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Soybean [Glycine max (L.) Merr.] is an important crop for oil and protein resources
worldwide, and its farming is impacted by increasing soil salinity levels. In Arabidopsis
the gene EARLY FLOWERING 3 (ELF3), increased salt tolerance by suppressing salt
stress response pathways. J is the ortholog of AtELF3 in soybean, and loss-of-function
J-alleles greatly prolong soybean maturity and enhance grain yield. The exact role of J in
abiotic stress response in soybean, however, remains unclear. In this study, we showed
that J expression was induced by NaCl treatment and that the J protein was located in
the nucleus. Compared to NIL-J, tolerance to NaCl was significantly lower in the NIL-j
mutant. We also demonstrated that overexpression of J increased NaCl tolerance in
transgenic soybean hairy roots. J positively regulated expression of downstream salt
stress response genes, including GmWRKY12, GmWRKY27, GmWRKY54, GmNAC,
and GmSIN1. Our study disclosed a mechanism in soybean for regulation of the salt
stress response. Manipulation of these genes should facilitate improvements in salt
tolerance in soybean.

Keywords: Soybean, J, transcription factor, hairy roots, salt tolerance, RNA-seq

INTRODUCTION

Soybean [Glycine max (L.) Merr.] is classified as a moderately salt-sensitive crop, and salt stress has
negatively affected soybean yields (Parker et al., 1983; Ashraf, 1994; Munns and Tester, 2008). With
increasing salinity levels, soybean production can be reduced by as much as 40% (Papiernik et al.,
2005). Therefore, improving salt tolerance in soybean is essential to ensure future soybean yields.
Some natural variations at the seedling stage in soybean have been identified through quantitative
trait locus (QTL) mapping and genome-wide association studies (Lee et al., 2004; Chen et al., 2008;
Hamwieh and Xu, 2008; Hamwieh et al., 2011; Ha et al., 2013; Guan et al., 2014; Patil et al., 2016;
Zeng et al., 2017; Do et al., 2018). For instance, a major salt-tolerant QTL located on Chr.3 (linkage
group N) has been identified repeatedly using different soybean-mapping populations (Lee et al.,
2004; Hamwieh and Xu, 2008; Hamwieh et al., 2011; Ha et al., 2013). This QTL has been cloned
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with a whole-genome resequencing and map-based cloning
approach and found to encode an ion transporter (Guan et al.,
2014; Qi et al., 2014; Do et al., 2016). The function of this gene in
NaCl tolerance was confirmed by using the transgenic hairy root
and B2Y cell overexpression assay (Qi et al., 2014). Moreover, by
using reverse genetics, several transcription factor (TF) genes and
ion-exchanger genes have been identified to contribute to NaCl
stress tolerance in soybean (Chen et al., 2014; Li et al., 2017; Xu
et al., 2018). For instance, GmWRKY27 encoded a WRKY TF
and improved NaCl tolerance in transgenic soybean hairy roots
(Wang et al., 2015). An NAC TF encoded by SALT INDUCED
NAC 1 (GmSIN1) and overexpression of GmSIN1 promoted root
growth and NaCl tolerance and increased yield under NaCl
stress in soybean (Li et al., 2019). Ectopic expression of the
GmERF3 gene in transgenic tobacco plants gave tolerance to
high salinity (Zhang et al., 2009). In addition, GmCLC1 encoded
Cl−/H+ antiporter and overexpression of GmCLC1 enhanced
NaCl tolerance in transgenic plants (Wei et al., 2016). However,
few of circadian genes have been demonstrated to respond and
adapt to high salinity.

EARLY FLOWERING3 (ELF3) functions as one of the core
circadian-clock components and was first determined to be a
flowering repressor. For example, elf3 mutants flower early in a
photoperiod insensitive manner (Zagotta et al., 1996) and ELF3-
overexpressing (ELF3-OX) plants bloom very late only under
long-day conditions in Arabidopsis (Liu et al., 2001). In addition,
ELF3 interacts with other circadian clock components, ELF4
and LUX, called the evening complex (Nusinow et al., 2011).
This complex (ELF3-ELF4-LUX) binds to the promoters of PIF4
and PIF5 to repress hypocotyl growth in the evening (Nusinow
et al., 2011). A recent report showed that AtELF3-OX plants are
tolerant to high NaCl and that elf3 mutants are hypersensitive
to high NaCl in Arabidopsis (Sakuraba et al., 2017). Whether or
not AtELF3 homologous are involved in NaCl stress responses in
soybean plant, however, remains largely unknown.

