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As sessile organisms, plants must be highly adaptable to the changing environment
by modifying their growth and development. Plants rely on their underground part,
the root system, to absorb water and nutrients and to anchor to the ground. The
root is a highly dynamic organ of indeterminate growth with new tissues produced
by root stem cells. Plants have evolved unique molecular mechanisms to fine-tune
root developmental processes, during which phytohormones play vital roles. These
hormones often relay environmental signals to auxin signaling that ultimately directs root
development programs. Therefore, the crosstalk among hormones is critical in the root
development. In this review, we will focus on the recent progresses that jasmonic acid
(JA) and ethylene signaling are integrated into auxin in regulating root development of
Arabidopsis thaliana and discuss the key roles of transcription factors (TFs) ethylene
response factors (ERFs) and homeobox proteins in the crosstalk.
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INTRODUCTION

Plant root systems represent the underground organs that provide mechanical support and uptake
of nutrients and water. Depending on the species and environment, root systems show a high
level of morphological diversity. Improved root architecture can increase the utilization of water
and nutrients, which in turn helps increase crop yield. Most dicotyledons have tap root systems,
while monocotyledons have fibrous root systems. The tap root system is composed of a developed
primary root, lateral roots and adventitious roots, while the fibrous root system is mainly composed
of adventitious roots (Martinez-de la Cruz et al., 2015; Zhang X. et al., 2019). The development
of primary roots begins from embryonic development, whereas the lateral roots are initiated
from asymmetrical divisions of the pericycle founder cell of primary roots. The root system
morphology or architecture (RSA) is a highly plastic trait that is influenced by numerous biotic
and abiotic factors (Osmont et al., 2007). An increasing number of studies in the model plant
Arabidopsis thaliana have helped to address the underlying molecular mechanisms of this plasticity
(Motte et al., 2019).

Root development occurs with the concerted action of multiple plant hormones (Petricka et al.,
2012). Auxin has emerged as a core player on which other plant hormones integrate to regulate
root development. Auxin synthesis, transport, and signaling pathways are important for plant root
development. Indole-3-acetic acid (IAA) is the main naturally occurring auxin and the biosynthetic
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pathway of IAA has been clearly understood (Zhao, 2018).
L-tryptophan is the major precursor of IAA synthesis, and
the rate-limiting step of tryptophan synthesis is catalyzed by
anthranilate synthase (a heterocomplex consisting of ASA1/2 and
ASB1) (Sun et al., 2009; Casanova-Saez and Voss, 2019). ASA1
and ASB1 are also named WEI2 (Weak Ethylene Insensitive
2) and WEI7, respectively, since they were characterized from
ethylene insensitive mutants of root growth (Stepanova et al.,
2005). The two-step indole-3-pyruvate (IPA) pathway is the only
IAA biosynthetic pathway that has been fully elucidated, and it
is also the main pathway for IAA synthesis (Zhao, 2012). TAAs
(Tryptophan Aminotransferase of Arabidopsis) and YUCCAs
(YUCs) are enzymes that catalyze these two steps (Mashiguchi
et al., 2011; Zhao, 2012). TAA1/WEI8, like ASA1 and ASB1,
was also identified from the ethylene insensitive mutant wei8
(Stepanova et al., 2008; Tao et al., 2008). Polar distribution is
characteristic of auxin, which is mediated by PIN-FORMED
(PIN) and AUXIN1/LIKE-AUX1 (AUX1/LAX) family members
under strict regulations (Band et al., 2014; Adamowski and
Friml, 2015). Localized auxin biosynthesis has been shown to
play critical roles in root development as well (Zhao, 2010,
2018). Besides, the auxin signaling pathway is intensively studies
recently with a focus on the fine regulation mechanisms of
the IAA (INDOLEACETIC ACID-INDUCED PROTEIN) -ARF
(AUXIN RESPONSE FACTOR) network (Wang and Estelle,
2014). Briefly, the auxin receptor TIR1/AFB (TRANSPORT
INHIBITOR RESPONSE1/AUXIN SIGNALING F-BOX) binds
to auxin causing degradation of IAA proteins that interact with
ARF transcription factors (TFs) (Leyser, 2018; Gallei et al., 2019).
ARFs bind to the auxin response elements (AREs) in promoters
of target genes to regulate gene expression (Gallei et al., 2019).

During the stage of embryogenesis, auxin distribution patterns
determine the position around which the embryonic roots start
growing. In a later stage, auxin distribution patterns in and
around the meristem determine root meristem activity and lateral
root spacing (Motte et al., 2019). The development of lateral root
is closely related to auxin, including its synthesis, transport and
signal transduction (Osmont et al., 2007; Motte et al., 2019).

