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Many plant species are able to regenerate adventitious roots either directly from aerial
organs such as leaves or stems, in particularly after detachment (cutting), or indirectly,
from over-proliferating tissue termed callus. In agriculture, this capacity of de novo root
formation from cuttings can be used to clonally propagate several important crop plants
including cassava, potato, sugar cane, banana and various fruit or timber trees. Direct
and indirect de novo root regeneration (DNRR) originates from pluripotent cells of the
pericycle tissue, from other root-competent cells or from non-root-competent cells that
first dedifferentiate. Independently of their origin, the cells convert into root founder
cells, which go through proliferation and differentiation subsequently forming functional
root meristems, root primordia and the complete root. Recent studies in the model
plants Arabidopsis thaliana and rice have identified several key regulators building in
response to the phytohormone auxin transcriptional networks that are involved in both
callus formation and DNRR. In both cases, epigenetic regulation seems essential for the
dynamic reprogramming of cell fate, which is correlated with local and global changes
of the chromatin states that might ensure the correct spatiotemporal expression pattern
of the key regulators. Future approaches might investigate in greater detail whether and
how the transcriptional key regulators and the writers, erasers, and readers of epigenetic
modifications interact to control DNRR.

Keywords: root regeneration, adventitious roots, DNRR, callus, pluripotency, transcriptional networks,
epigenetics

INTRODUCTION

During embryogenesis of higher plants, the shoot apical meristem (SAM) and the root apical
meristem (RAM) are established at the opposite poles of the central axis. It is assumed that all other
meristems derive from these two types of embryonic meristems, although all secondary SAMs or
RAMs arise from partially differentiated cells, which need to go through reprogramming to become
meristematic cells again. Root branching is based on these de novo RAMs that give rise to extensive
root networks enabling plants to gain a stable hold in the ground, explore the soil and facilitate the
uptake of water and mineral nutrients (Casimiro et al., 2003; Gonzali et al., 2005). Although the
root system is genetically determined, they display a high plasticity in response to environmental
variables such as water availability, nutrient levels, physical barriers or damage (Al-Ghazi et al.,
2003; Sena and Birnbaum, 2010; Sugimoto et al., 2010; van Norman et al., 2013).
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In dicotyledonous plants, such as Arabidopsis thaliana
(Arabidopsis), the primary root grows as a thick central
taproot (Bellini et al., 2014). Lateral roots (LRs) emerge post-
embryonically and derive from pericycle cells close to the
xylem pole cells of the primary root (De Smet et al., 2006);
nonetheless, the morphology of primary root and LRs is basically
identical (Birnbaum, 2016). Furthermore, adventitious roots
(ARs) can be formed directly from various aerial organs (Fattorini
et al., 2018) or indirectly from callus (Verstraeten et al., 2014).
Depending on the status of the AR source cells, they can be
directly fate-converted to AR root founder cells by a root-
inducing signal or they first have to acquire root competence
involving dedifferentiation (Druege et al., 2019). The natural
ability of plants to regenerate is widely used in tissue culture,
modern horticulture, and agriculture (Sussex, 2008; Druege and
Franken, 2019). In rice and other cereals, ARs represent the main
components of the root system as the primary root originating
from the embryonic RAM is short-lived. During post-embryonic
development, shoot-borne ARs form from nodes of the stem
(Kawata et al., 1963; Liu et al., 2005). Some researchers prefer
the term shoot-borne crown roots for these type of ARs, because
they are part of the normal developmental program of cereals
(Hochholdinger et al., 2004; Zhao et al., 2009). Nevertheless,
ARs are also a common part of the regular root system of
Arabidopsis under natural growth conditions in soil (Sheng et al.,
2017). In recent years, research on plant root systems has made
significant progress not only on natural root development but
also on de novo root regeneration (DNRR). Besides classical
DNRR research, which deals with the origin of ARs, some root
regeneration studies have focused on reestablishment of the main
RAM after pruning the root meristem tip (Efroni et al., 2016) or
the replacement of single cells (Marhava et al., 2019). Here, we
will give an overview of root regeneration systems and describe
how recent breakthroughs in the model plants Arabidopsis and
other plant species have changed our view of the molecular
basis of cell fate reprogramming during DNRR focusing on
transcriptional and epigenetic gene regulation. Furthermore, we
will provide a short summary of the role of phytohormone
signaling in DNRR, but the reviews of Lakehal and Bellini (2019)
and Druege et al. (2019) provide a more comprehensive view
on hormonal crosstalk and hormone-metabolic interactions in
excision-induced AR formation.

Abbreviations: ABA, Abscisic acid; ALF4, ABERRANT LATERAL ROOT
FORMATION4; ARFs/7/10/16/19, AUXIN RESPONSE FACTORs/7/10/16/19;
ALR1, ARG1-Like1; ARP, adventitious root primordia; AR, adventitious
root; ASA1, ANTHRANILATE SYNTHASEα1; AtGCN5, Arabidopsis thaliana
GENERAL CONTROL NON-REPRESSED5; ATX1/2, ARABIDOPSIS THALIANA
TRITHORAX1/2; ATXR3, ARABIDOPSIS THALIANA TRITHORAX-RELATED3;
Aux, Auxin; AuxREs, auxin response elements; BR, Brassinosteroid; CEP,
Cys endopeptidase; ChIP, chromatin immunoprecipitation; CIM, Callus-
inducing medium; CK, Cytokinin; CLF, CURLY LEAF; COI1, CORONATINE
INSENSITIVE1; DAPA, DNA-affinity precipitation assay; DNRR, De Novo
Root Regeneration; EF, epigenetic factor; EMF2, EMBRYONIC FLOWER2;
EMSA, electrophoretic mobility shift assay; ERF109/115, ETHYLENE RESPONSE
FACTOR109/115; ET, Ethylene; GA, Gibberellin; H3K27me3, tri-methylation
on Lys27 of histone H3; HAG1, HISTONE ACETYLTRANSFERASE OF
THE GNAT FAMILY1; HMT, histone methyltransferase; IAA, indole-
acetic acid; IAA14, INDOLE-ACETIC ACID14; IAMT1, IAA CARBOXYL
METHYLTRANSFERASE1; IBA, indolebutyric acid; IPA, indole-3-pyruvic

The Role of Auxin in DNRR Systems
Adventitious shoots and roots, derived from isolated or injured
tissues and organs, provide an important survival strategy for
plants in natural conditions (Duclercq et al., 2011; Sugimoto
et al., 2011; Chen et al., 2014). In 1957, Skoog and Miller
made the breakthrough discovery of experimentally induced
phytohormone-dependent de novo regeneration of shoot and
roots (Skoog and Miller, 1957). This gave rise to tissue culture
methods which are still in use today in agriculture, industry and
research (Duclercq et al., 2011). Hence, we can distinguish two
types of de novo shoot and root regeneration, one under tissue
culture conditions and the other in natural surrounding (Chen
et al., 2014; Yu et al., 2017). In tissue culture, isolated plant
tissues or organs named explants are cultured on nutrient-rich
media containing an appropriate ratio of the phytohormones
auxin and cytokinin, which can promote root or shoot formation
in a controlled manner (Skoog and Miller, 1957). Under natural
conditions, isolated organs can produce adventitious shoots and
roots, and in some cases form whole plants: for example, some
species from the Crassulaceae family are able to regenerate shoots
and roots from leaves placed on soil (Chen et al., 2014; Xu and
Huang, 2014; Ikeuchi et al., 2016). Nevertheless, endogenous
hormones are crucial to induce adventitious shoot and root
formation under natural conditions, for example in petunia, polar
auxin transport and early IAA accumulation are essential for AR
formation (Ahkami et al., 2013; Xu and Huang, 2014).

