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Multiple elements are required to be allocated to different organs to meet the
demands for plant growth, reproduction, and maintenance. However, our knowledge
remains limited on the stoichiometry in all plant organs in response to heterogeneous
environments. Here, we present the systematic investigation of multielemental
stoichiometry in organs of the alpine plant Gentiana rigescens across different
environmental conditions. The slopes of N–P stoichiometric relationships among organs
in G. rigescens did not differ significantly between environments even in flowers, the
most active organ with the highest N and P level. C:P ratios had strong positive
relationships with N:P ratios within and between organs. Zn had strong positive
correlations with Fe, S, or Cu in each organ, indicating the potential interactions among
the homeostases of these elements. The contents of macroelements, such as C, N,
P, Ca, Mg, and S, were higher in plant organs than those in soil and exhibited a
relatively narrow range in plant organs. However, G. rigescens reduced Fe uptake from
soil and showed the strictest homeostasis in its root, implying its resistance to excess
Fe. Furthermore, precipitation and temperature associated with geography, followed
by soil P, were the main divers for the multielemental stoichiometry in this species.
Plant stoichiometry responded differently to abiotic environmental factors, depending
on organ type and element. N:P ratio, no matter in which organ, showed little flexibility
to climate factors. The results have implications for understanding the regulation of
multielemental stoichiometry in plant individuals to environmental changes. Further
studies are needed on the interactions of multielement homeostasis in plants.

Keywords: homeostasis, nutrient, herbaceous plant, reproduction, soil, climate

INTRODUCTION

Ecological stoichiometry offers a framework to understand the balance of multiple elements
in ecological interactions and processes (Elser et al., 2010). Under this framework, the
degree to which organisms maintain a constant elemental composition in response to the
availability of their environmental resources is referred to as “stoichiometric homeostasis”
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FIGURE 1 | Sampling sites and samples of Gentiana rigescens. (A) Sampling sites of the plant species in southwest of China. (B) Above-ground part of the plant
species. (C) Below-ground part of the plant species.

(Sterner and Elser, 2002). For example, an organism’s
carbon/nitrogeN:Phosphorus stoichiometry tends to be more
constrained than the stoichiometry of its environment (Sardans
et al., 2012). In addition, the core central tendency in N:P
ratio is similar among observations in different biota, which
could be due to the similar biochemical investment across
all biota (Zhang and Elser, 2017). Apart from C, N, and P, a
more complete understanding of homeostasis necessitates the
consideration of other elements, especially the nutrient elements
for plant growth (Jeyasingh et al., 2017; Ågren and Weih, 2020).
Potassium (K) is the second most abundant nutrient in plant
photosynthetic tissues and is required for many functions, such
as the maintenance of electrical potentials across cell membranes
(Britto and Kronzucker, 2008; Sardans and Peñuelas, 2015).
Calcium (Ca) is another essential nutrient for plants and is
required for structural roles in the membranes and cell wall
(White and Broadley, 2003). Magnesium (Mg) is vital for the
function of many cellular enzymes and for the aggregation of
ribosomes, and the maintenance of its homeostasis in the plant

TABLE 1 | Contents and molar ratios of C, N, and P in soils and plants.

n %C %N %P C:N:P

Soil 43 3.4 ± 2.4b 0.19 ± 0.13c 0.056 ± 0.043d 169:8:1

Root 45 44.4 ± 1.5a 0.89 ± 0.21b 0.100 ± 0.047bc 1,390:23:1

Stem 45 46.2 ± 0.7a 0.80 ± 0.18b 0.085 ± 0.046c 1,746:25:1

Leaf 45 45.2 ± 1.1a 1.29 ± 0.36a 0.134 ± 0.076b 1,157:26:1

Flower 45 46.9 ± 0.9a 1.44 ± 0.31a 0.189 ± 0.068a 728:18:1

Lowercase letters in the same columnn indicate significant differences at 0.05 level.

is essential for viability (Shaul, 2002). Sulfur (S) plays critical
roles in many biological processes, including the role linked
to trace element homeostasis in plants (Na and Salt, 2011).
Iron (Fe) is an essential cofactor for fundamental biochemical
activities, so Fe homeostasis plays an important role in plant
nutrition (Vigani et al., 2013). Plants only need small amounts
of manganese (Mn), which vary more than two orders of
magnitude in soils (Shao et al., 2017); therefore, plants must
maintain their Mn homeostasis for health growth. Copper (Cu)
is one of the essential trace elements for plants and is a cofactor
in proteins that are involved in electron transfer reactions
(Burkhead et al., 2009). Zinc (Zn) with multifunctions in all
plants has key roles in basal metabolism, defense, and virulence
(Cabot et al., 2019).

