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Editorial on the Research Topic

SystemsBiology and Synthetic Biology inRelation toDrought Tolerance orAvoidance in Plants

Drought stress has been a long-time limitation to crop production that is being exacerbated by
climate change and associated reductions in the availability of blue water resources for agriculture.
Most existing food and industrial crops are susceptible to drought stress, which can cause a
significant loss in crop yield. Therefore, our ability to develop more climate-resilient crops that
are more heat and drought tolerant will become increasingly important in the near future. In
nature, plants have evolved two important mechanisms to overcome the effects of drought stress:
(1) drought avoidance, which enables plants to maintain relatively high tissue water content
in water-limited environments by minimizing water loss and optimizing water uptake, and (2)
drought tolerance, which enables plants to endure low tissue water content by maintaining cell
turgor (resulting from osmotic adjustment and cellular elasticity) and increasing protoplasmic
resistance (Basu et al., 2016). With more and more genomics resources available for diverse plant
lineages showing contrasting strategies and variation in drought avoidance or tolerance (Yin et al.,
2014; Abraham et al., 2016; Yang et al., 2017; Chen et al., 2018), systems biology, which features
genome-scale analysis of molecules and their interactions (Westerhoff and Palsson, 2004), is
becoming a popular approach to link genes to drought-avoidance or drought-tolerance traits. Our
knowledge about the genes associated with drought stress responses generated by systems biology
research can inform the construction of libraries of biological parts for synthetic biology, which
aims to design or re-design biological processes (Cook et al., 2014). Synthetic biology has great
potential for creating genetically-modified plants with enhanced drought avoidance or tolerance
(Borland et al., 2014; De Paoli et al., 2014; Llorente et al., 2018). This Research Topic features three
articles on the theme of systems biology of crassulacean acidmetabolism (CAM) as amodel strategy
for plant adaptation to water-limited conditions and four articles related to genetic improvement of
plant drought avoidance or tolerance using synthetic biology and genetic engineering approaches.
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IDENTIFICATION OF CAM-RELATED

GENES USING SYSTEMS BIOLOGY

APPROACH

CAM photosynthesis enables drought avoidance and high
water-use efficiency (WUE) in plants through an inverted
day/night pattern of stomatal movement relative to C3 or
C4 photosynthesis plants, with stomata closed during daytime
to reduce water loss via evapotranspiration (Borland et al.,
2009; Yang et al., 2015). In this Research Topic, Moseley,
Tuskan et al., compared diel gene expression patterns between
one obligate CAM species Kalanchoë fedtschenkoi and two
C3 photosynthesis species (Arabidopsis thaliana and Solanum
lycopersicum). They identified 16 ortholog groups (OGs)
containing stomata-related genes showing rescheduled (dawn vs.
dusk) gene expression in the CAM species in comparison with
the two C3 species. Furthermore, they performed evolutionary
genomics analysis of these 16 OGs and highlighted several genes,
such as serine/threonine-protein kinase nak1 and Catalase 2, as
candidates regulating stomatal movement in CAM plants via
abscisic acid (ABA) signaling and hydrogen peroxide (H2O2)
signaling, respectively. Also, in this Research Topic, Heyduk
et al. performed comparative analysis of time-course gene
expression between two closely-related species in the genus
Erycina, E. pusilla and E. crista-galli, which are CAM and
C3 photosynthesis plants, respectively. Their analysis revealed
differential expression networks of genes involved in light sensing
and ABA signaling between the C3 and CAM Erycina species.
CAM physiology is likely controlled by the circadian clock
(Boxall et al., 2017; Yang et al., 2017). In this Research Topic,
Moseley, Mewalal et al. performed genome-wide prediction
of rhythmic gene sets in the CAM species K. fedtschenkoi
and C3 photosynthesis species A. thaliana through analysis of
time-course gene expression data and identified CAM-related
rhythmic genes, which displayed phase shifts between these two
species. Recently, knock-down and knock-out mutant lines were
generated for some CAM-related genes using RNA interference
(RNAi) (Boxall et al., 2017, 2020) or genome-editing mediated
by clustered regularly interspaced short palindromic repeats
(CRISPR) and CRISPR-associated protein 9 (Cas9) (Liu et al.,
2019). Multi-scale modeling of CAM systems at the molecular,
cellular, and leaf level is needed to gain a deep understanding of
gene and metabolic networks associated with CAM physiology
(Liu et al., 2018). In the future, multi-omics (i.e., genomics,
transcriptomics, metabolomics, proteomics) data will need to
be generated for CAM plant species and their mutant lines for
constructing gene and metabolic networks relevant to CAM.

GENETIC IMPROVEMENT OF PLANT

DROUGHT RESISTANCE USING

SYNTHETIC BIOLOGY AND GENETIC

ENGINEERING APPROACHES

Engineering of CAM-related genes in C3 plants has great
potential for genetic improvement of water-use efficiency and
drought resistance (Borland et al., 2014; Yang et al., 2015).