Our previous research showed that J is a co-ortholog of
the Arabidopsis flowering-time gene AtELF3 (Lu et al., 2017).
However, whether this gene can respond to NaCl stress and
the molecular mechanism, is largely unclear. In the present
study, we demonstrated that expression of J was induced by
NaCl and J protein was located in the nucleus. Transgenic
soybean hairy roots overexpressing the J gene enhanced NaCl
tolerance. J positively regulated the transcription levels of NaCl
tolerance related genes GmWRKY12, GmWRKY27, GmWRKY54,
GmNAC11, and GmSIN1 in soybean, leading to NaCl stress
tolerance. These studies allow for the elucidation of J roles in
NaCl stress responses.

MATERIALS AND METHODS

Plant Materials and NaCl Stress
Treatment
Seedlings of soybean (NIL-J and NIL-j from Lu et al., 2017)
were cultivated in a 8 × 8 cm flowerpot (vermiculite: nutritious
soil is 1:3) and grown in a greenhouse under a photoperiod
of 16 h light/8 h dark at 25◦C and 60% humidity. For NaCl

treatment, 12-day-old seedlings were watered with 200 mM
sodium chloride (NaCl). For phenotype observations, we treated
12-day-old seedlings for 3 days.

Measurements of Proline and
Malondialdehyde Contents
Twelve-day-old NIL-J and NIL-j soybean seedings were watered
with 200 mM NaCl treatment 2 days, leaves of NIL-J and NIL-
j were harvested and immediately used. Both proline (Pro) and
malondialdehyde (MDA) content were measured with the Pro
assay kit (Yuanye, Shanghai, China, R30341) and MDA assay
kit (Yuanye, R21870) based on the manufacturer’s protocols. All
measurements were taken from three biological replicates.

Quantitative PCR Analysis
For tissue-specific expression analyses, root, hypocotyl,
cotyledon, leaf, stem, shoot apex, were collected from seedlings
at first trifoliate (V1) stage, and flowers were collected from
seedlings at first flowering (R1) stage. For total RNA extraction,
leaf samples was harvested after 0, 1, 3, 6, 12, and 24 h of
NaCl treatment, immediately frozen in liquid nitrogen, and
stored at −80◦C. Total RNA was isolated using TRIzol reagent
(Invitrogen, Carlsbad, CA, United States, catalog number
15596018) and reverse-transcribed the total RNA according
to the manufacturer’s instructions (Invitrogen). cDNA was
synthesized from 1 µg of total RNA using a Super Script
first-strand cDNA synthesis system (Takara, Dalian, China).
Quantitative reverse transcription polymerase chain reaction
(qRT-PCR) analysis was performed to measure J transcription
levels on a Roche LightCycler480 system (Roche, Mannheim,
Germany) using a real-time PCR (RT-PCR) kit (Roche). Briefly,
the cDNA was diluted to 10-fold and used 1 µL of diluted
cDNA as the template in a 20 µL qPCR reaction, which was
predenatured at 95◦C for 5 min, followed by a 40-cycle program
(95◦C, 10 s; 60◦C, 10 s; 72◦C, 20 s per cycle). The soybean
housekeeping genes GmTUB (Glyma.05G157300) (Cheng et al.,
2019) and GmEF1β (Glyma.17G001400) (Jian et al., 2008) were
used as an internal reference for normalization. The relative
transcription level of the target gene was calculated using the
2−1 1 CT method. We used three biological replicates and three
technical repeats in all assays.

