
PH; chromosome 2 for EH; and chromosomes 1, 6, and 10
for EPO. Other chromosomes harbored SNPs detected only
under one management condition. Under optimum conditions,
the allelic effect of significant SNPs for PH ranged from
−2.77 to 3.46; for EH, the range varied from −1.71 to
1.75; whereas for EPO, the allele effect was small. On the
contrary, under low N conditions, the allelic effect of significant
SNPs for PH ranged from −3.54 to 2.50; for EH, the range
varied from −2.55 to 2.60; whereas for EPO, the allele effects
range was small.

EPP had four significant SNPs, all under low N conditions.
These SNPs were distributed across chromosomes 1, 4, 5, and
10. The SNPs for EPP on chromosomes 4, 5, and 10 were
situated close to the SNPs identified for GY under optimum
conditions. The allelic effect for these significant SNPs was very
small and ranged between−0.02 and 0.01 under low N conditions
(Table 7). Unlike all other traits investigated in this study,

significant SNPs for SEN were detected only under optimum N
conditions with allele effects ranging from−0.08 to 0.10.

The availability of common markers for multiple traits is
crucial for simultaneous improvement of two or more traits.
In this study, a common SNP was identified for EPO and
EH under low N conditions on chromosome 1 (S1_274946693;
P = 3.01E-09). In addition, there were a few closely linked SNPs
on chromosome 1 that are associated with EPO and EH under
low N conditions; and PH and EPO under optimum and EH
under low N conditions.

Based on the physical positions of the significantly associated
SNPs, a total of 56 and 80 genes4 assumed to be the potential
candidate genes for GY and other traits were found for optimum
and low N conditions, respectively. The list of these 136 genes
and their corresponding functional annotations is provided in
Supplementary Table S1. Seven SNPs were linked with four
known genes. Fertilization Independent Endosperm 1 (FIE1) and
Teosinte Glume Architecture (TGA1) genes were in LD with
S4_37297564 and S4_46166070, respectively on chromosome 4.
FIE1 was associated with ASI under low N and TGA1 was
associated with PH under optimum conditions.

Prediction accuracies were moderate to high for all eight traits
under both optimum and low N conditions (Figure 3). The

4http://plants.ensembl.org/Zea_mays/Gene/Summary
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TABLE 7 | Details of the significant SNPs associated with ASI, Pht, Eht, EPO, EPP, and SEN under optimum and low N managements using the FarmCPU model with a
Bonferroni threshold of P < 0.05.