The gaseous phytohormone ethylene is well-known for its
functions in plant maturation and senescence. In addition,
numerous studies have shown that ethylene is involved in
various plant growth and developmental processes, including
root growth (Ruzicka et al., 2007; Swarup et al., 2007; Lewis
et al., 2011; Street et al., 2015; Mao et al., 2016; Miao et al.,
2018). The function of jasmonic acid (JA) in plant injury and
defense responses has been thoroughly studied, and its roles in
growth and development has also been widely reported (Kazan
and Manners, 2013; Cai et al., 2014; Ye et al., 2019). Like
other hormone signaling pathways, ethylene and JA signaling are
integrated into auxin in root development, largely through TFs
acting as the key crosstalk nodes.

Ethylene-Auxin Crosstalk in Root
Development
Ethylene is an important regulatory signal in regulating the
process of root development (Ruzicka et al., 2007; Swarup et al.,
2007; Street et al., 2015). Plants produce more ethylene when

exposed to external stimuli (Wang et al., 2002). Ethylene binds
to ETR1(ETHYLENE RESPONSE 1) receptor family on the
endoplasmic reticulum (ER) membrane, leading to inactivation
of the S/T protein kinase CTR1 (CONSTITUTIVE TRIPLE
RESPONSE 1), which functions to repress EIN2 (ETHYLENE
INSENSITIVE 2). After detaching from CTR1, EIN2 can be
cleaved to release EIN2 C-terminal (EIN2C). The EINC has
two levels of regulation of EBF1/2 (EIN3-BINDING F BOX
PROTEIN 1/2). On the one hand, EIN2C binds to 3′-UTR of
EBF1/2 in the cytoplasm to inhibit its translation (Li et al.,
2015; Merchante et al., 2015), and on the other hand, EIN2C
is translocated into the nucleus to promote the degradation of
EBF1/2 (Qiao et al., 2012; Dolgikh et al., 2019), both leading
to stabilization of EIN3/EIL1 (ETHYLENE-INSENSITIVE3-
LIKE1) to activate ethylene response genes. Although ethylene
is best known for triggering fruit ripening, it also plays a crucial
role in regulating root development. In response to ethylene
or its precursor ACC (1-aminocyclopropane-1-carboxylic acid)
treatment, the root of Arabidopsis seedlings shows three growth
responses: rapid downregulation of cell elongation, increased
root width, and induction of ectopic root hairs, which collectively
will provide plants with greater anchorage and more dynamic
regulation of root growth (Swarup et al., 2007).

Inhibition of root growth by ethylene depends on auxin
biosynthesis, transport and signaling pathway (Ruzicka et al.,
2007; Swarup et al., 2007). Ethylene up-regulates expression
of auxin synthesis and transport-related genes in Arabidopsis
roots, resulting in a high concentration of auxin that inhibits
cell elongation (Ruzicka et al., 2007; Strader et al., 2010).
Ethylene modulates the auxin transport machinery by directly
or indirectly regulating the expression of auxin efflux (PINs) and
influx (AUX1) carriers (Ruzicka et al., 2007). A subsequent study
showed that ethylene can negatively regulate cell proliferation
in addition to inhibiting cell elongation and SHY2 (SHORT
HYPOCOTYL 2)/IAA3 mediated this effect in the root meristem
(Street et al., 2015). It has been found that in Arabidopsis
seedlings CTR1 transduces the ethylene signal to EIN2 in the root
and then affects PIN2 expression to modulate the root stem cell
niche maintenance (Mendez-Bravo et al., 2019). The screening
experiment on the ethylene overexpression mutant eto1 identified
a small molecule named L-kynurenine (Kyn), which could
inhibit ethylene-directed auxin biosynthesis and root growth by
inhibiting TAA1’s activity (He et al., 2011). POLARIS (PLS),
encoding a predicted functional 36-amino acid peptide, is
required in ethylene-mediated root inhibition through regulating
auxin transport and affecting microtubule cytoskeleton dynamics
(Chilley et al., 2006). The PLS expression is activated by auxin
and suppressed by ethylene, and PLS peptide in turn negatively
regulates the ethylene signaling pathway (Chilley et al., 2006). It
was reported that ethylene can induce an oxidase named MINE,
which produces pyridoxal-5′-phosphate (PNP), and PNP acts as
a cofactor in TAA1/TAR-dependent auxin biosynthesis, which
in turn influences ethylene-auxin crosstalk in Arabidopsis root
(Kim et al., 2018).

Ethylene is involved in regulating the growth and
development of not only primary roots but also lateral
roots. Increased endogenous ethylene or ACC treatment
activates PIN3/7 expression thereby enhancing auxin transport
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and reducing lateral root formation (Lewis et al., 2011).
Auxin signaling affects the cell division pattern of lateral root
primordium by regulating the expression of the ERF (ethylene
response factor) family transcription factor PUCHI, which is
required for the proper pattern of early lateral root primordia
(Hirota et al., 2007). PLS, the small peptide mentioned above,
is also required in lateral roots initiation via ethylene-mediated
auxin transport to the pericycle (Chilley et al., 2006).