Subcellular Localization of the J-GFP
Fusion Proteins
The coding sequence of J was amplified by RT-PCR using
primers J-GFPF and J-GFPR (Supplementary Table S1), fused
to the N-terminus of green fluorescent protein (GFP) under
the control of the constitutive Cauliflower Mosaic Virus 35S
(CaMV35S) promoter. The resulting expression vector, p35S:J-
GFP, was inserted into A. tumefaciens strain GV3101 cells,
and transfected into healthy leaves of 21-d-old Nicotiana
benthamiana (N. benthamiana) tobacco leaves by agroinfiltration
as described previously (Cheng et al., 2018). The fluorescence
signals were imaged using an LSM800 spectral confocal
microscope imaging system (Zeiss, Oberkochen, Germany). The
p35S-GFP vector was used as a control.
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FIGURE 1 | J gene expression and protein localization. (A) J expression levels in response to NaCl treatment in soybean seedlings as revealed by qRT-PCR analysis.
Significant differences were analyzed based on the results of three biological replications (Student’s t test: **P < 0.01). Bars indicate standard error of the mean. The
presence of the same lowercase letter above the histogram bars in a–e denotes non-significant differences across the two panels (P > 0.05). (B) J expression in
various organs of soybean plants. (C) Subcellular localization of J protein in in tobacco leaf cells. DAPI, fluorescence of 4′,6-diamidino-2-phenylindole; Merge, merge
of GFP and DAPI.

Agrobacterium rhizogenes–Mediated
Transformation of Soybean Hairy Roots
The full-length coding sequence of J from Harosoy was cloned
into the pTF101-Gene vector (containing the bar gene for
glufosinate resistance), between AvrII and MluI sites downstream
of the constitutive CaMV35S promoter. As a negative control,
the gene for the GFP was cloned and instead of J using
the same vector and promoter. Both constructs (p35S-J and
p35S-GFP) were introduced into Agrobacterium rhizogenes
strain K599. Soybean hairy root transformation was performed
as previously described by Cheng et al. (2018) with some
modifications. Surface-sterilized soybean seeds were germinated
on a germination medium [3.21 g/L Gamborg Basal salt mixture
(Gamborg et al., 1968), 1.0 mg/L 6-BA, 2% sucrose, 0.8% agar,
pH 5.8] for 5 days (16 h light/8 h dark). Agrobacterium rhizogenes
strain K599 containing the recombinant construct was grown in
yeast extract peptone medium containing 50 mg/L kanamycin
and 25 mg/L rifampicin at 28◦C for 16 h. We then used the
construct to infect the cotyledons through scalpel incisions.
The cotyledons were co-cultivated with A. rhizogenes on root-
inducing medium [4.3 g/L Murashige and Skoog (MS) medium

(Murashige and Skoog, 1962), 3% sucrose, 0.6 g/L MES, 250 mg/L
cefotaxime and 250 mg/L carbenicillin]. After 2 weeks, cotyledons
with roots emerging from the incision sites were transferred to
new root-inducing medium with NaCl or medium without NaCl
as untreated control. Root mass was weighed about 1 week after
treatment and used the soybean plant NIL-j for transformation.
The overexpression of the J gene was tested in transgenic hairy
roots using qRT-PCR.

Transcriptomic Analysis
NIL-J and NIL-j soybean plants grown for 4 weeks under non-
stress conditions were used for transcriptomic analysis. Total
RNA was extracted from the samples with three biological
replications using the Spectrum Plant Total RNA Kit (Sigma-
Aldrich, St. Louis, MO, United States, STRN10-1KT). The
sequencing libraries were generated using NEB Next Ultra
RNA Library Prep Kit for Illumina (New England Biolabs,
Ipswich, MA, United States) following the manufacturer’s
recommendations and added index codes to attribute sequences
to each sample. The clustering of the index-coded samples was
performed on a cBot Cluster Generation System using TruSeq PE
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FIGURE 2 | Phenotype identification of J under NaCl treatment in NIL-J and NIL-j soybean plants. (A) Phenotypes of 14 days NIL-J and NIL-j seedings after
planting, treated with 200 mM NaCl for 3 days, Bottom photos: second leaves. N = 12. (B) Fresh weight of NIL-J and NIL-j soybean plants with 0 mM or 200 mM
NaCl treatment. (C) Proline contents in NIL-J and NIL-j soybean seedlings under 0 mM or 200 mM NaCl treatment. (D) MDA contents in NIL-J and NIL-j soybean
seedlings under 0 mM or 200 mM NaCl treatment. Error bars, s.e.m. Data were analyzed using Student’s t test. NS, not significant. **P < 0.01.

