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Regulation of cytosolic mRNA translation is a key node for rapid adaptation to
environmental stress conditions. In yeast and animals, phosphorylation of the α-subunit
of eukaryotic translation initiation factor eIF2 is the most thoroughly characterized event
for regulating global translation under stress. In plants, the GCN2 kinase (General
Control Nonderepressible-2) is the only known kinase for eIF2α. GCN2 is activated
under a variety of stresses including reactive oxygen species (ROS). Here, we provide
new evidence that the GCN2 kinase in Arabidopsis is also activated rapidly and in a
light-dependent manner by cold and salt treatments. These treatments alone did not
repress global mRNA ribosome loading in a major way. The activation of GCN2 was
accompanied by a more oxidative environment and was attenuated by inhibitors of
photosynthetic electron transport, suggesting that it is gated by the redox poise or the
reactive oxygen status of the chloroplast. In keeping with these results, gcn2 mutant
seedlings were more sensitive than wild type to both cold and salt in a root elongation
assay. These data suggest that cold and salt stress may both affect the status of the
cytosolic translation apparatus via the conserved GCN2-eIF2α module. The potential
role of the GCN2 kinase pathway in the global repression of translation under abiotic
stress is discussed.

Keywords: GCN2, eIF2α, cold, salt, light, translation, ROS

INTRODUCTION

The translation of mRNAs by cytosolic ribosomes into new proteins is dynamically regulated
by abiotic environmental conditions such as temperature (Matsuura et al., 2010; Yanguez et al.,
2013), oxygen (Branco-Price et al., 2008), and light (Juntawong and Bailey-Serres, 2012; Liu
et al., 2012; Missra et al., 2015; Merchante et al., 2017). Both early and more recent studies have
highlighted that redox poise and reactive oxygen species (ROS) can also play important roles
in regulating mRNA translation in global and mRNA sequence-specific ways (Tang et al., 2003;
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Branco-Price et al., 2008; Khandal et al., 2009; Juntawong
and Bailey-Serres, 2012; Liu et al., 2012; Yanguez et al.,
2013). The mechanisms that regulate and coordinate mRNA
ribosome loading across the plant transcriptome are generally
only partially understood. Of the several mechanisms regulating
global translation, phosphorylation of the α-subunit of the
heterotrimeric eukaryotic initiation factor 2 (eIF2) is one of
the best characterized translational control events in yeast and
animals (Dever et al., 1992; Sattlegger et al., 1998; Donnelly et al.,
2013; Hinnebusch et al., 2016). In the unphosphorylated form,
eIF2 bound to GTP delivers the initiator methionyl-tRNA to
the small ribosomal subunit (40S) to initiate mRNA translation
(Hinnebusch et al., 2016). Upon phosphorylation by one of
several kinases, eIF2α then becomes a poisoned substrate of
the guanine nucleotide exchange factor, eIF2B (Kashiwagi et al.,
2019), causing global translational repression. Some mRNAs do
escape this global repression by virtue of specific mRNA sequence
elements (Harding et al., 2000; Liu and Qian, 2014).

General Control Non-derepressible 2 (GCN2) is the only
known kinase in plants that phosphorylates eIF2α (Zhang
et al., 2002; Lageix et al., 2008). In the well-studied vertebrate
and yeast models, the GCN2 kinase can be activated by
uncharged tRNA as a consequence of amino acid starvation
(Wek et al., 1989, 1995; Dong et al., 2000; Anda et al., 2017).
In plants, the genetic elements of the GCN2 pathway appear
to be substantially conserved, although not all biochemical
details have been confirmed, and few of the biochemical
steps have been investigated thoroughly. Specifically, GCN2
is encoded by a single gene in Arabidopsis that functionally
complements a yeast gcn2 mutant (Zhang et al., 2003) and
can be activated by uncharged tRNA in vitro (Li et al., 2013).
Accordingly, in planta, the kinase is activated by inhibitors of
amino acid biosynthesis such as the herbicides chlorosulfuron,
glyphosate, and glufosinate (Lageix et al., 2008; Zhang et al.,
2008; Zhao et al., 2018), and the activation of GCN2 by
herbicides can be suppressed by supplementation with amino
acids (Zhang et al., 2008).