When nutrients are taken up by plants, plentiful processes
regulate elemental homeostasis to maintain plant function
(Sperfeld et al., 2017). Multiple elements are required to be
allocated to different organs to meet the demands for plant
growth, reproduction, and maintenance (Wang et al., 2012).
It is necessary to consider all plant organs in understanding
how plants respond to nutrient limitation and changing
environmental conditions (Allen and Gillooly, 2009; Kleyer and
Minden, 2015). In a previous study, distinct patterns of C:N:P
stoichiometry have been found in plant organs related to their
internal function (Minden and Kleyer, 2014). Stoichiometric
homeostasis for N and P has been found among vegetative tissues
in forest plant (Zhang et al., 2018a). However, relatively little
is known about multielemental stoichiometry at organ level,
especially in reproductive tissue, in whole plant individuals.

Many plant species are distributed at relatively wide spatial
scales and are, therefore, exposed to heterogeneous environments
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FIGURE 2 | Distribution of C:N, C:P, and N:P molar ratios in soils and plants. The sample size is 43 for soil and 45 for each plant organ.

TABLE 2 | Pearson correlation coefficients of C:N, C:P, and N:P ratios in plants.

Root Stem Leaf Flower

C:N C:P N:P C:N C:P N:P C:N C:P N:P C:N C:P N:P

Root C:N 1

C:P 0.598* 1

N:P 0.071 0.810* 1

Stem C:N 0.218 0.077 -0.072 1

C:P 0.312 0.703* 0.684* 0.471* 1

N:P 0.215 0.779* 0.863* 0.067 0.899* 1

Leaf C:N 0.116 0.167 0.070 0.252 0.344 0.238 1

C:P 0.311 0.746* 0.723* 0.132 0.776* 0.821* 0.590* 1

N:P 0.242 0.798* 0.886* −0.007 0.764* 0.904* 0.021 0.794* 1

Flower C:N −0.058 0.002 −0.048 0.180 0.190 0.103 0.768* 0.359 −0.102 1

C:P 0.216 0.662* 0.674* 0.066 0.683* 0.753* 0.562* 0.898* 0.709* 0.520* 1

N:P 0.221 0.763* 0.859* −0.045 0.694* 0.846* 0.135 0.795* 0.912* −0.010 0.835* 1

*p < 0.01.

(Helsen et al., 2017). An understanding of stoichiometry within
individuals is a key component for the accurate prediction of
responses of plants to environmental change (Sistla and Schimel,
2012). Soil nutrient availability, as well as plant nutrient demand
under climate change, can affect leaf element contents and their
coupling (Tian et al., 2019). Several systematic investigations or
meta-analysis studies have been done on the effects of soil and
climate on plant C:N:P stoichiometry at global scale (Reich and
Oleksyn, 2004; Sardans et al., 2017), regional scale (Yang et al.,
2015; Zhang et al., 2018b), or local scale (Zhao et al., 2014).
Some studies on plant stoichiometry that go beyond C, N, and
P under different environmental conditions were also carried
out. For example, Han et al. (2011) found that variation in leaf
elemental content was more constrained for nutrients with the
highest requirements. In a fertilizer experiment with different

Salix spp. genotypes, difference in the elemental contents in the
environment was the major driver of variation in leaf nutrient
relations (Ågren and Weih, 2012). However, our knowledge
remains limited on multielemental stoichiometry in plant organs
to nutrient stress or climate change.

To address these gaps in our knowledge, here, we present
the systematic investigation of multielemental stoichiometry
in organs of an alpine plant across different environmental
conditions. Our questions are as follows. Does multielemental
stoichiometry differ among organs? How does the plant
regulate the elemental stoichiometry to response soil nutrient
heterogeneity? Is multielemental stoichiometry in plants affected
by different climates? Answering these questions will help us
understand how plant regulates its multielemental stoichiometry
in response to heterogeneous environments.
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MATERIALS AND METHODS