Trait SNP Chr. Position P-value MAF Effect

ASI_Opt S1_274946693 1 274946693 2.08E-07 0.08 −0.21

S2_6636633 2 6636633 4.99E-09 0.17 0.17

S2_54204647 2 54204647 2.82E-08 0.44 0.11

S3_128687310 3 128687310 8.68E-10 0.33 0.16

S4_235073935 4 235073935 4.22E-08 0.06 0.22

S5_195672028 5 195672028 4.59E-14 0.07 0.37

S7_24409023 7 24409023 3.88E-12 0.25 0.18

S7_155590511 7 155590511 8.19E-08 0.22 0.12

S8_136094451 8 136094451 5.01E-10 0.26 −0.14

S9_118046290 9 118046290 7.10E-08 0.22 0.13

S10_33353122 10 33353122 2.32E-09 0.16 −0.20

ASI_LowN S1_5810155 1 5810155 3.93E-08 0.19 0.17

S2_226325975 2 226325975 1.54E-07 0.29 −0.15

S3_32033690 3 32033690 1.58E-07 0.49 0.13

S3_147401613 3 147401613 1.06E-08 0.43 −10.15

S4_37297564 4 37297564 1.68E-07 0.22 −0.16

S6_164497574 6 164497574 9.27E-09 0.27 0.16

S10_4586049 10 4586049 6.45E-09 0.48 −0.16

Pht_Opt S3_64819581 3 64819581 1.62E-07 0.06 3.46

S4_46166070 4 46166070 7.98E-08 0.37 −1.69

S4_184955101 4 184955101 3.98E-08 0.25 2.10

S7_6297685 7 6297685 5.22E-12 0.26 −2.77

S10_143502717 10 143502717 1.61E-07 0.16 2.19

Pht_LowN S1_17679579 1 17679579 4.65E-08 0.10 2.32

S3_199254673 3 199254673 1.88E-13 0.21 −3.54

S4_237693358 4 237693358 2.59E-07 0.12 2.50

S8_25351243 8 25351243 1.05E-07 0.32 −1.48

Eht_Opt S2_140662928 2 140662928 2.44E-07 0.27 −1.71

S8_158098622 8 158098622 7.18E-09 0.37 1.75

Eht_LowN S1_16698847 1 16698847 2.94E-12 0.12 −2.55

S1_199339693 1 199339693 1.60E-08 0.06 1.92

S1_274946693 1 274946693 3.84E-09 0.08 −2.31

S2_196870448 2 196870448 1.54E-08 0.11 1.63

S3_217796834 3 217796834 7.05E-08 0.15 1.37

S5_83133270 5 83133270 5.66E-10 0.06 2.60

S6_7046560 6 7046560 4.63E-09 0.24 −1.26

S7_40379325 7 40379325 4.01E-08 0.21 1.23

S10_126687226 10 126687226 1.81E-10 0.07 2.24

S10_145097517 10 145097517 2.10E-08 0.33 1.17

EPO_Opt S1_71065792 1 71065792 1.76E-07 0.07 0.01

S6_97945994 6 97945994 1.47E-08 0.09 0.01

S8_72067641 8 72067641 2.88E-09 0.37 0.00

S10_143712477 10 143712477 2.71E-08 0.08 0.01

EPO_LowN S1_207055175 1 207055175 1.37E-07 0.22 0.00

S1_274946693 1 274946693 3.01E-09 0.08 −0.01

S1_285229689 1 285229689 2.52E-10 0.42 −0.01

S2_33350339 2 33350339 8.02E-10 0.33 0.00

S6_97945994 6 97945994 4.75E-11 0.09 0.01

S10_123956017 10 123956017 6.75E-09 0.13 0.01

EPP_LowN S1_122756821 1 122756821 2.54E-08 0.47 −0.01

S4_174009677 4 174009677 1.17E-07 0.07 −0.02

S5_188825516 5 188825516 1.01E-07 0.18 −0.01

(Continued)
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TABLE 7 | Continued

Trait SNP Chr. Position P-value MAF Effect

S10_148304779 10 148304779 1.33E-07 0.31 0.01

SEN_Opt S1_220067760 1 220067760 3.46E-09 0.47 −0.08

S4_177150249 4 177150249 1.53E-08 0.19 0.10

S5_8351127 5 8351127 1.02E-07 0.45 −0.08

S8_159648136 8 159648136 2.12E-07 0.24 −0.08

S9_153449703 9 153449703 1.70E-08 0.47 −0.08

Where MAF is the Minor Allele Frequency, effect is the Allele Effect, and P-value is for the mixed linear model’ ASI, anthesis-silking interval; PH, plant height; EH, ear height;
EPO, ear position; EPP, ears per plant; and SEN, senescence under optimum (Opt), and low N stress (Low N) conditions.

observed prediction accuracy for GY, AD, ASI, PH, EH, EPO,
EPP, and SEN were 0.42, 0.62, 0.59, 0.48, 0.60, 0.54, 0.29, and
0.52, respectively, under optimum conditions and 0.45, 0.67,
0.64, 0.53, 0.64, 0.63, 0.42, and 0.24, respectively, under low N
conditions. Prediction accuracies were slightly decreased when
the training populations were derived from optimum conditions
and used to predict the performance of the same trait/s under
low N conditions. The observed prediction accuracy for GY was
decreased drastically to 0.20, whereas for other traits like AD, ASI,
PH, EH, EPO, EPP, and SEN, the accuracies were 0.65, 0.71, 0.46,
0.61, 0.64, 0.20, and 0.06, respectively.

DISCUSSION

In SSA, smallholder farmers face difficulty in following the
recommended dose of fertilizer application to harvest the
real yield potential. Understanding GY and its related traits
performance under low N soil will be beneficial for the
development of low N stress resilient maize varieties. However,
accurate and consistent phenotyping under low N condition is
challenging and highly prejudiced by genotype, environment,
soil, management, and their interactions. Therefore, integration
of modern breeding tools with conventional breeding not only
improves the understanding on the genetic basis of traits
performance under low N but also helps in developing the
improved cultivars with high yielding and stable performance.