Aside from inhibitors of amino acid biosynthesis, plant
GCN2 kinase is activated by numerous other agents,
including ultraviolet light, wounding, the ethylene precursor
1-aminocyclopropane carboxylic acid, the endogenous defense
signals salicylic acid and methyl-jasmonate and bacterial
infection (Lageix et al., 2008; Liu et al., 2019). What remains
unclear is the nature of the biochemical signal that activates
GCN2 under this variety of abiotic and biotic stresses. We
recently described that GCN2 is activated by light-dependent
ROS from the chloroplast. Even the stimulation of GCN2
by inhibitors of amino acid biosynthesis requires light
and does not occur in darkness, suggesting that ROS are
an essential requirement for GCN2 activation (Lokdarshi
et al., 2020). A second conundrum surrounding plant GCN2
is that gcn2 mutants have rather mild phenotypes under
favorable lab conditions (Liu et al., 2015b) and a near-normal
transcriptome (Faus et al., 2015; Lokdarshi et al., 2020).
Moreover, among the various treatments that activate eIF2α

phosphorylation, the herbicide chlorosulfuron is the only one
that also results in a GCN2-dependent global translational

repression (Lageix et al., 2008; Lokdarshi et al., 2020). In fact,
the conditions that trigger eIF2α phosphorylation by the GCN2
kinase are not well correlated with the conditions under which
gcn2 mutant plants display maladaptive phenotypes.

Here, we describe that the GCN2 kinase is activated by cold
and salt stress in a light-dependent manner. The activation of
GCN2 by cold and salt can be suppressed by manipulating
the status of the photosynthetic apparatus, suggesting that a
chloroplastic signal contributes to the activation of GCN2. We
also provide more evidence that eIF2α phosphorylation by
different stresses does not always result in the same decline in
polyribosome loading. However, gcn2 mutant seedlings from two
different ecotypes of Arabidopsis show reduced primary root
growth under cold and salt stress, in keeping with a physiological
role for the GCN2 kinase to adapt to these conditions. Taken
together, these data suggest that the retrograde signaling from
chloroplast to cytosol that targets protein synthesis may operate
via the GCN2 kinase under cold and salt stress.

MATERIALS AND METHODS

Plant Materials and Growth Conditions
Arabidopsis thaliana ecotype Landsberg (Ler-0), Columbia
(Col-0), and homozygous gcn2-1 mutants of the GT8359
gene trap line (Zhang et al., 2008) and homozygous gcn2-2
(SALK_032196) mutant seeds (Faus et al., 2018; Lokdarshi et al.,
2020) were sterilized and stratified at 4◦C for 2 days. Seeds were
germinated on half-strength Murashige-Skoog (1/2X MS) plant
medium (MP Biomedicals, cat # 2633024) with 0.65% Phytoagar
(Bioworld, cat # 40100072-2) and grown under a long-day period
of 16 h light (80 ± 10 µEin m−2 s−1)/8 h dark at 22◦C and 50%
humidity. Unless stated, no sucrose was added to the medium.

Stress Treatments and Phenotype
Characterization
For cold stress treatment in dark and light, plates with 14-day-
old horizontally grown seedlings (roots inside the medium) were
acclimated in the dark for 24 h starting at Zeitgeber time 2 (ZT2),
after which they were shifted to 4◦C in the dark or light for
the desired times. Dark-treated seedlings were harvested under
green safe light. For salt stress treatment in the dark, plates
with 9-day-old vertically grown seedlings (roots on the surface
of the medium) were acclimated in darkness for 24 h starting
at ZT2, after which seedlings were transferred to high salt or
mock 1/2X MS salt media under green safe light, and sampling
was performed at the desired times. For salt stress treatments
under light, seedlings were germinated and grown vertically on
agar medium supplemented with 0.1% sucrose for 10 days. At
ZT2, seedlings were transferred quickly using a pair of tweezers to
the same medium supplemented with high salt (150 mM NaCl),
or control conditions, or control conditions with equivalent
osmolarity of mannitol (300 mM).

For chemical treatments with DCMU (Thermo-Fisher, cat#
D2425) and DBMIB (Thermo-Fisher, cat# 271993), seedlings
were sprayed with the desired amount of reagent and mock
control (DMSO or water) under green safe light 30 min
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before the end of 24 h dark acclimation. For antioxidant
treatment, seedlings were germinated and grown for 10 days on
1/2X MS medium containing 0.5 mM ascorbate and 0.5 mM
reduced glutathione.

For phenotype characterization under cold stress, 3-day-old
vertically grown seedlings on 0.1% sucrose were transferred to
media without sucrose and shifted to 4◦C for 30 days. For salt
stress, 3-day-old vertically grown seedlings on 0.1% sucrose were
transferred to media with 0.1% sucrose (Mock) or supplemented
with 300 mM mannitol or 150 mM NaCl. Photographs were
taken with a digital camera (Canon) and primary root length was
measured using ImageJ (ver. 1.41). Fresh weight measurements
were performed by weighing seedlings per plate at the end
of the stress treatment. Percent survival analysis for salt stress
was performed by counting seedlings that showed bleached
chlorophyll and no primary root growth from days 6 to 9. All
statistical analysis was performed using GraphPad Prism (ver.
8.1.2; GraphPad Software, Inc.).