Our investigations were conducted in Yunnan–Guizhou Plateau,
southwest China. This area is very close to the Qinghai–Tibet
Plateau, which is considered to be a geographical source area for
genus Gentiana (Favre et al., 2016). Gentiana rigescens Franch.
ex Hemsl. (Gentianaceae) is a perennial plant distributed in the
elevation range of 1,100–3,000 m in subtropical evergreen broad-
leaved and sclerophyllous forests, subtropical conifer forest, and
subtropical mixed deciduous-evergreen shrubland in southwest
China (Li and Walker, 1986; Flora of China Editorial Committee,
1988). From December 2012 to January 2013 and October to
November 2013 (within the populations’ flowering period), we
investigated 45 wild populations of G. rigescens in Yunnan,
Guizhou, and Sichuan provinces, China in the elevation range
of 1,230–2,980 m and in the latitude range of 23.316–28.524◦N
(Figure 1 and Supplementary Table S1). In each sampling
site, 10 plant individuals at the flowering stage were dug out
carefully with roots from soil and washed. Each individual was
divided into roots, stems, leaves, and flowers. The same plant
organs from the same sampling site were pooled, which means
that there were totally 45 samples for each plant organ. The
plant samples were dried to constant mass at 60◦C, powdered,
screened (<0.125 mm), and kept in polyethylene bag for chemical
analyses. From each sampling site, five subsamples of top soil
(0–20 cm) were bulked into one soil sample, except two sites.
Therefore, totally, 43 soil samples across southwest China were
collected. After removing the debris, the samples were air dried
and screened (<0.125 mm). The mean annual temperature
(MAT) and the mean annual precipitation (MAP) data of the
sampling sites in 2012 were obtained from a temperature and
precipitation interpolated 1 km spatial resolution raster data
(Wang et al., 2017).

The soil and plant samples were kept at 60◦C for 24 h using an
electrically heated laboratory oven before analyses. Total C and N
contents in the samples were directly determined by an elemental
analyzer (Model Vario MAX CN, Elementar Analysensysteme
GmbH, Germany). Total contents of P, K, Ca, Mg, S, Fe, Mn,
Cur, and Zn were determined by an inductively coupled plasma
atomic-emission spectrometer (Model iCAP6300, Thermo Fisher
Scientific, United States) after wet digestion. Several standard
reference materials, such as GBW 10015 (GSB-6) spinach and
GBW 10052 (GSB-30) green tea, were purchased from the
National Research Center for Certified Reference Materials
of China to verify the elemental analysis methods. A digital
pH meter (Model FE20, Mettler-Toledo International Inc.,
China) was used to determine the soil pH. Soil organic
matter content was determined by the potassium dichromate
volumetric method.

Raw data are available in Supplementary Data Sheet S1.
Data were log10 transformed before statistical analysis. Linear
regression models of the form

log
(
y
)
= a log (x)+ logb

were used for the stoichiometric relationships defined as logy
and logx, where x is the P content (or element contents in

FIGURE 3 | Relationships between N and P in different plant organs.
A base-10 logarithmic scale is used for the axes. The sample size is 45 for
each plant organ.

soils), y is the N content (or element contents in plants), a is
the slope, and logb is the intercept. The strength of elemental
homeostasis is expressed as the homeostasis regulation coefficient
H, which is calculated as 1/slope (Sterner and Elser, 2002).
We estimated the stoichiometric relationships by standardized
major axis regression and tested for a common slope among
several stoichiometric relations using R software version 3.5.3
package “smatr” version 3.4-8 (Warton et al., 2012; R Core
Team, 2019). A heatmap integrated with dendrogram was
performed to explore correlations of the element contents and
C, N, and P ratios in soils and intraorgan using R package
“pheatmap” version 1.0.12. Multiple factor analysis was employed
to investigate different groups (climate, coordinate, and soil)
of abiotic environmental factors on plant multielemental
stoichiometry using R packages “FactoMineR” version 1.34
and “factoextra” version 1.0.5. One-way ANOVA with Tukey
post hoc test was performed to compare element contents among
different samples.

RESULTS

In the soils, the mean content was 3.4% for C, 0.19% for N, and
0.056% for P; in the plants, the mean content varied from 45.2
to 46.9% for C, 0.080 to 1.44% for N, and 0.085 to 0.189% for
P (Table 1). N contents were significantly (p < 0.05) higher in
flower and leaf than in stem and root, while P content in flower
was significantly (p < 0.05) higher than the values in other plant
organs (Table 1).