Adequate variation at the phenotypic level and a high
level of polymorphisms at the DNA sequence level are vital
factors for high-quality genetic mapping (Yan et al., 2009).
Phenotypic data under low N conditions usually have low
heritability due to the inherent variability in low N stressed
fields. In this study, extensive genetic variance with moderate
to high heritability estimates and high genetic variance were
observed under both optimum and low N conditions. We found
significant genotypic and environmental variation for GY and
other agronomic traits. Several researchers also reported similar
significant variations in response to abiotic stresses (Betrán
et al., 2003; Worku et al., 2007; Derera et al., 2008; Badu-
Apraku et al., 2015; Ribeiro et al., 2018). The high significant
GXE observed under low N conditions for all traits agrees
with the findings of Makumbi et al. (2011), Ertiro (2018), and
Ribeiro et al. (2018). The high heritability estimates recorded
for most measured traits under optimum and low N conditions

indicated that the expression of these traits was consistent.
Most of the traits had substantially high heritability estimates
indicating their stability in the expression, and further, they also
are highly correlated with GY, which can be used in indirect
selection for increasing GY under each environment. These
results are consistent with the findings of Ertiro (2018) and
Ribeiro et al. (2018). Relatively small experimental errors in
this study were attributed to the use of many locations (9
optimum and 13 low N) with appropriate experimental designs,
which effectively estimated main quantitative genetic factors
associated with the traits. As a result, the mean phenotypic data
of most traits were normally distributed presenting an ideal
dataset for genome-wide marker-trait association study (Table 2
and Figure 1).

The correlations between GY and other agronomic traits were
changed with management conditions (Figure 2). Under the
optimum condition, GY was significant and positively correlated
with AD, PH, EH, EPO, and EPP, but stayed independent
with ASI. Whereas under low N conditions, these correlations
decreased drastically, like significant but negatively correlated
with ASI and no significant correlation with PH, EH, and EPO.
This must be considered while breeding for GY under low N,
as other yield-related traits may not have similar correlations
as we expected under optimum conditions. EPP was significant
and negatively correlated with AD, ASI, PH, EH, and EPO. SEN
was significant and negatively correlated with GY and other
traits except EPP.

A marker–trait association study was performed for the eight
traits, which were evaluated under optimum and managed low N
stressed conditions. Several factors influence the GWAS results
including, but not limited to, the quality of phenotypic data,
the complexity of the trait genetic architecture, the extent of
genetic diversity in the germplasm, and LD relationships between
causal variants and genotyped SNPs (Flint-Garcia et al., 2003;
Zhu et al., 2008; Soto-Cerda and Cloutier, 2010; Scherer and
Christensen, 2016). However, factors affecting the accuracy of
GWAS could be improved through appropriate experimental
designs and statistical packages.

The set of lines used in this study was assembled from
different tropical breeding programs within the CIMMYT
global maize program and national agricultural research systems
(NARS) in Africa, and these lines were bred for tolerance
to various biotic and abiotic stresses (Gowda et al., 2015).
It is not unexpected to get high genetic distance and lower
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kinship among the inbred lines; hence, stratification of the
inbred lines into different groups based on the breeding goals
and adaptation is expected. Standard GWAS test statistics
assume that all materials included for the analysis are unrelated
and selected from uniform, random-mating population. Any
departure from these assumptions can cause unanticipated
results (Scherer and Christensen, 2016) leading to spurious
associations due to false positives. Use of appropriate statistical
analysis that accounts for family relatedness and population
structure is crucial in order to avoid the occurrence of these
false positives.