Protein Extraction and Immunoblot
Analysis
Sampling for total protein extraction was done by flash freezing
seedlings in liquid nitrogen. Seedlings were ground using a plastic
pestle in a 1.5 ml tube with extraction buffer containing 25 mM
Tris–HCl (pH 7.5), 75 mM NaCl, 5% (v/v) glycerol, 0.05% (v/v)
Nonidet P-40, 0.5 mM EDTA, 0.5 mM EGTA, 2 mM DTT,
2% (w/v) insoluble PVP (Sigma P-6755), supplemented with
1 × protease and phosphatase inhibitor cocktail (Thermo-Fisher;
cat# PIA32959). Total protein content was quantified by Bradford
assay (Thermo-Fisher, cat# 23236).

For eIF2α phospho-immunoblot analysis, 50 µg of total
protein was separated on a 12% (w/v) SDS-PAGE gel and
electroblotted onto polyvinylidene fluoride (PVDF) membrane.
After 1 h of blocking at 22◦C with TBST buffer [1 × Tris-
buffered saline (pH 7.6), 0.1% Tween-20] with 10% non-fat dry
milk and 0.2% BSA, the membrane was washed 10 min each
for 10 repeats and then incubated overnight at 4◦C with rabbit
polyclonal phospho-eIF2α antibody (Cell Signaling, cat # 9712S)
diluted to 1:5000 in 1 × TBST with 0.5% BSA. Following washing
with 1 × TBST, 10 min each for fifteen repeats, the membrane
was incubated with horseradish peroxidase conjugated anti-
rabbit IgG (Vector labs, cat# PI-1000) diluted to 1:2000 in
1 × TBST with 1% non-fat dry milk for 1 h at room temperature.
After washing with 1 × TBST, 10 min each for 15 repeats,
horseradish peroxidase was detected using chemiluminescence
(WesternBright Quantum, Advansta) as per the manufacturer’s
protocol. For immunoblot with rabbit polyclonal eIF2α antibody
(a gift from Dr. Karen Browning, University of Texas, Austin), 5
µg of total protein was resolved by SDS-PAGE and electroblotted
onto a polyvinylidene difluoride (PVDF) membrane. Blocking
and incubation with antibodies were performed as previously
described (Dennis et al., 2009) followed by chemiluminescent
detection (Lokdarshi et al., 2016). Signal intensities on all
immunoblots (Supplementary File S1) were quantified with
ImageJ (ver. 1.41)1.

1http://rsb.info.nih.gov/ij/index.html

FIGURE 1 | GCN2 kinase activation by cold is light dependent. (A) Top:
Schematic of the light regimen. Wild-type Landsberg [Wt (Ler)] seedlings were
grown for 14 days at 22◦C in a 16 h light/8 h dark cycle and shifted to 4◦C
starting 2 h after lights-on [8 a.m., zeitgeber time (ZT)2]. The red arrow at ZT2
indicates the start of sampling right before the beginning of cold treatment.
Bottom: Immunoblot showing the time course of eIF2α phosphorylation in
14-day-old Wt(Ler) and gcn2-1 mutant (gcn2-1) seedlings subjected to cold
stress as described in (A). Upper panel: Probed with phospho-specific
antibody against eIF2α-P (38 kDa). Middle panel: Rubisco large subunit
(∼55 kDa) as a loading control after Ponceau S staining of the blot. Lower
panel: Probed with antibody against eIF2α (38 kDa). (+), arbitrary amount of
total protein extract from glyphosate treated Wt seedlings indicating
unphosphorylated (eIF2α) or phosphorylated (eIF2α-P) protein; (10, 30, 120)
sampling time in minutes; (M) Molecular weight marker. Also shown on the
right is the variation in eIF2α-P levels (percent intensity) across the tested time
periods in Wt seedlings. Error bars represent standard. deviation from five
biological replicates. (B) Time course of eIF2α phosphorylation as in (A) but
with Wt seedlings maintained at 22◦C as a control. A cropped band at the top
of the blot indicates non-specific binding of the antibody. (C) eIF2α

phosphorylation in Wt seedlings under 4◦C in the dark. Seedlings were grown
in a 16 h light/8 h dark cycle, dark-acclimated for 24 h and shifted to 4◦C in
the dark. Time = 0 indicates the start of sampling in dark right before the cold
treatment.