Cluster Kit v4-cBot-HS (Illumia) according to the manufacturer’s
instructions. After cluster analysis, we sequenced the RNA on
an Illumina Hiseq 2500 platform to generate paired-end reads.
We mapped the total reads to the soybean genome1 using the
Tophat tools software (Trapnell et al., 2009). Read counts for
each gene were generated using HTSeq with a union mode.
Differentially expressed genes (DEGs) among samples were
defined by DESeq using two separate models (Anders and Huber,
2010), based on fold change greater than two and a false discovery
rate (FDR)–adjusted P value < 0.05. We implemented gene
ontology (GO) enrichment analysis of the DEGs using the GOseq
R packages based on Wallenius non-central hypergeometric

1https://phytozome.jgi.doe.gov/pz/portal.html

distribution (Young et al., 2010), which can adjust for gene
length bias in DEGs.

Statistical Analyses
For phenotypic evaluation, we analyzed at least 10 NIL-J and
NIL-j soybean plants, or GFP-OE and J-OE transgenic hairy
roots. The exact numbers of individuals (n) are presented in
the figure legends. For expression analyses using qRT-PCR, we
pooled at least three individuals per tissue sample and performed
at least three qRT–PCR reactions (technical replicates). The
exact number of replicates is given in the figure legends. We
compared mean values for each measured parameter using one-
way analysis of variance from SPSS (version 20, IBM, Chicago,
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FIGURE 3 | Phenotype identification of J under salt treatment in transgenic hairy roots. (A) Phenotypes of transgenic hairy roots expressing either GFP or J with or
without NaCl treatment. Photos were taken 2 weeks after treatment. (B) Fresh weight of hairy roots with or without NaCl treatment. N = 12. Error bars, s.e.m. Data
were analyzed using Student’s t test. NS, not significant. **P < 0.01.

IL, United States) or one-tailed, two-sample Student’s t tests from
Microsoft Excel, whenever appropriate. The statistical tests used
for each experiment were given in the figure legends.

RESULTS

J Gene Expression and Protein
Localization
Our previous research showed that J is a co-ortholog of the
Arabidopsis flowering-time gene AtELF3. J promotes flowering
of soybean by directly repressing the expression of E1 (Lu et al.,
2017). To understand whether J was involved in the response to
NaCl stress in soybean, we first investigated the expression of J
in soybean seedlings exposed for 2 weeks to NaCl (200 mM).
The results showed that J expression was significantly induced
and reached a peak at 12 h under NaCl exposure (Figure 1A).
We next investigated the expression pattern of J by quantifying
the relative abundance of the mRNA in different organs. J
was constitutively expressed in soybean organs (root, hypocotyl,
cotyledon, leaf, stem, shoot apex, flower) and highly expressed
in the cotyledons, but it was expressed moderately in leaves
and roots (Figure 1B). We further determined the subcellular
localization of J. The p35S-J-GFP construct was transiently
transformed into N. benthamiana leaf cells. The results show
that J is located in the nucleus, and the GFP control is located
primarily in the cytoplasm (Figure 1C and Supplementary
Figure S1). These results indicate that J is a nuclear protein, and
that the expression of J is induced by NaCl treatment.

J Improves Salt Tolerance in Soybean
Because the expression of J was induced under NaCl treatment,
we hypothesized the J gene may have a role in salt tolerance
in soybean. To confirm this potential function, we examined
seedlings from near-isogenic lines (NILs) carrying the functional

J allele (NIL-J) or the non-functional j allele (NIL-j) (Lu et al.,
2017) for their sensitivity to 200 mM NaCl. NIL-j seedlings
were severely wilted and almost 99% of the leaves exhibited
serious dehydration and drying (Figure 2A). Although old
leaves of NIL-J soybean seedlings wilted, new leaves still grew
vigorously (Figure 2A). The fresh weight was measured under
NaCl treatment, and the results showed that the fresh weight of
NIL-J soybean seedlings was significantly higher than that of NIL-
j plants (Figure 2B). Next, we measured MDA and Pro content
to compare stress impact between NIL-J and NIL-j. The results
showed that NIL-J soybean seedlings increased Pro content to a
larger extend than the NIL-j lines (Figure 2C), whereas the MDA
content was less increased in the NIL-J lines under NaCl stress
(Figure 2D). These measurements suggest the impact of the NaCl
treatment is lower in the NIL-J lines.