Auxin plays an important role in root growth and
development, especially in LR and AR initiation (Klerk
et al., 1999; Overvoorde et al., 2010; Lavenus et al., 2013; Bellini
et al., 2014). ARs initiate near the wounding site of detached
organs, which likely depends on auxin accumulation in the area
(Liu et al., 2014). ARs can form from young Arabidopsis leaves
without application of exogenous auxin, whereas exogenous
auxin can increase the chance of root regeneration from older
leaves that have decreased levels of endogenous auxin (Shoji
et al., 1951; Chen et al., 2014). In addition, DNRR from most
trees and other hard-to-root plants requires the application of
exogenous auxin to induce ARs (Klerk et al., 1999; Díaz-Sala,
2014). The earliest studies on DNRR were carried out by
Zimmerman and Hitchcock (1935) using aerial roots of grapes
(Vitis sp.). These did not develop LRs until touching the soil,

acid; JA, Jasmonic acid; JA-Ile, jasmonoyl-isoleucine; JAZ, JASMONATE ZIM-
domain; JMJ705, JUMONJI705; Kac, (histone) lysine acetylation; LBDs/16/19,
LATERAL ORGAN BOUNDARIES DOMAINs/16/19; LR, lateral root; LRP,
lateral root primordia; MEA, MEDEA; NAA, alpha-naphthaleneacetic acid;
NAC1, NAM/ATAF/CUC domain1; NIT2, NITRILASE2; Os, Oryza sativa; PcG,
Polycomb Group; PINs/1/2/3/5/7, PIN-FORMEDs/1/2/3/5/7; PKL, PICKLE;
PKR, PICKLE RELATED; PLT1/2/3/5/7, PLETHORA1/2/3/5/7; PRC2, Polycomb
Repressive Complex2; QC, quiescent center; RAM, root apical meristem; REF6,
RELATIVE OF EARLY FLOWERING6; RIM, root-inducing medium; SAM,
shoot apical meristem; SAW1/2, SAWTOOTH1/2; SCR, SCARECROW; SDG2,
SET-DOMAIN GROUP2; SHR, SHORT ROOT; SIM, shoot inducing medium; SL,
Strigolactone; SLR, SOLITARY ROOT; SWN, SWINGER; TAA1, TRYPTOPHAN
AMINOTRANSFERASE OF ARABIDOPSIS1; tar2-2, tryptophan aminotransferase
related2-2; TCP, teosinte-branched cycloidea PCNA; TF, transcription factor;
TIR1, TRANSPORT INHIBITOR RESISTANT1; Trp, Tryptophan; TrxG,
Trithorax Group; wei8-1, weak ethylene insensitive8-1; WOX5/7/11/12,
WUSCHEL-RELATED HOMEOBOX5/7/11/12; WUS, WUSCHEL; YUCs,
YUCCAs/1/2/4/6.
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however, several new roots occurred if the aerial roots were cut
and placed in solutions containing “root-forming” substances
(Zimmerman and Hitchcock, 1935). In the same year several
growth substances were tested for their ability to promote ARs
and alpha-naphthaleneacetic acid (NAA) and indolebutyric
acid (IBA) were found to be the most effective root-forming
substances (Zimmerman and Wilcoxon, 1935). Exogenous
application of the natural auxin indole-acetic acid (IAA) can
induce a large number of roots from tomato leaf explants
(Coleman et al., 1980). In vitro, a supply of exogenous sucrose
also supports root regeneration by providing carbohydrate for
plant growth (Calamar and de Klerk, 2002) and leaf explants
fail to induce roots when growing on media in the dark without
sucrose (Chen et al., 2014). A low concentration of sugar
promotes LR initiation, while a high concentration of sugar
inhibits LR initiation (Malamy and Ryan, 2001).

In tissue culture, the ratio of auxin to cytokinin can influence
de novo organogenesis in nutrient-rich growth media. Callus-
inducing medium (CIM) has a balanced ratio of auxin to
cytokinin. The transfer of the callus to root-inducing medium
(RIM) with a high ratio of auxin-to-cytokinin induces root
regeneration, whereas transfer to media with a low ratio induces
shoot regeneration (Skoog and Miller, 1957; Valvekens et al.,
1988). Recently, it was shown that the transfer from CIM with
high auxin levels to B5 medium without auxin triggers AR
formation as well (Yu et al., 2017). Callus, which derives from
pericycle or related cells in the vascular tissue, depends on
several key transcriptional regulators, which are also involved
in LR and AR formation (Che et al., 2007; Atta et al., 2009;
Sugimoto et al., 2010; Kareem et al., 2015; Ikeuchi et al., 2016).
Root regeneration from callus might be one of the simplest
case of cell fate reprogramming in plants since callus itself
has an identity resembling that of lateral root primordia (LRP)
(Sugimoto et al., 2010). Interestingly, the induction of so-called
endogenous callus, which is presumed to be the first required
step for DNRR from leaf explants, can be achieved without
the application of exogenous auxin (Bustillo-Avendaño et al.,
2018). Recently, AR formation from Arabidopsis leaf explants
was intensively studied and can be divided into three phases:
(I) early after wounding, signaling pathways trigger (II) auxin
production in so-called converter cells (0–4 hours after leaf
explant detachment [HAD]), followed by auxin accumulation in
the region of AR formation by directed auxin transport (around
12 HAD) and (III) fate transition from regeneration-competent
cells into fully formed ARs (Xu, 2018). The fate transition
phase can be subdivided into four steps: During the “priming”
step (24–48 HAD), regeneration-competent cells became root
founder cells by cell fate transition; in the “initiation” step, root
founder cells start to divide to form a dome-shaped LRP (48–
96 HAD); during the “patterning” step, continuous cell division
and differentiation generate a well-organized RAM, whereas in
the “emergence” step the new formed AR breaks through the
epidermis of the leaf explant (Figure 1; Yu et al., 2017; Xu, 2018).