Polysome Profiling and Protein
Fractionation
Tissue for polysome profiling was harvested as described for
total protein extraction. For polysome profiling with cold stress
tissue, seedlings were ground in liquid N2 and 0.5 g of tissue
powder was resuspended in 1 ml of polysome extraction
buffer [200 mM Tris–HCl, pH 8.4, 50 mM KCl, 25 mM
MgCl2, 1% deoxycholic acid, 2% polyoxyethylene-10-tridecyl
ether, 50 µg/ml cycloheximide, and 40 U/ml RNase inhibitor
(Promega Cat# N2115)] and centrifuged at 13,000 × g for
5 min at 4◦C. One milliliter of the supernatant was layered
onto a 10-ml 15–50% linear sucrose gradient prepared using
a Hoefer gradient maker and centrifuged at 35,000 rpm
(Beckmann SW 41 Ti) for 3.5 h at 4◦C. Absorbance at 254 nm
was recorded using an ISCO UA 5 absorbance/fluorescence
monitor and individual data points were extracted using the
DATA acquisition software (DATAQ instruments). Polysome-to-
monosome (P/M) ratios were calculated as previously described
(Enganti et al., 2018). For polysome profiling with salt stressed
tissue, 150 mg of tissue powder was resuspended in 100 µl
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FIGURE 2 | Salt stress activates GCN2 kinase in light. (A) Top: Schematic of the growth regimen. Wt seedlings were grown for 9 days at 22◦C in a 16 h light and 8 h
dark cycle. The red arrow at ZT2 indicates the start of sampling right before the beginning of salt stress treatment. Bottom: eIF2α phosphorylation in 10-day-old Wt
(Ler) and gcn2-1 mutant seedlings grown on medium containing 0.1% sucrose and shifted to mock conditions, or 300 mM mannitol or 150 mM NaCl. (B) Top:
Schematics of the growth regimen. Bottom: eIF2α phosphorylation in 10-day-old Wt seedlings after shifting to different concentrations of NaCl (75, 150, 225 mM).
Quantification of eIF2α phosphorylation at 30 and 120 min of NaCl treatment from two independent experiments is shown on the right. Error bars represent standard
deviation. (C) Top: Schematics of 24 h dark acclimation starting at ZT2. Bottom: eIF2α phosphorylation in dark-acclimated Wt seedlings shifted to 150 mM NaCl
(left) or to mock conditions (right). For details, see legend to Figure 1.

of polysome extraction buffer and centrifuged at 13,000 rpm
for 5 min at 4◦C. One hundred microliters of supernatant
was layered on a 2-ml 15–50% linear gradient prepared
as above and centrifuged at 50,000 rpm (Beckmann TLS55
rotor) for 1 h 10 min at 4◦C. Absorbance was measured as
described above.

Hydrogen Peroxide Quantification
H2O2 content in seedlings was measured using the Amplex Red
kit (Thermo-Fisher, cat# A22188). Briefly, 30 mg of 2-week-
old seedlings were flash frozen in liquid N2 and ground with a
plastic pestle to a homogeneous powder. Pulverized tissue was
resuspended in 100 µl of sterile 1 × phosphate buffered saline
(PBS) and centrifuged at 17,000 × g at 4◦C for 2 min and
the supernatant was used for H2O2 measurements as per the
manufacturer’s protocol. Relative fluorescence was measured on
a POLARstar OPTIMA plate reader (BMG LABTECH) with an
excitation filter at 535 nm and emission filter at 600 nm.

ROS Localization and Microscopic
Techniques
Subcellular detection of ROS in Arabidopsis leaves was
performed similar to Lokdarshi et al. (2020). Briefly, seedlings
were submerged in 15 µM H2DCFDA (Thermo-Fisher, cat#
D339) for 4–5 min in the dark. After rinsing seedlings twice
with deionized water, ROS were imaged on a Leica SP8 laser
scanning confocal microscope using the HeNe laser in the
Advanced Microscopy and Imaging Facility at The University of
Tennessee, Knoxville. The excitation filter was set to 488 nm and
the emission filter was set to 500–550 nm for H2DCFDA and to

660–690 nm for chlorophyll autofluorescence. Confocal z-stack
images were processed using ImageJ (ver. 1.4)1.

Photosynthetic Efficiency Measurement
The maximum quantum yield of photosystem II (PS II)
[Qymax = Fv/Fm] was measured on a FluorCam 800MF (Photon
Systems Instruments) as per the manufacturer’s instructions and
modifications from Murchie and Lawson (2013). Briefly, plants
were dark adapted for 2 min (F0) prior to applying a saturating
pulse of 1800 µEin m−2 s−1 for 0.8 s (Fm). Variable fluorescence
(Fv) was calculated as the difference between Fo and Fm to get
the maximum quantum yield [Fv/Fm]. For measurements under
cold stress, pots with rosette stage wild-type and gcn2 mutant
plants on soil were shifted to cold (4◦C) or left at 22◦C (mock),
and measurements were taken for the indicated times. Recovery
from cold was done by moving the pot back to 22◦C. For Fv/Fm
under salt stress, 3-day-old seedlings grown on 0.1% sucrose were
shifted to 1/2X MS plant media supplemented with 150 mM
NaCl or no salt as control (Mock) and Fv/Fm measurements were
recorded as discussed above.