To further evaluate whether J is a NaCl-tolerant gene, a
construct for J overexpression (pTF101-J) was generated and
transformed into the soybean hairy roots of NIL-j. We confirmed
the expression of the transgene by qRT-PCR (Supplementary
Figure S1). In the absence of NaCl treatment, both root
cultures transformed with either J or green fluorescent protein
(GFP; control) gave healthy hairy roots (Figure 3A). When
subjected to NaCl treatment, however, roots transformed with
J showed significantly higher root fresh weights than the
control (Figure 3B). This result support the idea that J could
reduce NaCl stress.

Transcriptomic Analysis of NIL-J and
NIL-j Soybean Plants
To identify genes possibly related to the J-mediated reduction of
NaCl impact, we performed mRNA-sequence (RNA-Seq) analysis
of the full transcripts from NIL-J and NIL-j soybean plants. We
identified 2567 DEG that were affected more than two-fold in
NIL-j compared with NIL-J under non-stress conditions (FDR
P < 0.05; Figure 4A and Supplementary Data S1). Among
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FIGURE 4 | Transcriptomic analysis of NIL-J and NIL-j soybean plant. (A) Numbers of genes showing differential expression between NIL-J and NIL-j soybean plant
in non-NaCl-stressed seedings. (B) GO terms that were statistically enriched in differentially expressed genes in NIL-J and NIL-j RNA-seq assay. The numbers near
the columns indicate the number of differentially expressed genes. (C,D) The heat map of differential expression of WRKY, bHLH, MYB, and NAC family genes in
NIL-J and NIL-j. The numerical values for the blue-to-red gradient bar represent log2-fold change relative to the control sample.
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TABLE 1 | J up-regulating genes confer salt tolerance in soybean.