Root regeneration from detached organs relies on neo-
biosynthesis of endogenous auxin, which is partly induced by
wounding and/or the auxin accumulation resulting from the
cutting off of the basal auxin drain (Cai et al., 2014; Liu et al., 2014;

Chen X. et al., 2016; Druege et al., 2019; Zhang et al., 2019). Near
the wounding sites, auxin level can increase rapidly in mesophyll
cells, and then polar transport results in auxin accumulating
in competent cells of procambium and vascular parenchyma
to trigger cell fate transition (Liu et al., 2014; Chen L. et al.,
2016). Loss of function of auxin influx carriers (AUX1 and LAX3)
and auxin efflux carriers (ABCB19) reduces the regenerative
potential of hypocotyl and leaf explants, demonstrating the
importance of auxin transport for DNRR (Sukumar et al.,
2013; Della Rovere et al., 2015; Bustillo-Avendaño et al., 2018).
One of the main endogenous auxin biosynthesis pathways is
conducted in two steps (Figure 1): first, the TRYPTOPHAN
AMINOTRANSFERASE OF ARABIDOPSIS (TAA) family of
aminotransferases converts the main precursor for IAA,
tryptophan (Trp) to indole-3-pyruvic acid (IPA). Then, the
YUCCA (YUC) family of flavin monooxygenases participate in
the conversion of IPA to IAA (Mashiguchi et al., 2011; Won
et al., 2011). During DNRR, the expression of YUC1 and YUC4
is up-regulated in response to wounding, which promotes auxin
production in both mesophyll cells and competent cells resulting
in cell fate transition (Table 1; Chen L. et al., 2016). The TAA1
mutation weak ethylene insensitive 8-1 (wei8-1) causes defects
in AR formation, whereas the double mutant of wei8-1 tar2-2
(tryptophan aminotransferase related 2-2) was mostly unable to
regenerate AR from leaf explants (Sun et al., 2016). Similarly,
double mutations in YUC1/YUC4 and YUC2/YUC6 can partially
block the rooting of leaf explants, while in yuc1246 quadruple
mutants, rooting was severely blocked (Chen L. et al., 2016). In
rice, OsYUC1 overexpression causes massive proliferation of ARs
or crown roots, respectively, whereas loss of OsTAA1 reduces AR
development (Zhang et al., 2018) confirming the central role of
TAA and YUC mediated auxin biogenesis for AR formation that
seems conserved between monocots and dicots.

Regulation of DNRR by Other
Phytohormones
Beside the master player auxin, other phytohormones promote
or antagonize DNRR: Cytokinin (CK), strigolactone (SL), and
abscisic acid (ABA) suppress auxin production and/or AR
formation whereas brassinosteroid (BR) and ethylene (ET) have
positive effects (Table 1; Su and Zhang, 2014; Druege et al.,
2019; Lakehal and Bellini, 2019). Although older studies suggest
that gibberellin (GA) treatment inhibits AR formation (Busov
et al., 2006; Mauriat et al., 2014), loss of components of GA
synthesis (GA1 and GA5, GA REQUIRING) or GA signaling
(GAI, GIBBERELLIC ACID INSENSITIVE) causes defective
vascular proliferation and consequently delayed AR formation
in leaf explants indicating a positive role for GA in DNRR
(Ibáñez et al., 2019). The stress phytohormone jasmonic acid
(JA) and its biologically active form jasmonoyl-isoleucine (JA-Ile)
are derivates of the lipid α-linolenic acid (Huang et al., 2017).
After wounding, JA and JA-Ile levels increase rapidly in local
and undamaged distal plant tissue (Glauser et al., 2008). Until
recently, it was a matter of dispute whether JA facilitates or
inhibits DNRR (Lakehal and Bellini, 2019). Ahkami et al. (2009)
suggested that JA is a positive regulator of AR formation since
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FIGURE 1 | Concept of transcriptional and epigenetic regulation network during direct excision-induced DNRR in Arabidopsis. The three phases and four stages of
phase III, priming, initiation, pattering, and emergence, are according to Yu et al. (2017) and Xu (2018). Note that several relations are not yet verified for DNRR but
demonstrated for callus formation, LR initiation and/or regular root development. Black arrows, direct transcriptional regulation; dotted arrows, indirect regulation;
blue arrows, JA and auxin synthesis and transport; dark-red arrows, protein-protein interaction; green arrows, positive epigenetic regulation; red arrows, negative
epigenetic regulation. ALF4, ABERRANT LATERAL ROOT FORMATION4; ARFs, AUXIN RESPONSE FACTORs; ASA1, ANTHRANILATE SYNTHASE α1; ATXR2,
ARABIDOPSIS THALIANA TRITHORAX-RELATED2; CEP, Cys endopeptidase; ERF109, ETHYLENE RESPONSE FACTOR109; GCN5, GENERAL CONTROL
NON-REPRESSED5; H3K27me3, histone H3 tri-methylation of Lys27; IAAs, INDOLE-3-ACETIC ACID INDUCIBLEs; IPA, indole-3-pyruvic acid; JA-Ile,
jasmonoyl-isoleucine; LBD16/29, LATERAL ORGAN BOUNDARIES DOMAIN16/29; NAC1, NAM/ATAF/CUC domain1; PINs, PIN-FORMED proteins; PLT1/2,
PLETHORA1/2; PRC2, Polycomb Repressive Complex2; REF6, RELATIVE OF EARLY FLOWERING6; SDG2, SET-DOMAIN GROUP2; SLR_IAA14, SOLITARY
ROOT_ INDOLE-3-ACETIC ACID INDUCIBLE 14; TAA1, TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS1; Trp, Tryptophan; WOX11/12,
WUSCHEL-RELATED HOMEOBOX11/12; WOX5/7, WUSCHEL-RELATED HOMEOBOX5/7; YUCs, YUCCAs.

it rapidly accumulates at the wounding site before ARs emerge
in petunia leafy stem explants. On the other hand, continuous
JA treatment inhibits AR formation whereas it promotes LR
formation (Sun et al., 2009; Lischweski et al., 2015). The latter
is partially inhibited in yuc mutants indicating that JA triggered
LR formation is dependent on auxin synthesis (Sun et al., 2009;
Cai et al., 2014). Reviewing the experimental details of diverse
studies on the role of JA in adventitious rooting and considering
relations to auxin homeostasis and signaling, Druege et al.
(2019) recently provided a coherent explanation for the different
findings and postulated that early, particularly wound-induced,
JA accumulation stimulates AR formation in cuttings via IAA
accumulation in the stem base and/or canalization toward AR
source cells, while induction of invertases as molecular drivers of
sink activity may be further involved. According to these theories,
it was recently shown by Zhang et al. (2019) that in detached
leaf explants, JA concentration and expression of JA response
genes rise very quickly, reach a maxima after 1 hour and then
decline in Arabidopsis leaf explants whereas auxin synthesis and
other auxin-related genes reach their expression maxima one
hour later (2 h after leaf detachment) indicating that JA signaling,

triggered by wounding, precedes auxin signaling dependent cell
fate reprogramming during DNRR. Similarly, ET biosynthesis
is also triggered by wounding and stimulates AR formation at
the stem base of cuttings in petunia, whereas auxin controls the
timing of different phases of DNRR (Druege et al., 2014). There
is indication in the literature that the ET signal is important for
the early reprogramming of the AR source cells and may act
via enhanced auxin level and/or sensitivity (Druege et al., 2019;
Lakehal and Bellini, 2019).

Key Transcriptional Regulators of DNRR
At the onset of DNRR in excised Arabidopsis leaves,
wounding triggers the immediate accumulation of JA which
activates the expression of ERF109 (ETHYLENE RESPONSE
FACTOR109) encoding a transcription factor (TF) (Figure 1
and Table 1; Cai et al., 2014; Zhang et al., 2019). Loss-
of-function mutants of ERF109 or the JA receptor COI1
(CORONATINE INSENSITIVE1) display defective rooting
from leaf explants (Zhang et al., 2019). ERF109 upregulates
directly ANTHRANILATE SYNTHASEα1 (ASA1) – a rate-
limiting enzyme in tryptophan (Trp) biosynthesis – and YUC2
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TABLE 1 | Selection of transcription factors and components of phytohormone signaling evidently or putatively involved in DNRR further indicating their role in primary and lateral root development or callus formation.