C:N ratio varied from 10 to 35 in soil, 39 to 114 in root, 39
to 100 in stem, 23 to 69 in leaf, and 24 to 56 in flower; C:P ratio
varied from 45 to 334 in soil, 513 to 4,067 in root, 506 to 3,185
in stem, 308 to 3,343 in leaf, and 315 to 1,564 in flower; N:P ratio
varied from 2 to 15 (with 8 on average) in soil, 6 to 42 (with 23
on average) in root, 9 to 41 (with 25 on average) in stem, 8 to 53
(with 26 on average) in leaf, and 8 to 34 (with 18 on average) in
flower (Table 1 and Figure 2).
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TABLE 3 | Parameters for the stoichiometric relationships between N and P in plant organs.

Slope 95% CI of slope Intercept 95% CI of intercept N R2 p

Root 0.51 0.40–0.67 0.48 0.33–0.62 45 0.25 <0.001

Stem 0.44 0.34–0.57 0.39 0.25–0.52 45 0.25 <0.001

Leaf 0.52 0.40–0.67 0.58 0.44–0.71 45 0.24 <0.001

Flower 0.58 0.45–0.76 0.59 0.47–0.70 45 0.27 <0.001

FIGURE 4 | Pearson’s correlation coefficients for the element contents and C, N, and P molar ratios in plant organs. The sample size is 45 for each plant organ.

C:P ratios have strong positive relationships with N:P
ratios within and between organs (p < 0.01); however, C:N
only has strong positive relationship with C:P in root or
stem (p < 0.01), respectively (Table 2). The largest Pearson’s
correlation coefficient, 0.912, was found between leaf N:P ratio
and flower N:P ratio, followed by 0.904, which was found between
leaf N:P ratio and stem N:P ratio (Table 2). Stoichiometric

relationships for N and P contents have been found among
different organs, and these relationships shared a common slope
(p = 0.51) (Figure 3 and Table 3). Zn had strong positive
correlations with Fe, S, or Cu in each organ (Figure 4).

Apparently contents of C, N, P, Ca, Mg, and S in plant organs
were significantly higher than their contents in soil (p < 0.05),
while Fe content in plant organs was significantly lower than its
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FIGURE 5 | Distribution of contents of Ca, Cu, Fe, K, Mg, Mn, S, and Zn in soils and plants. The sample size is 43 for soil and 45 for each plant organ.

content in soil (p < 0.05) (Table 1 and Figure 5). Cu content in
plant organs varied more than its content in soil; in contrast, K
content varied more in soil samples compared with its contents
in plant organs (Figure 5). Mn content in leaf was significantly
higher than that in soil, but it was significantly lower in root
than that in soil (p < 0.05) (Figure 5). Zn content in stem was
significantly higher than its content in soil (p < 0.05) (Figure 5).

Contents of some elements in certain organs showed
significant relationships with their contents in soil (p < 0.01),
such as Mg and Fe in root, P and Zn in stem, N, P, and, S in
leaf, and N and P in flower (Figure 6). In the above relationships,
Fe in root showed the strictest homeostasis (H = 1.93), followed
by Mg in root (H = 1.01), whereas S in leaf showed the weakest
homeostasis (H = 0.05) (Table 4).

Multiple factor analysis was used to explore the correlations
of climate (MAT and MAP), coordinate (latitude, longitude,
and altitude), and soil (soil chemical properties) on plant
elemental stoichiometry. The first and second dimensions
together explained ∼50% of the total variance. The first
dimension was mainly contributed by MAP, MAT, latitude, and
longitude, while the second dimension was mainly contributed
by altitude, longitude, and some soil chemical properties (such as

soil P) (Figure 7 and Supplementary Figures S1, S2). Meanwhile,
plant stoichiometry responded differently to abiotic environment
factors, depending on organ type and element (Figure 7). For
example, C:N and C:P ratios were more influenced by MAT in
both leaf and flower than those ratios in root, while N content was
more influenced by MAP and latitude in both leaf and flower than
its content in root. However, N:P ratios in all of the organs seemed
not influenced by climate factors associated with geography.

DISCUSSION

Inter- and Intraorgan Multielement
Stoichiometry
Our data showed that the means of leaf N and P contents
of G. rigescens are 1.29 and 0.134%, respectively, which are
lower than those for global herbaceous plants (2.17 and 0.164%,
respectively) and for the herbaceous species (2.09 and 0.155%,
respectively) in China (Han et al., 2005; Tian et al., 2018).
However, the leaf N:P atomic ratio (26:1) of G. rigescens is
very similar with 28:1 for N:P ratio in global forests and 30:1
for herb species in China (McGroddy et al., 2004; Han et al.,
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FIGURE 6 | Relationships between soil elements contents and plant elements contents. A base-10 logarithmic scale is used for the axes. The sample size is 43 for
both soil and each plant organ, p < 0.01.
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TABLE 4 | Parameters of relationships between soil elements contents and plant elements contents.