Comparative analysis of leaf metabolic networks between CAM
and C3 plants indicates that CAM-engineering in C3 crops
could result in a major increase in water-use efficiency without
substantial negative impact on yield (Shameer et al., 2018).
CAM-engineering is likely to prove a challenging task, requiring
a synthetic biology approach for precise control of temporal
and spatial expression of multiple gene modules responsible
for carboxylation, decarboxylation, stomatal movement, and
leaf anatomy. In this Research Topic, Lim et al. showed
exciting progress in transferring individual CAM carboxylation
and decarboxylation genes from the facultative CAM species
Mesembryanthemum crystallinum (ice plant) to the C3 species
A. thaliana. Over-expressing each individual gene of the M.
crystallinum carboxylation module (containing 6 genes) and
decarboxylation module (containing 7 genes), except for three
genes (McNADP-MDH1, McPPDK-RP, and McPEPCK), under
the control of the constitutive CaMV 35S promoter, increased
plant size (in term of rosette diameter, leaf area, and leaf
fresh weight) in the transgenic A. thaliana plants. Over-
expression of most carboxylation genes increased stomatal
conductance and acid accumulation while over-expression of the
decarboxylating malic enzymes reduced stomatal conductance
and acid accumulation. This study is an important milestone
in CAM-engineering. Future research will be needed to test
the coordinated over-expression of combinations of these
carboxylation and decarboxylation genes in the same temporal
and spatial manner as displayed by CAM species.

In general, drought stress experienced by crop plants is
seasonal. Therefore, engineering drought-inducible CAM (or
CAM-on-demand) systems would be ideal. In nature, CAM
can be induced by drought stress in facultative CAM plants,
which perform C3 photosynthesis under well-watered conditions
(Winter, 2019; Yang et al., 2019a). In this Research Topic,
Amin et al. proposed a strategy for engineering of CAM-
on-demand systems based on the engineering of drought-
responsive transcription factors (TFs) in multiple gene families
(e.g., AP2/ERF, MYB, WRKY, NAC, NF-Y, bZIP) from the
facultative CAM plant M. crystallinum and obligate CAM
plant K. fedtschenkoi. The study showed that overexpression of
a drought-responsive NAC family gene from K. fedtschenkoi
(KfNAC83) in A. thaliana enhanced resistance to water-deficit
stress and increased WUE. In the future, establishing the
regulatory relationship between the drought-responsive TFs and
CAM pathway genes will be necessary to establish CAM-on-
demand systems.

Drought-responsive genes in C3 or C4 photosynthesis plant
species are a rich source of target genes for genetic engineering
to improve drought tolerance (Umezawa et al., 2006; Kamthan
et al., 2016). In this Research Topic, Chen et al. increased the
drought tolerance in rice through over-expression of a drought-
inducible rice gene OsNAR2.1 encoding a nitrate transporter
partner protein. Also, in this Research Topic, Lian et al.
demonstrated that ectopic expression of a Populus trichocarpa
gene (PtNF-YA9), which encodes a NUCLEAR FACTOR Y
transcription factor, enhanced drought tolerance in the vegetative
growth stage in Arabidopsis. A key focus for future research
will be to test if overexpression of PtNF-YA9 can increase

Frontiers in Plant Science | www.frontiersin.org 2 April 2020 | Volume 11 | Article 394

https://doi.org/10.3389/fpls.2019.00292
https://doi.org/10.3389/fpls.2018.02000
https://doi.org/10.3389/fpls.2018.01757
https://doi.org/10.3389/fpls.2019.00101
https://doi.org/10.3389/fpls.2019.00129
https://doi.org/10.3389/fpls.2019.00197
https://doi.org/10.3389/fpls.2018.00954
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Yang et al. Synthetic Biology of Drought Resistance

biomass production in poplar, an important C3 bioenergy crop,
under drought conditions. Besides OsNAR2.1 and PtNF-YA9,
many other genes are also responsible for drought resistance
(Singh et al., 2019). In the future, genetic circuits (e.g., toggle
switches, feedback loops, Boolean logic gates) (Kassaw et al.,
2018) combining CAM genes and drought responsive TFs
through iterative design-build-test-learn cycles will be required
for drought avoidance and drought tolerance, respectively. For
example, Boolean logic gates, which utilize Boolean algebra to
convert multiple input signals into truth values of 1 if true or 0 if
false (Andres et al., 2019), can be used to control the expression of
genes related to drought tolerance through integrating drought-
induced positive and negative transcriptional regulators. Also,
synthetic oscillator comprising positive and negative feedback
loops (Andres et al., 2019) and circadian clock-regulated
toggle switch (Schmal et al., 2013) need to be created for
controlling the temporal (i.e., day vs. night) expression of
genes related to CAM and stomatal movement in the C3

plant species.

CONCLUDING REMARKS

This Research Topic has identified important candidate genes
underpinning drought avoidance and tolerance through systems
biology research and has also demonstrated the potential of
synthetic biology and genetic engineering for increasing drought
resistance in plants. With genomics research shifting from
genome-reading to genome-editing and rewriting (Yang et al.,
2019b), the knowledge generated in this Research Topic will
facilitate future efforts in designing climate-resilient crops for
reducing yield losses and expanding the production of food and
bioenergy crops to marginal lands.
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