DNRR phases and stages

Genes PR LR Callus I II III: Pr In Pa Em Pro F Comments

ABCB19 (MDR1) • •1 1 IAA Tra LFM display shorter LRs and reduced DNRR from hypocotyl explants, but
DNRR is not impaired from intact hypocotyls (Wu et al., 2007; Sukumar
et al., 2013)

ALF4 • •1 1 1 1 IAA Sig Regulator of SCF-TIR1 receptor, LFM acumulate IAAs, Exp in PR and LRs
(Bagchi et al., 2018); LFM fail to produce LRs, callus and DNRR (Celenza
et al., 1995; Sugimoto et al., 2010; Liu et al., 2014; Bustillo-Avendaño
et al., 2018)

ARF7,19 • •1 1 nd nd nd IAA Sig TFs Directly activate LBD16/29 (Okushima et al., 2007), ARF7 LFM have less
LRs, double mutants fail to produce any LRs, whereas DNRR is normal but
callus formation is reduced, Exp in the root vasculature, LRPs and
developing LRs (Okushima et al., 2005; 2007; Liu et al., 2014; Lee et al.,
2017)

ASA1 •nd •ne1 1 IAA Syn LFM have less DNRR (Zhang et al., 2019), less LRs in response to JA (Sun
et al., 2009); Directly activated by ERF109 (Cai et al., 2014; Zhang et al.,
2019)

AUX1, LAX3 • •1 •1 IAA Tra LFM have less LRs and detached mutant hypocotyls show a reduced
rooting capacity for ARs, Exp in PR, LRs and ARP (Marchant et al., 2002;
Swarup et al., 2008; Della Rovere et al., 2013; 2015; Bustillo-Avendaño
et al., 2018)

COI1 •(1) 1 1 JA Sig JA receptor, LFM causes reduced DNRR (Zhang et al., 2019) and LR
formation in response to JA (Raya-González et al., 2012); Exp in RAM, LFM
are insensitive to root growth inhibition by JA (Chen et al., 2011)

ERF109 nd •1 •1 TF JA induced after leaf detachment, LFM have reduced DNRR (Zhang et al.,
2019); LFM have less LRs, ativates ASA1 and YUC2 (Cai et al., 2014)

ERF115 •1 •1 (1) ? ? TF Induced by JA, IAA and ERF109 in protoxylem and QC cells, involved in root
cell regeneration (Zhou et al., 2019); ERF115-SRDX blocks callus formation
(Ikeuchi et al., 2017); controls QC cell devision (Heyman et al., 2013)

FUS3, LEC2 •1 •1 ? TFs Two homologous B3 TFs interact to activate directly YUC4 during LR
formation (Tang et al., 2017); precocious growth of PR during
embryogenesis (Vicente-Carbajosa and Carbonero, 2005)

GA1 (CPS1), GA5 (GA20OX1) •1 GA Syn Ent-Copalyl Diphosphate Synthetase and GA 20-Oxidase, respectively;
involved in vascular proliferation in DNRR, LFM have less AR capacity
(Ibáñez et al., 2019)

GAI •1 GA Sig gai-1 is insensitive to GAs, involved in vascular proliferation during DNRR,
LFM have reducted AR capacity (Ibáñez et al., 2019)

IAA14 (SLR) •(1) 1 1 1 1 IAA Sig TF GFM, fail to produce LRs (Fukaki et al., 2002); less callus and DNRR (Shang
et al., 2016; Bustillo-Avendaño et al., 2018); PR has less root hairs, Exp in
RAM of PR and LRP (Fukaki et al., 2002; Vanneste et al., 2005)
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TABLE 1 | Continued

DNRR phases and stages

Genes PR LR Callus I II III: Pr In Pa Em Pro F Comments

LBD16,29 • •1 1 •1 •1 (•) TFs OE enhances AR formation (Liu et al., 2014); Direct target of ARF7/19
(Okushima et al., 2007); LFM have less LRs and callus (Fan et al., 2012)

NAC1 •1 •1 •1 TF Dominant-negative lines (NAC1-SRDX ) have less LRs (Xie et al., 2000) and
less ARs (Chen X. et al., 2016)

PIN 1,2,3,7 •1 •1 •1 IAA Tra Exp in leaf vasculature after excision, LFM have less ARs (Bustillo-Avendaño
et al., 2018); Invoved PR and LR development (Petrásek and Friml, 2009)

PLT1,2 •1 •1 1 1 TFs Activate WOX5 (Shimotohno et al., 2018); double mutants: less DNRR
(Bustillo-Avendaño et al., 2018), shorter PR but more LRs (Aida et al.,
2004); Exp in LRPs and RAM of PR (Hofhuis et al., 2013; Du and Scheres,
2017)

PLT3,5,7 •1 • ? ? ? TFs Promotes LR emergence, triple mutants have less LRs, Exp in a subset of
pericycle cells requiring ARF7/19 as activators (Hofhuis et al., 2013)

SCR •1 • • •1 • • • TF AR formation from hypocotyl is inhibited in LFM (Della Rovere et al., 2015);
Involved in positioning the stem cell niche of RAMs, Exp in endodermis, QC
and callus (Sabatini et al., 2003; Sugimoto et al., 2010; Kim et al., 2018)

SHR •1 •1 • 1 1 TF LFM have reduced AR and LR formation as well as growth of the PR, Exp in
the stelle, shr plt1,2 triple mutants fails to produce ARs (Helariutta et al.,
2000; Lucas et al., 2011; Della Rovere et al., 2015; Bustillo-Avendaño et al.,
2018)

TAA1 (WEI8), TAR2 • •1 • IAA Syn Ubiquitously induced in leaf explants, double mutants are impaired in DNRR
(Sun et al., 2016); Exp in RAM of PR (Stepanova et al., 2008)

TCP20,21 (•1) ? ? TFs Interact with PLT1/3 and SCR to bind and induce WOX5, Exp in precursor
QC cells (in embryos) (Shimotohno et al., 2018)

WOX5,7 •1 •1 •nd •1 •1 •1 • TF Activated by WOX11/12, WOX5 LFM have reduced DNRR, which is
enhanced in double mutants (Hu and Xu, 2016); WOX5 maintains the stem
cell niche of RAM, Exp in QC and callus (Sarkar et al., 2007; Sugimoto
et al., 2010; Kim et al., 2018), whereas WOX7 is involved in LR initiation
(Kong et al., 2016)

WOX11,12 (1) •1 •1 TF LFM have less ARs, whereas OE inhibits AR and callus formation, Exp in AR
founder cells, promotes LBD16/19 (Liu et al., 2014; Sheng et al., 2017)

YUC1,2,4,6 •1 •1 IAA Syn Induced in mesophyll cells of leaf explants, double mutants are partially,
quadruple mutants severely impaired in DNRR (Chen L. et al., 2016), LFM
of YUC4 reduces LR formation (Tang et al., 2017)