The extent of LD in a set of germplasm affects the mapping
resolution and the number of markers required for association
mapping studies (Yu and Buckler, 2006). LD is further affected
by the extent of genetic diversity captured by the population
under study (Soto-Cerda and Cloutier, 2010). Genome-wide and
chromosome-specific LD decays in this study were extended
over a few hundred kilobases. Genome-wide LD decay was
230 kb at r2 = 0.2 and was 190 kb at r2 = 0.34. For individual
chromosomes, this value was in the range of 130–340 kb at
r2 = 0.2 and 40–180 kb at r2 = 0.34. Gowda et al. (2015)
also found similar results for a subset of this association
panel used in their study. Previous studies on maize showed
rapid LD decay (1 kb) in landraces, approximately 2 kb in
diverse inbred lines, and up to several hundred kilobases in
commercial elite inbred lines (Jung et al., 2004). The relatively
high LD in the current study is due to the inclusion of
elite inbred lines assembled from tropical breeding programs
within CIMMYT and NARS (Gowda et al., 2015). Based
on the observed LD, significant marker–trait associations can
be identified using a moderate to high number of markers
(Yan et al., 2011).

Taking family relatedness and population structure into
consideration, FarmCPU identified several SNPs associated with
the causative variant for each trait under optimum and low N
conditions. Out of 83 SNP–trait associations declared significant
at a Bonferroni 5% threshold, three SNPs on chromosomes
1, 2, and 6 were associated either with different traits or
different management conditions for the same trait, suggesting
pleiotropic effects of genes associated with these significant
markers. Common SNPs under optimum and low N conditions
would be useful for simultaneous improvement of trait/s for both
optimum and low N stress conditions.

In addition to discovering SNPs significantly associated with
traits, identifying putative genes in LD with significant SNPs and
studying the function of the genes and the biological pathways in
which the putative genes participate (Scherer and Christensen,
2016) are crucial for using these SNPs in breeding programs.
Putative genes were searched on the maize gdb5 and ensemble6

websites. The FIE1 gene, likely to have acquired important novel
functions for endosperm development and its maternal alleles,
gets activated 2 days after pollination (Hermon et al., 2007)
indicating its role in ASI. Narrow ASI is one of the desirable
secondary traits that is significantly correlated with high GY

5http://www.maizegdb.org/
6http://plants.ensembl.org/biomart/martview

under stress conditions. The marker linked to the gene could
be used for selecting genotypes having favorable alleles for
narrow ASI.

Teosinte glume architecture1 (TGA1) is another key gene
in the evolution of teosinte that exposed the kernel on the
surface of the ear on modern maize (Wang et al., 2005),
which showed strong association with SNPs identified for PH.
Assaying the border effects of TGA1 reduced or eliminated
the TGA1 gene expression using the RNAi (ribonucleic
acid interference) construct. On several branching and
kernel traits, maize lines expressing an RNAi construct
targeting TGA1 displayed pleiotropic morphological effects
(Wang et al., 2015). With regards to branching, these
RNAi lines probably remove the repressive function of
TGA1/neighbor of tag1 (NOT1), allowing the outgrowth
of axillary branches. Both TGA1 and NOT1 belong to the
SQUAMOSA promoter binding proteins (SBP) family of
transcription factors. Members of this family have been shown
to regulate development of meristem and also play a role
in producing both plant architecture and ear phenotypes
(Chuck et al., 2010, 2014). The presence of TGA1/NOT1 in
duplication may have facilitated its subfunctionalization. For
example, TGA1 alone controls the fruit case/cob, whereas TGA1
functions in a redundant manner with NOT1 to regulate plant
architecture traits. So, the SNP marker associated with TGA1
is useful for MAS.

Another SNP (S4_237693358) on chromosome 4 associated
with PH under low N conditions was linked with three
gene models, namely, Zm00001d053632, Zm00001d053633, and
Zm00001d053635. These genes models were in LD with a known
gene “RPS8,” ribosomal protein S8. RPS8 belongs to the 40S
ribosomal protein S8 family. This gene was associated with PH
under low N conditions, which indicates that rps8 genes might
have a role in the control of PH under stress conditions. Another
SNP “S7_123828656” on chromosome 7 was associated with AD
under low N conditions and was in LD with seven gene models,
of which two (Zm00001d020584 and Zm00001d020585) were
associated with a known histone H4 gene (H4C7). The gene
belongs to the histone H4 protein family.