Gene name Gene number Function References

GmWRKY12 Glyma.01G224800 Improve salt tolerance in soybean Shi et al., 2018

GmWRKY20 Glyma.11G163300 Response to salt stress in soybean Yu et al., 2016

GmWRKY21 Glyma.04G218700 Response to salt stress in soybean Yu et al., 2016

GmWRKY27 Glyma.15G003300 Improve salt tolerance in soybean Wang et al., 2015

GmWRKY28 Glyma.01G056800 Response to salt stress in soybean Yu et al., 2016

GmWRKY50 Glyma.04G076200 Response to salt stress in soybean Yu et al., 2016

GmWRKY51 Glyma.03G220800 Response to salt stress in soybean Yu et al., 2016

GmWRKY54 Glyma.19G094100 Improve salt tolerance in Arabidopsis Zhou et al., 2008

GmWRKY56 Glyma.08G218600 Response to salt stress in soybean Yu et al., 2016

GmWRKY57 Glyma.18G213200 Response to salt stress in soybean Yu et al., 2016

GmWRKY62 Glyma.18G056600 Response to salt stress in soybean Yu et al., 2016

GmWRKY76 Glyma.03G042700 Response to salt stress in soybean Yu et al., 2016

GmWRKY81 Glyma.04G061400 Response to salt stress in soybean Yu et al., 2016

GmWRKY85 Glyma.04G238300 Response to salt stress in soybean Yu et al., 2016

GmWRKY92 Glyma.05G184500 Response to salt stress in soybean Song et al., 2016

GmWRKY100 Glyma.06G168400 Response to salt stress in soybean Yu et al., 2016

GmWRKY125 Glyma.09G274000 Response to salt stress in soybean Yu et al., 2016

GmWRKY126 Glyma.09G280200 Response to salt stress in soybean Yu et al., 2016

GmWRKY134 Glyma.13G117600 Response to salt stress in soybean Yu et al., 2016

GmWRKY144 Glyma.14G103100 Response to salt stress in soybean Song et al., 2016

GmWRKY159 Glyma.17G011400 Response to salt stress in soybean Yu et al., 2016

GmWRKY171 Glyma.18G208800 Response to salt stress in soybean Yu et al., 2016

GmWRKY179 Glyma.19G254800 Response to salt stress in soybean Yu et al., 2016

GmWRKY180 Glyma.20G028000 Response to salt stress in soybean Yu et al., 2016

GmNAC11 Glyma.19G108800 Improve salt tolerance in Arabidopsis Hao et al., 2011

GmSIN1 Glyma.13G279900 Improve salt tolerance in soybean Li et al., 2019

the 2567 DEG, 452 genes were significantly upregulated and
2115 genes were significantly downregulated (Figure 4A and
Supplementary Data S1). The GO terms specifically enriched in
the downregulated DEGs were primarily genes involved in stress
responses, in transcription, in secondary metabolite biosynthesis,
in transport of organic ions, and signal transduction (Figure 4B).

Biotechnological and RNA-Seq approaches have identified
some TF families, such as WRKY, NAC, MYB, and bHLH
proteins, that respond to NaCl stress in soybean. Here, we found
that 64 WRKY-family genes, 16 NAC-family genes, 10 MYB-
family genes, and 5 bHLH-family genes were significantly
downregulated in NIL-j plants in comparison to NIL-J
(fold-change > 2, and P > 0.5) under normal conditions
(Figures 4C,D). To further explore the effect of J on the
transcription of NaCl related genes, we determined, for all of
these genes, whether they respond to NaCl stress. As a result,
we identified that 24 of 64 WRKY-family genes and 2 of 16
NAC-family genes that could respond to NaCl stress in soybean
(Table 1). Therefore, we speculated that J may positively regulate
the expression of these genes and contribute to improvements in
NaCl tolerance in soybean.

J Improves Salt Tolerance by Positively
Regulating Salt Stress Response Genes
The comparison of the transcriptomes of 12 d old NIL-J
and NIL-j soybean seedlings, showed higher expression of

GmWRKY12, GmWRKY27, GmWRKY54, GmNAC11, and
GmSIN1 in NIL-J lines. To confirm these differential expressions,
and simultaneously test expression changes under NaCl
treatment, we used qRT-PCR in NIL-J and NIL-j soybean plants
and in J-overexpressing (J-OE) soybean hairy roots. These
genes were all upregulated in NIL-J soybean plants (Figure 5A
and Supplementary Figure S2) and J-OE soybean hairy roots
(Figure 5B and Supplementary Figure S2). Additionally,
they all showed earlier or higher induction in NIL-J than
NIL-j soybean plants or in J-OE hairy roots than in WT
plants in response to NaCl (Figures 5A,B and Supplementary
Figure S2). These data suggested that J expression regulates
to some extend the expression of GmWRKY12, GmWRKY27,
GmWRKY54, GmNAC11, and GmSIN1 and can improve NaCl
tolerance in soybean.

DISCUSSION

To engineer salt-tolerant soybean varieties, it is crucial to
identify key components of the plant salt-tolerance network.
Although some salt-tolerance genes have been identified in
soybean, knowledge about the mechanisms by which they work
is still scarce. In this study we investigated the potential role
and mechanism for one such candidate, named J, for which
the Arabidopsis-ortholog AtELF3 may be involved in stress
responses (Lu et al., 2017). Recently, research showed that
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FIGURE 5 | J positively regulating the expression of salt stress–tolerant genes in soybean. (A) The transcription levels of GmWRKY12, GmWRKY27, GmWRKY54,
GmNAC11, and GmSIN1 in 15-day-old seedlings of NIL-J and NIL-j soybean plant exposed to either 0 mM (mock) or 150 mM NaCl for 6 h; data obtained by
qRT-PCR. (B) The transcription levels of GmWRKY12, GmWRKY27, GmWRKY54, GmNAC11, and GmSIN1 in J or GFP (Control) overexpressing soybean hairy root
and exposed to either 0 mM (mock) or 150 mM NaCl; data obtained by qRT-PCR. Significant differences were analyzed based on the results of three biological
replications (Student’s t-test: **P < 0.01). Bars indicate standard error of the mean.