•, expressed; 1, mutant phenotype; ?, assumed involvement in DNRR; I, Phase I; II, Phase II; III:, Phase III:; Pr, Priming; In, Initiation; Pa, Patterning; En, Emergence; AR, adventitious root; ARP, adventitious root
primordia; Exp, Expressed; GA sig, GA signaling; GA syn, GA biosynthesis; GFM, gain of function mutants; IAA sig, auxin signaling; IAA syn, auxin biosynthesis; IAA tra, auxin transport; JA sig, JA signaling; LFM, loss
of function mutants; LR, lateral root formation; LRP, lateral root primordia; methylase, histone lysine methyl-transferase; nd, no defects observed; ne, not expressed; OE, overexpression; PR, primary (main) root; Pro F,
protein function; QC, quiescent center; RAM, root apical meristem; TF(s), transcription factor(s).
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indicating that ERF109 mediates cross-talk between JA and auxin
biosynthesis during DNRR (Cai et al., 2014; Zhang et al., 2019).
To prevent hypersensitivity to wounding, JASMONATE ZIM-
domain (JAZ) repressors bind physically to ERF109 proteins
and so inhibit the activation of ASA1 by ERF109 (Zhang et al.,
2019). Later, the accumulation of auxin at the wounding site
triggers the expression of further key TFs forming a regulatory
network (Figure 1) that is initially different but subsequently
identical to the transcriptional network controlling regular
root development. Thereby, the signaling pathway from auxin
perception to transcriptional responses consists of only two steps:
First, the binding of auxin to the receptor and F-box protein
TRANSPORT INHIBITOR RESISTANT1 (TIR1) triggers the
ubiquitin-mediated degradation of the AUXIN/INDOLE-3-
ACETIC ACID (Aux/IAA) transcriptional repressors. Then,
the degradation of the Aux/IAAs breaks the physical inhibition
of the AUXIN RESPONSE FACTORs (ARFs), which bind as
transcriptional activators to auxin response elements (AuxREs)
in the promoters of auxin response genes (reviewed in more
detail in Weijers and Wagner, 2016). In aberrant lateral root
formation4-1 (alf4-1) mutants, the CULLIN1 subunit of the
SCFTIR1 auxin receptor complex is destabilized leading to
increases in the levels of Aux/IAA proteins, the repressors of
ARFs (Bagchi et al., 2018). As the name implies, alf4-1 mutant
plants are impaired in lateral root formation (Celenza et al., 1995)
but they also fail to regenerate roots from leaf explants (Liu et al.,
2014). Furthermore, the alf4-1 mutation blocks callus induction
suggesting that callus and LR formation are under the same
genetic control (Sugimoto et al., 2010). The reduction of auxin
response in the alf4 mutant during LR and callus formation is
also caused by the increasing level of IAA14 (Perez-Garcia and
Moreno-Risueno, 2018). solitary root-1 (slr-1) mutants, which
carry a dominant-negative version of IAA14, are not able to
form regular LRs or callus on CIM (Shang et al., 2016) but can
grow LRs after cutting the main root (root pruning) (Table 1;
Xu et al., 2017).

During DNRR, the newly formed auxin maximum induces
quickly the expression of WUSCHEL-RELATED HOMEOBOX11
(WOX11) and its functional homolog WOX12 in procambium
and parenchyma cells, which mediates cell fate transition toward
the establishment of root founder cells (Figure 1; Liu et al.,
2014; Xu, 2018). Notably, the current state of research cannot
rule-out that root founder cells of ARs can also initiate from
differentiated cells beside procambium and parenchyma tissue
via cell fate reprogramming (Yu et al., 2017). Although loss
of OsWOX11 causes severe growth defects including a near
abolition of crown root production in rice, wox11 and wox12
single and double mutants show only slightly reduced AR
formation in Arabidopsis (Zhao et al., 2009; Liu et al., 2014).
The WOX11 promoter region carries several AuxREs, which
are essential for the auxin response indicating direct binding
and activation of WOX11 by ARFs (Liu et al., 2014). Although
WOX11 promotes AR and callus formations, WOX11 is not
involved in regular lateral root initiation (Liu et al., 2014; Sheng
et al., 2017). The transition from root founder cells to root
primordium cells is accompanied by decreasing WOX11 and
WOX12 expression levels while those of WOX5 and WOX7

increase (Liu et al., 2014; Hu and Xu, 2016). This temporal
succession of WOX11 and WOX5 expression is very similar
to the temporal expression pattern during callus development
supporting the idea that callus and AR initiation share the same
genetic pathway at the cellular and molecular level (Liu et al.,
2014). Recently, it has been shown that WOX11/12 directly
activate WOX5/7 by binding to the promoters of WOX5 and
WOX7 (Hu and Xu, 2016). WOX5, which encodes the functional
homolog of the shoot stem cell promoting factor WUSCHEL
(WUS), is expressed in the quiescent center (QC) of RAMs
(Sarkar et al., 2007). Although wox5-1 mutants form roots
with disorganized RAMs, wox5-1 mutant roots fail to maintain
distal (columella) stem cells and, redundantly with the loss of
other regulators, proximal stem cells during root development
(Sarkar et al., 2007). In contrast to the activation of WOX11/12
by ARFs, ARF10 and ARF16 repress and restrict WOX5 to
the QC (Ding and Friml, 2010). Interestingly, auxin is also
required to activate WOX5/7 expression in root founder cells,
which divide to form root primordia cells during DNRR (Hu
and Xu, 2016). As WOX5 is expressed in callus as well as in
RAMs of primary root, LRs and ARs, it is difficult to predict
the stages of direct DNRR that would be affected by loss of
WOX5 (Table 1).

WOX11/12 regulate at least partially the formation of AR and
callus through activation of LATERAL ORGAN BOUNDARIES
DOMAIN16 (LBD16) and LBD29 (Figure 1; Liu et al., 2014),
whereby WOX11 directly binds to the WOX-binding sites in the
LBD16 promoter region (Sheng et al., 2017). The relationship
between WOX11 and LBD16 is also important for shoot
regeneration because both promote the pluripotency acquisition
in callus cells (Liu et al., 2018). However, the activation of LBD16
by WOX11 is not required for regular LRs that are also known
as non-WOX11-mediated roots (Sheng et al., 2017). LBD16/29
are also direct targets of ARF7 and ARF19 during lateral root
formation, and arf7-1 arf19-1 double mutants produce defective
lateral roots (Okushima et al., 2005, 2007; Xu et al., 2017).
Conversely, leaves of arf7-1 arf19-1 double mutant are still able
to induce root regeneration and callus formation (Liu et al., 2014;
Lee et al., 2017) and can recover LRs after cutting the tip of the
primary root (Sheng et al., 2017; Xu et al., 2017).