Element Part H Slope 95% CI of slope Intercept 95% CI of intercept n R2 p

N Flower 0.41 2.417 1.861–3.141 9.599 8.077–11.120 43 0.30 <0.001

Leaf 0.34 2.940 2.258–3.827 7.295 5.428–9.162 43 0.28 <0.001

P Flower 0.65 1.529 1.158–2.018 0.988 0.667–1.158 43 0.21 0.002

Leaf 0.56 1.793 1.349–2.384 0.311 -0.078–1.349 43 0.16 0.007

Stem 0.92 1.084 0.819–1.435 0.226 -0.004–0.457 43 0.19 0.004

Mg Root 1.01 0.987 0.742–1.312 0.846 0.633–1.059 43 0.16 0.007

S Leaf 0.05 18.505 14.220–24.083 0.898 0.647–1.148 43 0.29 <0.001

Fe Root 1.93 0.517 0.397–0.675 -0.020 -0.659–0.618 43 0.28 <0.001

Zn Stem 0.47 2.106 1.591–2.788 -29.906 -89.029–29.217 43 0.19 0.004

2005). Garten (1976) found that correlations between contents
of elements (such as N and P) across many species were probably
because of biochemical similarities of cell metabolism. Moreover,
herbaceous plant species tend to maintain their own N and P
composition even growing in different sites (Hu et al., 2018).
The exponent of leaf N vs. P scaling relationships of global
herbaceous plants was 0.659 (Tian et al., 2018). Geng et al.
(2014) reported that slopes of N–P scaling did not differ between
leaves and fine roots in 139 species collected from Tibetan
alpine grassland and Mongolian temperate grassland. In another
study, there were no significant differences in the N and P
scaling exponents among root, stem, and leaf in 304 species
of herbaceous plants (Zhang et al., 2018a). Our data further
showed that the slopes of N and P stoichiometric relationships
among organs (root, stem, leaf, and flower) of G. rigescens did
not differ significantly between environments. In G. rigescens
flower, P and N contents were higher than the values in other
plant organs, indicating that flower is the most active organ at
the organ level.

We also found that Zn had positive correlations with Fe,
S, or Cu in each plant organ. Zn homeostasis is maintained
by a tightly regulated network, which includes low molecular-
weight ligands, membrane transport and Zn-binding proteins,
and so on (Sinclair and Krämer, 2012). Interactions between
Zn and Fe homeostasis have been observed in different plant
species (Xie et al., 2019). Zn homeostasis interacts with Fe
homeostasis as a result of the chemical similarity between their
divalent cations and the generality of the key root iron uptake
transporter (Sinclair and Krämer, 2012). Zn, Fe, and Cu play
roles in plant photosynthesis and the mechanisms that their
homeostasis within chloroplasts has been concerned (Yruela,
2013). Moreover, the interaction between Zn and S is a critical
biological partnership in which sulfur gives mobility to zinc
and zinc adjusts the chemical properties of sulfur (Maret, 2004).
Further studies are needed on the interactions of multielement
homeostasis in plants.

Multielemental Stoichiometry Between
Plant and Soil
At the global scale, atomic C:N:P ratios in the soil is 186:13:1
on average (Cleveland and Liptzin, 2007). In this study, the
soil C:N:P stoichiometry was 169:8:1. It indicated that soils

in our study area are more N and P limited, compared with
global data. This is in agreement with the finding that soil
P contents across most areas of China were below the global
average (Han et al., 2005). Strong positive correlations between
soil and plant tissue C:N:P stoichiometry were found in field
experiment for herbaceous plants (Bell et al., 2014). In a
subtropical mountainous region of southwest China, community
leaf P was primarily determined by soil P; leaf P increased as soil P
availability increased (Yan et al., 2015). In the P-rich soil in a forest
in Yunnan, soil P content is a major driver triggering the variation
in multielemental stoichiometry in plants (Li et al., 2019). Our
study showed that, in the P-limited soil, soil P content also plays
an important role in multielemental stoichiometry in plant.