RESULTS

GCN2 Kinase Activation Under Cold
Stress Is Light Dependent
Previous reports (Lageix et al., 2008; Wang et al., 2017) showed
eIF2α phosphorylation as a read out of GCN2 activity under
cold stress. Given that the response to cold stress is closely
linked to photosynthesis (Crosatti et al., 2013; Adam and Murthy,
2014; Zhu, 2016), we tested whether the activation of GCN2
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FIGURE 3 | Antioxidant and photosynthetic inhibitors mitigate GCN2 kinase
activation under cold and salt stress. (A) Time course of eIF2α

phosphorylation in Wt seedlings grown on medium supplemented with
0.5 mM ascorbate and reduced glutathione for 10 days and shifted to
150 mM NaCl with either antioxidants (Asc + GSH) or mock control. Seedlings
were transferred at ZT2 and harvested at 0, 10, 30, and 120 min. The graph
shows eIF2α phosphorylation signals from three independent experiments
with average, individual data points, and standard deviations. (B,C) eIF2α

phosphorylation in Wt seedlings treated with either DMSO control (Mock), 8
µM of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), or 16 µM of
2,5-Dibromo-6-isopropyl-3-methyl-1,4-benzoquinone (DBMIB) 30 min prior to
treatment for 2 h with (B) 150 mM NaCl or (C) 4◦C cold. Welch’s unpaired
t-test P-values for comparisons against NaCl/cold were *** < 0.001,
** < 0.01. For details see legend to Figures 1, 2.

under cold stress was light-dependent. In wild-type Arabidopsis
seedlings subjected to 4◦C cold in the light, phosphorylation
of eIF2α increased gradually and remained high for at least
2 h of cold treatment. As expected, eIF2α phosphorylation
was mediated by GCN2 (Figure 1A). In contrast, if the cold
treatment was performed in dark-adapted plants, eIF2α remained
unphosphorylated (Figure 1C). Under regular temperature
conditions in the light, eIF2α-P remained steady between
ZT2 and ZT4 (Figure 1B). Additionally, under all the test
conditions, the overall amount of eIF2α remained unchanged
(Figures 1A–C). These results show that GCN2-dependent eIF2α

phosphorylation under cold stress is light dependent.

Salt Stress Activates GCN2 in a Light
Dependent Manner
eIF2α has been shown to get phosphorylated in response to
salt stress in mammals (Lu et al., 2001) and yeast (Goossens
et al., 2001). To determine this response in plants, Arabidopsis
seedlings grown in long-day period were shifted to 150 mM
sodium chloride or an osmotically matched control (300 mM
mannitol) (Figure 2A). Similar to other eukaryotes, salt
treatment triggered eIF2α phosphorylation within 2 h only in the
wild type but not in the gcn2-1 mutant seedlings (Figure 2A). In
addition, mock transfer and mannitol (osmotic control) did not

activate GCN2. The increase in eIF2α-P was dosage dependent
(Figure 2B). Similar to cold stress, salt stress has also been linked
to adverse effects on chloroplasts in terms of photosynthesis and
ROS accumulation (Parida and Das, 2005; Zhu, 2016; Suo et al.,
2017; Robles and Quesada, 2019). To test the role of light under
salt-triggered GCN2 activation, Arabidopsis seedlings were dark
adapted for 24 h and shifted to salt or mock media. Salt treatment
in the dark failed to activate GCN2 in wild-type seedlings, similar
to the transfer control (Figure 2C). Taken together, both cold and
salt stress require light to activate GCN2.

Antioxidants and Photosynthetic
Inhibitors Alleviate GCN2 Activity
In the light, low temperature and salt both affect PS II, resulting
in an increase in the PS II excitation pressure, which generates
damaging ROS, including hydrogen peroxide (Gray et al., 1996;
Huner et al., 1998; Fowler and Thomashow, 2002; Murata et al.,
2007). To address the role of photosynthetic electron transport
for GCN2 activity, herbicides that manipulate the plastoquinone
(PQ)/plastoquinol (PQH2) pool, 3-(3,4-dichlorophenyl)-1,1-
dimethyl urea (DCMU), and 2,5-dibromo-3-methyl-6-isopropyl-
p-benzoquinone (DBMIB) were applied shortly prior to the
cold and salt treatments. DCMU keeps the PQ pool more
oxidized (PQ) and DBMIB more reduced (PQH2) (Mateo et al.,
2004; Kruk and Karpinski, 2006). Both herbicides suppressed
salt- and cold stress-triggered GCN2 activation (Figures 3B,C).
Prolonged cold and short salt stress (1 h or more) lead to
ROS accumulation (Yao et al., 2018; Yuan et al., 2017). Here,
we show that 2 h cold and salt treatments triggered mild but
perceptible ROS accumulation in Arabidopsis seedlings, which
was photosynthesis-dependent (Supplementary Figures 1A–D).
To test whether ROS may contribute to GCN2 activation under
cold and salt stress, seedlings were grown in the light on medium
containing ascorbate and reduced glutathione before challenge
with cold or salt stress. These antioxidants delayed the GCN2