Although LBD16 and WOX5 are regulated by WOX11/12
and auxin, their expression patterns are different: LBD16 is
expressed in dividing root founder cells and the root primordia,
but decreases during the formation of the root meristem
whereas WOX5 is restricted to the stem cell niche in the
new RAM (Hu and Xu, 2016). Overexpression of LBD16/29
can induce callus without exogenous auxin treatment, while
LBD16-induced callus displays ectopic expression of WOX5
and PLETHORA (PLT1) (Fan et al., 2012). PLT1 and PLT2
genes, whose transcription requires auxin accumulation and
ARFs, are essential for QC specification and stem cell activity
in the RAM (Aida et al., 2004). During embryogenesis and LR
formation, PLT proteins physically interact with SCARECROW
(SCR) and TCP (teosinte-branched cycloidea PCNA) TFs to
specify and maintain the new formed QC and stem cell
niche (Shimotohno et al., 2018). PLT–TCP–SCR complexes
assemble on PLT-binding sites in the WOX5 promoter to
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induce WOX5 expression (Shimotohno et al., 2018). In turn,
WOX5 is needed for PLT1 expression in RAMs (Ding and
Friml, 2010). Interestingly, the PLT genes PLT3/5/7, which
are essential in shoot regeneration, facilitate pluripotency in
callus tissues by activating the root-specific stem cell regulators
PLT1 and PLT2 (Kareem et al., 2015). During callus formation,
PLT1/2, WOX5, and SCR can act as major regulators in the
establishment and maintenance of cell regeneration capacity
and possible pluripotency by inhibiting factors that in turn
promote differentiation (Kim et al., 2018). plt1 plt2 double
mutants as well as short-root (shr) single mutants display
significant reduction of leaf explants rooting and in rooting
capacity (Bustillo-Avendaño et al., 2018). In shr plt1 plt2 triple
mutants, AR primordia initiation is fully blocked, because the
postembryonic root founder cells cannot form. These results
demonstrate the importance of PLT1, PLT2, and SHR for DNRR
(Table 1; Bustillo-Avendaño et al., 2018).

During DNRR, the emergence of ARs seems an easy task
but leaf explants expressing a dominant-negative version of the
NAC1 TF (NAC1-SRDX) fail to grow-out ARs, although they
are unaffected in the earlier steps of auxin-mediated cell fate
transition (Chen X. et al., 2016). NAC1 induces the expression
of CEP (Cys endopeptidase) genes, which encode proteins that
might be involved in programed cell death and in degradation of
extensin proteins in the cell wall (Chen X. et al., 2016). Therefore,
the NAC1 pathway controls auxin-independently the emerging of
ARs by loosening of cell walls of the surrounding tissue (Table 1).

Callus is an organized tissue similar to LRP (Sugimoto
et al., 2010), while LRP and adventitious root primordia
(ARP) differ only in their early steps of formation (Sheng
et al., 2017). All three developmental events largely share
TFs, which control the morphological changes in similar
hierarchical networks (see model for DNRR in Figure 1).
Most components of the transcriptional network are direct
targets of ARFs that might suggest simultaneous expression
rather than the observed activation in a chronological order.
Obviously, the reciprocal and hierarchical regulations of the
TFs contribute to their distinct spatiotemporal expression
pattern. Nevertheless, epigenetic regulation can stabilize gene
networks, restrict gene expression to specific tissue and/or
provide a time buffer, which allows delayed transcriptional
response to an upstream TFs (Müller and Goodrich, 2011;
Xiao et al., 2016).

Epigenetic Regulation of DNRR by the
Repressive Mark H3K27me3
Epigenetic gene regulation here refers to mitotically or
occasionally meiotically heritable changes in transcriptional
activity that are not caused by changes in the DNA sequence
but rather by covalent modifications to histone residues and
DNA methylation (Bannister and Kouzarides, 2011; Smith and
Meissner, 2013). The covalent nature of epigenetic chromatin
modifications allows both stability through cell division as well
as reversibility during development in response to extrinsic
signals and endogenous clues (Bannister and Kouzarides, 2011;
Müller-Xing et al., 2014b). For every chromatin modification

like lysine methylation of histones exist both writers, which
refers here to histone methyltransferases, and erasers, which
refer here to histone demethylases, functioning as single proteins
or protein complexes with enzyme activity (Xiao et al., 2016).
Furthermore, chromatin modifications are specifically bound
by so-called readers, proteins with domains which provide
docking modules for the enzyme complexes (Andrews et al.,
2016). While epigenetic regulation of callus formation and
regular RAM development were subjects of several studies (Lee
and Seo, 2018; Takatsuka and Umeda, 2015), the relationship
of epigenetics and DNRR is a relatively new frontier, which
was recently outlined as one of the hot topics for future
research on adventitious rooting in cuttings (Chen L. et al.,
2016; Lee et al., 2018; Druege et al., 2019; Zhang et al.,
2019). To complete the current model of DNRR regulation
and indicate future research directions, we also draw here
parallels between the epigenetic control of callus formation,
which is one of the earliest steps of cell fate reprogramming
during AR initiation, and regular root development (Figure 1
and Table 2).

Reprogramming of cell fate requires the activation and
repression not only of a few genes but whole transcriptional
networks controlling developmental programs and it is
accompanied by local and global changes in epigenetic
modifications (Lee and Seo, 2018). The Polycomb repressive
complex 2 (PRC2) is a key “writer” which deposits the
repressive marks di- and tri-methylation of Lys27 on histone H3
(H3K27me2/3). It is assembled from four highly conserved
core components as well as a more variable collection
of associated proteins, some of which are DNA binding
proteins that may guide the PRC2 to Polycomb (PcG) target
genes (Xiao et al., 2017; Zhou et al., 2018). In Arabidopsis,
three partially redundant homologs CURLY LEAF (CLF),
MEDEA (MEA), and SWINGER (SWN) encode the catalytic
subunit of the PRC2 histone methyltransferase (HMT),
while EMBRYONIC FLOWER2 (EMF2) encodes a second
core PRC2 component (Schmitges et al., 2011; Müller-
Xing et al., 2014a). In contrast, RELATIVE OF EARLY
FLOWERING6 (REF6) and its two close paralogs, EARLY
FLOWERING6 and JMJ13, are three partially redundant
H3K27me3 demethylases (erasers) with important functions
in reprogramming during plant development (Table 2;
Yan et al., 2018).

During callus formation from leaf explants, over 400
PcG targets lose H3K27me3, whereas less than 200 targets
gain H3K27me3, indicating the significance of reactivation
of former silenced genes (He et al., 2012). The levels of
H3K27me3 decrease first at several genes of the auxin pathway
including YUC4, NITRILASE2 (NIT2), IAA CARBOXYL
METHYLTRANSFERASE1 (IAMT1), and PIN-FORMED1
(PIN1). Subsequently, H3K27me3 levels increase at leaf specific
genes but decrease at genes involved in root development
suggesting a central role for the repressive epigenetic mark
H3K27me3 during regeneration (He et al., 2012). WOX11
expression, which is essential for establishing root founder
cells during DNRR, depends on endogenic auxin synthesis
by YUC proteins (Liu et al., 2014; Chen L. et al., 2016).
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TABLE 2 | Epigenetic factors evidently or putatively involved in DNRR further indicating their role in primary and lateral root development or callus formation.