Multielemental stoichiometry in plants can be affected by soil
nutrient availability and plant functions that resist to nutrient
stress (Tian et al., 2019). Our analyses indicate that the contents
of macroelements, such as C, N, P, Ca, Mg, and S, were higher
in plant organs than those in soil and exhibited a relatively
narrow range in plant organs, which is in agreement with
the studies of Han et al. (2011) and Zhao et al. (2016). Both
N and P contents in leaf and flower of G. rigescens showed
stoichiometric relationships with their contents in soil. However,
flower and leaf N and P contents of common reed (Phragmites
australis) did not change significantly with N and P availability
in northern China (Li et al., 2014). Further work is needed
on the stoichiometry of reproductive tissue in different plant
species. In this study, higher Mn content was found in leaf,
compared with other organs and soil. The reason for this
could be that plants that can release carboxylates to mobilize
soil P as a phosphorus-acquisition strategy can also mobilize
soil Mn, leading to high leaf Mn content (Lambers et al.,
2015). Fe is essential for plants, but excess Fe is toxic to plant
because of the formation of damaging reactive oxygen species
duo to free intracellular Fe. Therefore, maintaining proper Fe
homeostasis is crucial for plants (Jeong and Guerinot, 2009).
Plant can reduce Fe uptake when Fe is at high levels (Kroh
and Pilon, 2019). Intriguingly, we found that, compared with
other studied elements, G. rigescens reduced Fe uptake from
soil and showed the strictest homeostasis. Furthermore, our
average leaf Fe content was nearly 1.3 mg/g (Figure 5), which
was more than two times higher than the critical leaf content
(>0.5 mg/g, dry weight) for Fe toxicity in non-tolerant crop
plants (White and Brown, 2010). The results imply that the
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FIGURE 7 | Multiple factor analysis of abiotic environmental factors and multielemental stoichiometry in plant organs. Elements and C:N:P ratios in plants are in red
color. MAP, mean annual precipitation; MAT, mean annual temperature; sC, soil carbon; sN, soil nitrogen; sP, soil phosphorus; sK, soil potassium; sCa, soil calcium;
sMg, magnesium; sS, soil sulfur; sFe, soil iron; sMn, soil manganese; sCu, soil copper; sZn, soil zinc; sCN, soil C:N ratio; sCP, soil C:P ratio; sNP, soil N:P ratio; OM,
soil organic matter, pH, soil pH; CN, plant C:N ratio; CP, plant C:P ratio; NP, plant N:P ratio.

soils contain relatively high levels of Fe, but G. rigescens can
resist to excess Fe.

Variation of Multielemental
Stoichiometry With Climatic Conditions
In this study, MAP and MAT associated with geography were
the main drivers for plant stoichiometry. Similar result was
found in an investigation on the variation of multielemental

stoichiometry in Quercus variabilis leaves across China (Sun
et al., 2015). Our data showed that plant stoichiometry responded
differently to abiotic environmental factors, depending on organ
type and element. Contents of leaf N and S were closely
correlated with MAP. The same pattern had been found in
a study investigating more than 700 wild plant species across
China (Zhang et al., 2012). A meta-analysis on multielemental
stoichiometry including 1,900 plant species across China showed
that global warming might have no effect on leaf Ca and Mg
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but could decrease leaf K, Fe, Mn, and Zn (Tan et al., 2019). We
found that leaf K and Mg had a relatively close relationship with
MAT. For N:P ratio, a trend of increasing leaf N:P ratio with
decreasing latitude for 753 terrestrial plant species was discovered
across China (Han et al., 2005). In another study, leaf N:P ratio
increased with increasing MAT along the 400 mm isohyet in
north China (Tan et al., 2018). In this study, N:P ratio, no matter
in which organ, showed little flexibility to climate factors, which
may be because factors intrinsic to each plant species play a
more important role in controlling N:P ratios than extrinsic
factors at a local scale (Luo et al., 2015). However, at global scale,
terrestrial plant N:P ratio decreases with increasing precipitation
but increases with warming (Yuan and Chen, 2015).

CONCLUSION

In conclusion, our analyses indicate that the slopes of N–
P scaling among organs did not differ significantly between
environments even in flower, the most active organ with highest
N and P level. Zn had strong positive correlations with Fe, S,
or Cu in each organ. Fe showed the strictest homeostasis in its
root when excessive Fe in soil. In this study, MAP and MAT
associated with geography, followed by soil P, were the main
divers for plant multielemental stoichiometry, while N:P ratio,
no matter in which organ, showed little flexibility to climate
factors. The results have implications for understanding the roles
that multielemental stoichiometry play for plant individuals to
nutrient stress and climate change.
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