Successful integration of modern tools helped to achieve
high genetic gain for complex traits in maize breeding
(Beyene et al., 2019; Yuan et al., 2019). With rapid progress
in genotyping technology and statistical models, genomic
prediction of breeding value has been successfully applied
in maize for quantitative traits (Zhang et al., 2015, 2017;
Beyene et al., 2019; Yuan et al., 2019). In the present study,
we compared the prediction accuracies under optimum and
low N conditions (Figure 3). Interestingly, the prediction
accuracies were slightly higher for GY, AD, ASI, EPO, and
EPP under low N conditions compared to optimum conditions,
whereas for PH, EH, and SEN, the accuracy was higher under
optimum conditions. The accuracy observed for all traits under
both optimum and low N conditions reveals the effect of
heritability as the traits with higher heritability generally had
higher prediction accuracy. The observed prediction accuracies
for GY and other traits are comparable to earlier studies
reported under different stresses in maize (Zhang et al., 2015;
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FIGURE 3 | Prediction accuracy for BLUEs estimated across locations for eight tested traits under optimum and low N conditions using genome-wide SNPs.
Optimum—training and estimation set within optimum condition, Low N—training and estimation set is within low N condition, Optimum–Low N—training is based
on optimum conditions and estimation is under low N conditions. GY, grain yield; AD, days to anthesis; ASI, anthesis-silking interval; PH, plant height; EH, ear height;
EPO, ear position; EPP, ears per plant; and SEN, senescence.
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Beyene et al., 2019; Yuan et al., 2019). In GS, the less complex
trait AD and ASI had higher accuracy compared to GY, which is
consistent with the nature of trait complexity (Zhang et al., 2017;
Yuan et al., 2019).

Breeding for low N stress tolerance is complex and very
expensive. Several studies were reported on the efficiency of
indirect selection to improve GY for low N by using secondary
traits and/or GY under optimum conditions (Ertiro, 2018). With
similar assumption, here we tried to use a training population
based on traits data under optimum conditions and predict the
same trait performance under low N conditions. The observed
prediction accuracy for GY is 0.20 (Figure 3), far below than
the phenotypic selection efficiency, which is 0.41 (the square
root of heritability of GY) under low N stress. However, with
three cycles per year and the requirement of lesser resources
for implementing GS compared to phenotypic selection, GS is
endorsed to integrate to improve the selection efficiency for low
N stress as an attractive option in a long-run objective of the
breeding program. For other traits, accuracies are relatively high,
which clearly supports the usefulness of GS in their improvement
under either optimum or stress condition.

GWAS results revealed that NUE in maize is controlled
by numerous genes with minor effects, which are seriously
influenced by environmental factors and thus are difficult to track
effectively by conventional breeding alone. High throughput
and large-scale routine phenotypic evaluation are still far from
implementation for several NARS breeding programs. GS in
combination with mapping approaches like GWAS and QTL
mapping can enhance the efficiency to improve the trait of
interest. Integration of GS with GWAS results leads not only
to the increase in the prediction accuracy but also helps in
validating the function of the identified candidate genes as well
as the increase in the accumulation of favorable alleles with
minor and major effects. Further, GS can remarkably reduce
the resources required for selection and can improve breeding
efficiency, especially when genotyping is very cheap, and several
commercial service providers are available. With this kind of
progress, one can expect that GS can integrate the powerful
GWAS results from previous studies and projects and used them
in breeding maize with high NUE.

CONCLUSION

Through GWAS, marker–trait associations were detected for GY
and other traits measured under low N and optimum conditions.
Eighty-three significant marker–trait associations were identified
for all the traits under both optimum and low N conditions.
No common markers were identified for GY between optimum
and low N conditions, confirming that a different genetic
mechanism for GY under optimum and low N conditions is
a possibility. The result further confirms higher efficiency of
direct selection in target environments for the improvement of
GY. For some secondary traits, common markers were obtained
under both management conditions, suggesting the likelihood
of simultaneous improvement for two or more secondary traits
using the same set of markers. The physical position of significant

markers coincided with 136 putative protein coding genes. Four
known genes were associated with traits under optimum and
low N conditions. Markers associated with these known genes
could be used in breeding for the improvement of the associated
traits. Prediction accuracy for all traits under both optimum and
low N conditions is promising. Further, incorporating the trait-
associated markers detected through GWAS into the prediction
model has a potential to improve the prediction accuracy for the
quantitative traits like GY under stress conditions, which leads to
significant improvement for NUE in maize.
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