DNRR phases and stages

Genes PR LR Callus I II III: Pr In Pa Em Comments

SDG2 (ATXR3) 1 1 nd ? ? H3K4me3 methylase involved in RAM organisation (Yao et al., 2013)

ATX1 1 1 nd ? H3K4me3 methylase required for resrtriction of QC markers and for LR
initiation, morphogenesis, and emergence (Napsucialy-Mendivil et al., 2014)

SDG8 1 nd 1 H3K36me3 methylase required for activation of ASI1 by ERF109 (Zhang et al.,
2019), LOF causes less LR (Cazzonelli et al., 2009)

ATXR2 1 1 1 1 H3K36me3 methylase, interacts with ARF7/9 and activates LBD16/29 (Lee
et al., 2017, 2018)

CLF 1 1 nd ? ? H3K27me3 methylase of PRC2, represses PIN1, LOF causes increased RAM,
root size and the number of LRs (Gu et al., 2014; Wang et al., 2019)

SWN 1 nd ? H3K27me3 methylase of PRC2, LOF causes decreased RAM and root size
(Lucas et al., 2016)

CLF,SWN 1 1 1 ? 1 Double mutants fail to silence leaf identity genes, which prevent callus (He et al.,
2012) and also AR formation (Liu et al., 2014)

EMF2 1 1 1 ? ? Component of PRC2, LOF inhibits PR growth, callus and LR formation (He
et al., 2012; Gu et al., 2014)

REF6 1 nd ? ? H3K27me3 demethylase, activates PIN1/3/7 that allows auxin transport and
accumulation in LRP founder cells (Wang et al., 2019)

PKL 1 ? CHD3 chromatin remodeler, conteracts as TrxG factor PRC2 function and
maintains root stem cells (Aichinger et al., 2009, 2011)

HAG1 (GCN5) 1 1! nd Histone acetyltransferase, activates PLT genes and maintains the stem cell
niche (Kornet and Scheres, 2009), LOF causes faster callus growth (!) but does
not impair indirect DNRR (Kim et al., 2018)

1, mutant phenotype; ?, assumed involvement in DNRR; I, Phase I; II, Phase II; III:, Phase III:; Pr, Priming; In, Initiation; Pa, Patterning; En, Emergence; AR, adventitious root; LOF, loss of function; LR, lateral root
formation; LRP, lateral root primordia; methylase, histone lysine methyl-transferase; nd, no defects observed in callus formation (He et al., 2012) or indirect DNRR (Kim et al., 2018); PR, primary (main) root; RAM, root
apical meristem; QC, quiescent center.
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The gene loci of YUC1 and YUC4, as well as WOX11, are
H3K27me3-marked PcG targets whose levels decline in callus
tissue cultured on CIM (He et al., 2012; Liu et al., 2014;
Chen L. et al., 2016). Principally, reduction of H3K27me3
levels at target genes can be achieved either by active removal
through H3K27me3 demethylases or by H3K27me3 dilution
through cell divisions (Sun et al., 2014). During DNRR from
leaf explants, the activation of YUC1 and YUC4 expression
is accompanied by decreasing H3K27me3 levels after only a
few hours on B5 medium (Chen L. et al., 2016) suggesting
an active removal, e.g., by H3K27me3 demethylases as
little or no cell division and DNA replication occurs in
this time period.

In primary root and LRs, the polar auxin transport and
local auxin maxima are widely achieved by the family of PIN-
FORMED (PIN) efflux carriers, which includes PIN1, PIN2,
PIN3, PIN4, and PIN7 (Petrásek and Friml, 2009). PRC2 inhibits
LR formation and root growth by depositing the repressive
H3K27me3 mark on chromatin at the PIN1 locus (Gu et al.,
2014). Whereas the H3K27me3 demethylase REF6 binds to a
specific DNA sequence (CTCTGYTY) and de-represses PIN1/3/7
during LR formation (Lu et al., 2011; Cui et al., 2016; Wang et al.,
2019). Accordingly, ref6 mutants have fewer LRs than wild-type
(Wang et al., 2019). In contrast, ref6 mutants are not impaired
in callus formation from leaf explants (He et al., 2012), the first
step of AR initiation (Sheng et al., 2017). As the contribution
of REF6 to DNRR has not yet been tested, it remains unclear
whether in ref6 mutant explants, AR formation is unaffected, as
suggested by the result of callus formation, or delayed like LR
formation in ref6. During rice shoot development, OsWOX11
recruits the REF6 homolog JUMONJI705 (JMJ705) to promote
gene expression by H3K27me3 demethylation (Cheng et al.,
2018). It would be interesting to test whether WOX11 and REF6
cooperate similarly during regular root development and DNRR
in Arabidopsis.

PRC2 complexes containing either the HMT CLF or SWN are
essential for post-embryonic plant development (Gutzat et al.,
2012) and apparently play a role in DNRR. Although clf-50 swn-1
double mutants can form normal callus from root tissue, clf-50
swn-1 double and emf2 single mutants are defective in callus
formation from leaf explants (He et al., 2012). In the latter case,
the plants with reduced PRC2 activity fail to silence leaf identity
genes such as SAWTOOTH1 (SAW1) and SAW2, whereas the
root identity genes WOX5 and SHR are de-repressed as during
normal callus formation (Kumar et al., 2007; He et al., 2012).
Similarly, clf-50 swn-1 double mutants fail to form AR from
leaf explants (Liu et al., 2014) but it is not yet clear whether
impaired silencing of SAW1/2 or other leaf-regulatory genes
plays a role. swn clf ± mutant explants, presumably harboring
reductions in H3K27me3 levels, display an earlier re-activation of
WUS enabling faster shoot regeneration (Zhang et al., 2017). This
faster activation of WUS is likely achieved by easier access of the
B-Type ARR and HD-ZIP class III TFs to the WUS chromatin
(Zhang et al., 2017). Facilitated access to DNRR-related genes
may also accelerate root regeneration in PcG mutants. Loss of
CLF causes ectopic LR formation, a longer primary root (Gu et al.,
2014), and higher root meristem activity as indicated by increased

WOX5 expression and meristem size (Aichinger et al., 2011).
On the other hand, the loss of the CLF homolog SWN causes
shorter roots and decrease in the RAM size indicating that root
growth defects varies in different PcG mutants (Lucas et al., 2016).
Hence, alternative CLF-PRC2 and SWN-PRC2 complexes might
target selectively different genes, which either promote or inhibit
regular root development, but possibly also DNRR (Table 2).

Epigenetic Regulations of DNRR by
Histone Modifications With Positive
Effects on Transcription
Trithorax group (TrxG) proteins are a diverse group of
antagonists of PcG-mediated gene repression that were
originally defined genetically by their ability to suppress
PcG mutant phenotypes (Kennison and Tamkun, 1992).
Some TrxG proteins promote PcG target gene expression by
catalyzing activation marks, others by removing the repressive
H3K27me3 mark and yet others by chromatin remodeling
to slide nucleosomes and facilitate access. The principle
marks associated with transcriptional activation are di- and
tri-methylation of histone H3 at lysine 4 and/or lysine 36
(H3K4me2/3 and H3K36me2/3) (Papp and Müller, 2006).
In the early phase of DNRR, the upregulation of ASA1 by
JA-activated ERF109 required H3K36me3 pre-deposition by
SET DOMAIN GROUP8 (SDG8), which is also involved in LR
formation (Table 2; Cazzonelli et al., 2009; Zhang et al., 2019).
Another H3K36me3 HMTase, ARABIDOPSIS THALIANA
TRITHORAX-RELATED2 (ATXR2) is involved in callus and
AR formation by activating LBD16 and LBD29 expression (Lee
et al., 2017, 2018). ATXR2 binds directly to the promoter region
of LBD16 and LBD29 to depositing H3K36me3 at these loci
(Lee et al., 2017). In addition, ATXR2 interacts physically with
the known activators of LBD16 and LBD29 ARF7 and ARF19,
suggesting that these ARF TFs could recruit ATXR2 to both
LBD promoters (Lee et al., 2017). SDG2, also known as ATXR3,
encodes the main H3K4me3 HMTase (Berr et al., 2010; Guo
et al., 2010) and is required for the organization and function
of stem cell niche in the RAM (Yao et al., 2013). sdg2-3 mutants
have a shorter root and fewer LRs than wild type (Yao et al., 2013)
but nonetheless are still able to induce callus formation (He et al.,
2012), leaving the question unanswered whether DNRR initiation
or only the later step of the emergence of ARs are impaired in
sdg2 mutants. The preliminary data concerning other TrxG
proteins such as ARABIDOPSIS THALIANA TRITHORAX1
(ATX1, encoding a H3K4me3 HMTase) are inconclusive or
contradictory, for example inactivation causes reduced root
length and LR number yet the mutants are able to form callus
from leaf explant (He et al., 2012; Napsucialy-Mendivil et al.,
2014). The chromatin remodeler PICKLE (PKL) counteract PcG
function as pkl mutants display reduced expression of some
PcG target genes (Aichinger et al., 2009) and have shorter roots
and reduced root stem cell activity (Aichinger et al., 2011). It
was proposed that PKL, together with PICKLE RELATED2
(PKR2), activate PcG targets outside of the RAM to promote cell
differentiation, whereas PKL specifically maintains root stem
cell (Aichinger et al., 2011). Plants carrying the slr-1 mutation
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are blocked in auxin signaling, and so the initiation of LRs is
blocked (Shang et al., 2016). In slr-1 pkl double mutants, LR
formation is rescued in an ARF7/19 function dependent manner
revealing that chromatin remodeling by PKL regulates negatively
auxin-mediated LR formation (Fukaki et al., 2006). It remains
to be tested whether PKL or PKR2 have a similar function
in AR formation.