FIGURE 4 | Loss of GCN2 renders increased sensitivity toward cold stress.
(A) Top: Representative images of 3-day-old Wt (Ler) and gcn2-1 mutant
seedlings grown under a 16 h light/8 h dark cycle (long day, LD) at 22◦C.
Seedlings were grown on medium with 0.1% sucrose for 3 days and
transferred to no sucrose (day 0). Bottom: Same seedlings after 30 days of LD
cycle at 4◦C. Scale bars are 10 mm. (B) Primary root length of Wt and gcn2-1
mutant seedlings from (A). Error bars indicate standard error of the mean from
four biological replicates with n > 80 per experiment (Welch’s t-test
*P < 0.05).
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FIGURE 5 | gcn2 mutants are more sensitive to salt stress. (A) Wt (Ler) and gcn2-1 mutant seedlings were grown under a 16 h light/8 h dark cycle for 3 days on
plant medium supplemented with 0.1% sucrose. On day 3, seedlings were transferred to new plates with 0.1% sucrose and 150 mM NaCl (salt treatment), 300 mM
mannitol (osmotic control), or no supplement (mock). Root growth was recorded for another 9 days. Scale bar is 10 mm. Seedlings that bleached out and died are
indicated by asterisks. (B) Primary root length of Wt and gcn2-1 mutants from (A), excluding dead seedlings. Error bars indicate standard error of the mean of four
biological replicates with n > 36 per experiment (Welch’s t-test *P < 0.05; **P < 0.005).

activation, albeit weakly in the salt (Figure 3A) and not in the
cold (not shown), possibly because antioxidants may be barely
rate-limiting under these conditions. We acknowledge that the
time course of eIF2α-P was faster than the apparent increase
in ROS accumulation. That we failed to detect ROS sooner
may be because ROS are an unstable and variable signal with a
considerable basal level in the plant and often accumulate locally,
while eIF2α-P is an endpoint signal that reports on an inherent
signal amplification, the enzymatic kinase activity of GCN2.
Taken together, these results, along with the light dependence
of cold and salt stress on GCN2 activation, support the notion
that chloroplast generated signals, possibly including ROS or
redox signals, contribute to the activation of GCN2, leading to
eIF2α phosphorylation.

gcn2 Mutant Sensitivity Toward Cold and
Salt Stress
To determine the role of GCN2 specifically under cold and salt
stress conditions at the whole plant level, an established GCN2
mutant allele (gcn2-1) (Lageix et al., 2008; Zhang et al., 2008) in
the Landsberg ecotype and a homozygous T-DNA insertion allele
of GCN2 in the Columbia ecotype (gcn2-2) (Faus et al., 2018)
were tested for phenotypic abnormalities. Under normal growth
conditions, gcn2-1 mutants were indistinguishable from wild type
in terms of both shoot and primary root growth (Figures 4A,B).
However, after challenge with cold stress, gcn2-1 mutant root
lengths were retarded compared to wild type (Figures 4A,B) as
were gcn2-2 mutants (Supplementary Figures 2A,B). Of note,
the defect in overall growth in the gcn2 mutants could not be

attributed to any defects in the photosynthetic quantum efficiency
(Supplementary Figures 3A,B).

Similar to the root growth retardation in the cold, exposure
of seedlings to 150 mM NaCl salt also retarded primary root
growth in the gcn2 mutants (Figures 5A,B and Supplementary
Figures 4A,B). Additionally, some gcn2 mutants developed
extreme chlorosis and root growth arrest by days 6 and 9
(Figure 5A and Supplementary Figure 4A: denoted by asterisks).
These effects were specific to salt and not seen in the osmotic
control (mannitol) and transfer control (mock) treatments. The
growth defect of the gcn2 mutant on salt was evident by day
6 and resulted in a significant loss of fresh weight and percent
survival by day 9 (Figures 6A,B). As previously seen for cold
stress, the quantum efficiency of PS II declined similarly for gcn2
and wild type under salt stress (Supplementary Figure 5). In
these experiments, we noticed that the gcn2 mutant strains have
an increased probability as compared to wild type to assume a
state of virtual root growth arrest, an effect that was particularly
pronounced in the Col ecotype (Supplementary Figures 2, 4).
We conclude that the GCN2 promotes adaptation of seedlings
to cold and salt stress, specifically by increasing the probability
that the seedlings can maintain root growth homeostasis under
stress challenge.