AtELF3 enhances the resilience to NaCl stress and plays a
key role in the repression of ROS production under NaCl
stress in Arabidopsis (Sakuraba et al., 2017). Consistent with
these observations, we demonstrated that J improved NaCl
tolerance in soybean plants. This finding suggested that the ELF3
homologous gene may have a similar function in response to
NaCl stress in other crops.

It has been reported that WRKY family TFs play an
important role in response to NaCl stress in soybean (Zhou
et al., 2008; Wang et al., 2015; Song et al., 2016; Shi et al.,
2018; Xu et al., 2018). Zhou et al. (2008) identified 64
GmWRKY genes before the soybean genome was sequenced
and confirmed that GmWRKY13, 21 and 54 genes were
involved in NaCl stress. Yu et al. (2016) identified 188 soybean
WRKY genes genome-wide, and 66 of the genes have been
shown to respond rapidly and transiently to the imposition
of NaCl stress. In the latest version of the soybean genome
(Wm82.a2v1), 176 GmWRKY TFs were identified and the
expression of three GmWRKY genes increased under NaCl
treatment (Song et al., 2016). In addition, some NAC TFs
have been involved in NaCl stress responses (Hao et al.,
2011; Melo et al., 2018; Li et al., 2019). For example,
overexpression of GmNAC11 resulted in enhanced tolerance

to NaCl stress (Hao et al., 2011). In this study, we found
that J upregulated 64 WRKY-family genes and 16 NAC-
family genes by transcriptomic analysis. Based on RNA-Seq
and bioinformatics methods, we found that 24 WRKY-family
genes and two NAC-family genes may have participated in
response to NaCl in soybean. We also confirmed that J
positively regulated the expression of GmWRKY12, GmWRKY27,
GmWRKY54, GmNAC11, and GmSIN1, which encoded a positive
effect on NaCl tolerance in soybean (Zhou et al., 2008; Hao
et al., 2011; Wang et al., 2015; Shi et al., 2018; Li et al.,
2019). AtELF3 participated in the evening (AtELF3-AtELF4-
AtLUX) complex of the transcriptional repression of downstream
genes (Nusinow et al., 2011). A recent study revealed that
AtELF3 indirectly binds to the AtPIF4 promoter and represses
the expression of AtPIF4. AtPIF4 directly downregulates the
transcription of JUNGBRUNNEN1 (JUB1/ANAC042), encoding
a TF that upregulates the expression of NaCl stress–tolerant
genes (Sakuraba et al., 2017). Thus, we speculated that J
may indirectly regulate the transcription of GmWRKY and
GmNAC genes, which positively regulated NaCl stress response
pathways in soybean. In future work, we will identify whether
or not J directly regulates genes in soybean NaCl stress
response pathways.
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Overall, our results showed that J transcription was activated
under NaCl stress in soybean. and J could positively regulate
the expression of salt-responsive genes in soybean. Our findings
indicate that J may function in plant survival under high NaCl
levels, and may provide a target for genetically designing and
breeding of more salt-tolerant soybean.
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FIGURE S1 | Expression of transgenes validated by qRT-PCR. (A) Transgenic
hairy root expressing of GFP. (B) Transgenic hairy root expressing of J. Significant
differences were analyzed based on the results of three biological replications
(Student’s t test: **P < 0.01). Bars indicate standard error of the mean. N ≥ 12.
Error bars = s.e.m.

FIGURE S2 | J positively regulating the expression of NaCl stress tolerance
genes in soybean. (A) The transcript levels of GmWRKY12, GmWRKY27,
GmWRKY54, GmNAC11, and GmSIN1 in Fifteen-day-old seedlings of NIL-J and
NIL-j soybean plant exposed to either 0 mM (mock) or 150 mM NaCl for 6 h; data
obtained by qRT-PCR. (B) The transcript levels of GmWRKY12, GmWRKY27,
GmWRKY54, GmNAC11, and GmSIN1 in J or GFP (Control) overexpressed
soybean hairy root and exposed to either 0 mM (mock) or 150 mM NaCl; data
obtained by qRT-PCR. All data were normalized to levels of amplified soybean
EF1β. Significant differences were analyzed based on the results of three biological
replications (Student’s t test: **P < 0.01). Bars indicate standard error of the
mean.

TABLE S1 | Primers used for this study.

DATA S1 | List of genes with significant expression changes.
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