Histone lysine acetylation (Kac) may have more direct links to
transcriptional control than most other chromatin modifications,
as Kac promotes transcription not only by recruiting reader
proteins but also by neutralizing the positive charge on the
lysine side chain, which directly facilitates RNA synthesis
by making the DNA more accessible to the transcriptional
machinery (Zhao et al., 2018). Kac can overcome repressive
histone marks such as H3K27me3 or can be replaced by
such epigenetic marks. The histone acetyltransferase HISTONE
ACETYLTRANSFERASE OF THE GNAT FAMILY1 (HAG1),
also known as A. thaliana GENERAL CONTROL NON-
REPRESSED5 (AtGCN5) (Vlachonasios et al., 2003; Servet et al.,
2010), plays a key role in the establishment of callus pluripotency
and subsequent shoot regeneration (Kim et al., 2018). The
expression of PLT genes is positively regulated by AtGCN5 to
maintain the stem cell niche in roots (Kornet and Scheres, 2009).
hag1-6 mutants display very short roots and a smaller root
meristem size (Kornet and Scheres, 2009) but faster-growing
callus on CIM, which is associated with decreasing expression
of the root key regulators WOX5, SCR, PLT1, and PLT2 (Kim
et al., 2018). Although hag1-6 mutant callus fails to induce shoot
regeneration on shoot inducing medium (SIM), it is surprisingly
able to regenerate roots after transferring from CIM to RIM
(Table 2; Kim et al., 2018). In rice, OsWOX11 interacts with
the ADA2-GCN5 histone acetyltransferase complex to activate
downstream target genes during AR formation (Zhou et al.,
2017) giving a textbook example of how TFs acts as recruiter of
epigenetic factors (EFs) for long-term transcription regulation.

CONCLUSION AND OUTLOOK

The integration of genes and their protein products in
transcriptional networks, such as the one controlling DNRR,
often start with the description of their mutant phenotypes
and their expression patterns. Nevertheless, the components of
transcriptional-epigenetic networks have to be interconnected
through direct binding of one component to the promoter
of another component or by direct protein-protein interaction
or by phytohormone or other signaling pathways. These
physical interactions need to be tested by yeast-two-hybrid
(Y-2-H) or proteomics assays, chromatin immunoprecipitation
(ChIP), electrophoretic mobility shift assay (EMSA), DNA-
affinity precipitation assay (DAPA) and other approaches. Recent
progress in DNRR research allowed us to develop a model
on the transcriptional and epigenetic reprogramming network
controlling DNRR (Figure 1). However, several links of the
model are not yet verified in DNRR systems and several gaps
remain obvious, for example: (1) Taking into account that
ERF109, which functions upstream of ERF115 (Zhou et al.,

2019), is JA inducible, it would be interesting to test whether
MYC2, the main JA response factor, can directly bind to the
ERF109 promoter or whether the loss of other JA signaling
components impairs DNRR, like for mutations in the JA receptor
COI1 (Zhang et al., 2019). (2) Although several publications
showed that auxin can induce NAC1 (Xie et al., 2000; Guo
et al., 2005; Wang et al., 2006), a recent publication suggests
that NAC1 expression near the wounding side does not require
auxin (Chen X. et al., 2016) raising the question whether JA or
another signal could be the missing link. (3) Considering the
linkages between ET signaling, the WIND (WOUND INDUCED
DEDIFFERENTIATION) TF gene family, micro RNAs and
epigenetic processes recently outlined by Druege et al. (2019),
these relationships should additionally be taken into account.
(4) It is also unclear whether WOX5/7 or PLT1/2 are direct
targets of LBD16/29. Another open question is whether ARs only
originates from cells, which are root regeneration-competent
from the beginning or is it possible that ARs also derivate from
cells, which have first to acquire root regeneration competence.

Writing and erasing of histone marks facilitates and stabilizes
long-term changes in transcriptional programs. Therefore, the
recruitment of EFs by long non-coding RNAs and TFs is
highly important for DNRR yet our current knowledge is very
limited and only a few interactions between TFs and EFs are
known. Using DNRR-related TFs as bait, approaches, like Y-2-H
screen or immunoaffinity-purification with subsequent mass-
spectrometry, can identify further TF/EF protein complexes. On
the other hand, if the up-stream TFs are unknown, they can be
identified in yeast-one-hybrid screens using promoter sequences
of DNRR-related genes.

DNRR itself is an inducible system that can give us temporal
resolution of gene expression and changes of epigenetic marks
during the reprogramming of cell fate. Nevertheless, most
DNRR studies, involving ChIPs and other chromatin-related
approaches, used callus, mixed callus/explant tissue or whole
leaf explants. At least after accumulation of auxin in the
competent cells, using the mixed tissue cannot provide the
needed spatiotemporal resolution. An approach combining
DNRR and INTACT (isolation of nuclei tagged in specific cell
types) system (Deal and Henikoff, 2011) or classical protoplast
sorting (Birnbaum et al., 2003) will provide more specific
and accurate data.

The question of transferability of DNRR studies in Arabidopsis
to crop plants and trees seems to be a big issue as Arabidopsis
is still the main genetic and molecular biological tool in plant
research. Arabidopsis belongs to the Brassicaceae family, which
include many important agricultural crop varieties, such as
canola and cabbage. Therefore, the knowledge gained from
Arabidopsis research has also agricultural significance (Paulraj
and Yeung, 2012). Interestingly, several key regulators of
DNRR were first described in rice including (Os)WOX11 and
ARL1/LOB29 (Liu et al., 2005; Zhao et al., 2009) with similar
functions in AR development indicating a high degree of
conservation of the DNRR transcriptional networks between
monocots and dicots and therefore likely between most of the
crop plants. Nevertheless, that has to be confirmed by further
efforts to study the molecular mechanisms of DNRR in crops.
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