mRNA-Ribosome Loading Under Cold
and Salt Stress
GCN2 activity has been implicated in the down-regulation of
mRNA translation under a variety of stress conditions (Lageix
et al., 2008; Zhang et al., 2008; Liu et al., 2015a; Wang et al., 2017;
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Llabata et al., 2019). To test the role of GCN2 in global mRNA
translation under cold and salt stress, gcn2 mutant and wild-
type seedlings were challenged with the respective stresses under
light. Polysome profiles from sucrose density gradients revealed
overall similar profiles and polysome-to-monosome ratios for
wild-type and gcn2 under both normal growth conditions
(Figure 7A) and after cold stress (Figures 7B,C). Likewise, in
response to salt stress, both wild-type and gcn2 mutant displayed
similar polysome profiles (Figure 8). The trend toward slightly
elevated ribosome loading in gcn2-1, while not uncommon,
was not statistically significant. The lack of a clear effect on
global polyribosome loading stands in contrast to data after
herbicide treatment where ribosome loading declines in a GCN2-
dependent manner (Lageix et al., 2008; Lokdarshi et al., 2020).
Thus, with cold and salt, we have identified stress conditions that
trigger eIF2α phosphorylation without causing transcriptome-
wide translational repression across the entire plant.

DISCUSSION

The GCN2-eIF2α module is an integral component of a pan-
eukaryotic stress response program. In yeast and mammals,
GCN2 is activated by binding to uncharged tRNAs via its
C-terminal HisRS domain. In plants, GCN2 kinase is activated
under a wide range of abiotic stresses (e.g., UV light, cold,
wounding), synthetic agents (e.g., herbicides, purine starvation),
hormones (e.g., methyl jasmonate, salicylic acid, abscisic acid),
and live bacterial pathogen (e.g., Pseudomonas syringae). More
recently, Arabidopsis GCN2 was found to be activated in
response to H2O2 directly, as well as excess light stress and
methyl viologen, treatments that produce ROS (Lokdarshi et al.,
2020). In the present study, we show that both cold and
salt challenge not only activate eIF2α-P but require light to
do so, similar to our recent findings of GCN2 activation in
response to herbicide. Taken together, our study suggests that
the highly conserved GCN2-eIF2α module is activated in a
common manner by different stresses, possibly by ROS, given
that H2O2 is the only known signal to activate GCN2 in darkness
(Lokdarshi et al., 2020). The precise biochemical mechanism
remains to be determined.

Biochemically, the only known ligand to activate plant GCN2
in vitro are uncharged tRNAs, which presumably accumulate
in the cell during amino acid starvation. Whether uncharged
tRNAs are necessary and sufficient to activate GCN2 in planta
under all stress conditions remains unclear. It is plausible that
tRNA is bound to GCN2 as a coactivator but that additional
signals are needed to boost kinase activity to physiologically
relevant levels. Of note, recently, Inglis and coworkers reported
that mammalian GCN2 can be activated in a tRNA-independent
mechanism by the ribosomal P-stalk protein complex (Sattlegger
and Hinnebusch, 2000; Inglis et al., 2019). The mechanism of how
GCN2 is activated in planta by tRNAs and ROS may also depend
on the GCN2 interacting proteins GCN1 and GCN20 (Wang
et al., 2017; Faus et al., 2018; Izquierdo et al., 2018), similar to
yeast and mammals; however, plastidic ROS as a GCN2 activation
signal is unique to plants.

FIGURE 6 | gcn2 mutants accumulate less fresh weight and exhibit low
survival under salt stress. (A) Left panel: Fresh weight (grams) of Wt(Ler) and
gcn2-1 mutant seedlings after 9 days of growth on 300 mM mannitol or
150 mM NaCl, or no supplement (Sucrose). The medium for all seedlings
contained 0.1% sucrose. Right panel: Percent survival of Wt and gcn2-1
mutant seedlings at days 6 and 9 on 150 mM NaCl. Data include the
experiment in Figure 5. (B) Fresh weight and percent survival of wild-type
Columbia [Wt (Col)] and gcn2-2 mutant (gcn2-2) seedlings at days 6 and 9 on
150 mM NaCl. Data include the experiment in Supplementary Figure 4.
Error bars indicate standard error of the mean of four biological replicates with
n > 36 per experiment (Welch’s t-test *P < 0.05; **P < 0.005).

It remains unclear whether and how the GCN2-mediated
phosphorylation of eIF2α under various conditions drives global
translational repression as seen at the level of polyribosome
loading, and how this response supports plant growth and
development. The clearest causal chain of events is observed
with herbicides that inhibit amino acid synthesis, where
activation of GCN2 kinase by herbicide in the presence of
light-conditioned ROS causes eIF2α phosphorylation, followed
by global translational repression, which is disrupted in the
gcn2 mutant (Lageix et al., 2008; Lokdarshi et al., 2020).
Moreover, the gcn2 mutant is hypersensitive to herbicide (Zhang
et al., 2008; Izquierdo et al., 2018), all in keeping with a
simple, linear signaling pathway. However, it is much less
clear how other GCN2-targeted abiotic stimuli affect translation,
notwithstanding that it has been confirmed multiple times that
eIF2α phosphorylation is always mediated by GCN2. Here, we
showed that upon cold treatment, eIF2α became phosphorylated
by GCN2, but with no detectable translational repression by
either cold or GCN2 kinase, although gcn2 mutants were
cold sensitive. We observed the same result for salt stress.
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FIGURE 7 | Ribosome-RNA profile of wild-type and gcn2-1 under standard growth conditions and cold stress. Top: (A,B) Schematic of light regimen showing
seedling growth in long-day period (16 h light and 8 h dark) indicating the beginning of cold (4◦C) treatment starting at ZT2 (blue arrow) and the sampling time at ZT4
(red arrow). Bottom: UV absorbance profile at 254 nm of 14-day-old wild-type Landsberg [Wt(ler)] and gcn2-1 mutant (gcn2-1) seedlings at (A) 22◦C at ZT4 (Mock)
or subjected to cold at 4◦C (B) for 2 h, or (C) for 24 h under a long-day period. The positions of the 40S, 60S, 80S, and the polysomes are indicated on the profiles.
The ratio of polysomes (P) to monosomes (M) is indicated with standard error from three replicates.

Of note, salt stress at slightly higher intensity in rice (Ueda
et al., 2012), but not cold stress in Arabidopsis (Juntawong
et al., 2013), cause a drop in global ribosome loading. As
for ROS, which we consider the most immediate activator
of the GCN2 kinase, this stress represses translation as well
as plant growth, but neither is detectably GCN2-dependent
(Lokdarshi et al., 2020). The same pattern was seen in response
to DTT and antimycin A (Izquierdo et al., 2018). Under high
light, which is likely another relevant trigger of GCN2 in
the natural environment, again, there is no GCN2-dependent
translational repression, although gcn2 mutants are sensitive
to high light (Lokdarshi et al., 2020). For comparison, heat
and hypoxia both rapidly repress global translation (Branco-
Price et al., 2008; Matsuura et al., 2010; Yanguez et al., 2013),
but without any apparent phosphorylation of eIF2α. Taken
together, these observations clearly suggest that, despite the
seemingly simple sequence of events in response to certain
inhibitors of amino acid synthesis, not every instance of
eIF2α phosphorylation causes global translational repression,
and only some but not all instances of global translational
repression are conditioned on eIF2α phosphorylation. These
observations indicate that there must be additional translational
control pathways that cooperate with GCN2-mediated eIF2α

phosphorylation to organize the translatome under abiotic stress.
Candidates are GCN1/ILITHYIA (ILA) (Wang et al., 2017) and
GCN20-mediated (Izquierdo et al., 2018), autophagy-mediated
processes (Yoon and Chung, 2019), processes involving SnRK-
TOR signaling (Margalha et al., 2019), and stress granules
(Chantarachot and Bailey-Serres, 2018). This conclusion is also
in keeping with the emerging role of GCN2 in responses
to plant pathogens. Under certain conditions, pathogens or
effectors of immunity activate GCN2 or eIF2α phosphorylation
(Liu et al., 2015b), while in other conditions, they do
not (Zhang et al., 2008; Meteignier et al., 2017; Izquierdo
et al., 2018). Certain pathogens do trigger translational
reorganizations (Moeller et al., 2012; Xu et al., 2017) and
GCN2 is involved in responses to bacterial pathogens (Liu
et al., 2019; Lokdarshi et al., 2020) although the precise role of

FIGURE 8 | Ribosome-RNA profile of wild-type and gcn2 mutant under salt
stress. Representative UV absorbance (A254 nm) profile of 10-day-old
Wild-type Landsberg [Wt(Ler)] and gcn2-1 mutant (gcn2-1) seedlings after 2 h
of treatment with (A) 0.1% sucrose (Mock) or (B) NaCl. Seedling transfer was
performed as described in Figure 2. Positions of the 40S, 60S, 80S, and the
polysome are indicated on the profile.

GCN2 kinase signaling in defense-related translational control
remains to be defined.

Overall, the findings presented in this study add to a unified
model of the regulation of the cytosolic translation apparatus
via the highly conserved GCN2-eIF2α module under a variety of
abiotic stresses that may also extend to biotic stresses in plants.
In summary, we show that activation of GCN2 by cold and salt
stress is dependent on the redox state of the chloroplast, and
loss of GCN2 results in the increased sensitivity toward common
abiotic stress inputs, cold and salt. In the future, determining
what biochemical and molecular events lead to GCN2 activation
under these natural stress inputs will shed light on the integrated
stress response pathway in plants. Additionally, the regulation of
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global translation versus specific mRNAs that fall under stress
type regulation is also a subject of further investigation.
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