Adventitious root initiation and development are also
regulated by ethylene-auxin crosstalk. Ethylene was reported to
inhibit adventitious rooting in Arabidopsis dark-grown seedlings
by negatively regulating auxin biosynthesis (Veloccia et al., 2016).
When applied together with IBA (indole-3-butyric acid), ethylene
promotes the conversion of IBA to IAA and thus the development
of adventitious roots (Veloccia et al., 2016). Ethylene-auxin
crosstalk also regulates the initiation of adventitious roots near
cut sites where the levels of auxin and ethylene both increase
(Guan et al., 2019).

JA-Auxin Crosstalk in Root Development
Jasmonates are well-known lipid-derived compounds as key
regulators in plant growth and development as well as in plant
stress responses. JA participates in the regulation of root growth,
seedling development, flower development, root regeneration,
seed development, seed germination, tuber formation and
senescence (Wasternack and Hause, 2013; Ye et al., 2019;
Zhang G. et al., 2019). JA regulates root growth in many
aspects, including inhibition of primary root (Chen et al., 2011),
promoting lateral roots formation (Cai et al., 2014), negatively
regulating adventitious roots (Gutierrez et al., 2012; Lakehal
et al., 2019), and inducing root regeneration (Ye et al., 2019;
Zhang G. et al., 2019). Most of these processes are achieved via
cross-talking with auxin.

Root growth inhibition is one of the first discovered
features of JA. By screening mutants insensitive to JA-
mediated root inhibition, a number of regulatory factors
in the JA signaling pathway were revealed, such as JAR1
(JASMONATE RESISTANT 1) (Staswick et al., 1992),
MYC2/JAI1 (JASMONATE INSENSITIVE 1) (Berger et al.,
1996), and COI1 (CORONATINE INSENSITIVE 1) (Feys et al.,
1994). JA inhibits root elongation by reducing both cell counts
and cell dimension, suggesting that JA-induced primary root
growth inhibition is a complicated process involving diverse
cellular processes in different root tissues (Chen et al., 2011,
2012). JA-mediated inhibition of root development is auxin-
dependent (Wasternack and Hause, 2013). JA activates MYC2,
leading to the repression of PLT1 (PLETHORA1) and PLT2 in
root stem cell niche (Chen et al., 2011). PLTs encodes members of
the AP2/EREBP transcription factor family and are key effectors
for the establishment of the stem cell niche during embryonic
pattern formation. They respond to auxin accumulation and
this response depends on auxin-responsive TFs. Therefore, PLTs
serve as a key node for JA-auxin crosstalk in regulating the
maintenance of the stem cell niche in roots (Chen et al., 2011).

Jasmonic acid is also involved in regulating lateral roots
development. In response to methyl jasmonate (MeJA)
treatment, Arabidopsis wild type produces more lateral

roots, while the mutant asa1-1 does not produce lateral roots
(Sun et al., 2009). The JA receptor COI1 plays a critical role
in the formation and even distribution of lateral roots (Raya-
Gonzalez et al., 2012). In the coi1-1 mutant, the lateral roots
displayed uneven distribution and JA failed to induce more
lateral roots (Raya-Gonzalez et al., 2012). In the root, MeJA
activates the transcription of ASA1 and several other auxin
biosynthesis-related genes, such as YUCCA2 (Cheng et al.,
2006), ASB1 (Stepanova et al., 2005), and NITRILASE 3 (NIT3)
(Kutz et al., 2002). JA failed to increase lateral root initiation
in mutants with disrupted auxin signaling, like slr1 (iaa14) and
arf7/19 double mutant (Sun et al., 2009), which further supports
that JA-induced lateral root formation is auxin-dependent.
Activated expression of the transcription regulator HDG11
(HOMEODOMAIN GLABROUS11) increases the level of JA in
the roots by directly up-regulating the expression of several genes
encoding JA biosynthetic enzymes, resulting in enhanced auxin
signaling and lateral root formation (Cai et al., 2015). MeJA can
also induce YUC8 and YUC9 expression and thus participate in
auxin-mediated primary root growth and lateral root initiation
(Hentrich et al., 2013).

Jasmonic acid can exert negative effects on adventitious root
formation (Gutierrez et al., 2012). ARF6, ARF8, and ARF17 act
upstream of Gretchen Hagen3.3 (GH3.3), GH3.5, and GH3.6.
These three GH3s inactive JA by conjugating JA to amino acids
Asp, Met, and Trp, and therefore promote adventitious rooting
(Gutierrez et al., 2012). The effect of JA in adventitious root
development depends on experimental conditions. At low sub-
micromolar concentrations, MeJA has been shown to promote
adventitious root development when applied together with IBA,
and this process does not involve regulation of ARF6 or ARF8
expression (Fattorini et al., 2018).

It is well known that plants can regenerate tissues and even
complete organs after damage. Recently, Zhou et al. (2019)
reported that the synergy between jasmonate and auxin signaling
pathways promotes root regeneration by activating root stem
cells (Zhou et al., 2019). In this process, JA induces ERF109,
CYCLIN D6;1 (CYCD6;1), and ERF115 expression to activate
stem cell and promote tissue regeneration. Auxin also activates
key regeneration regulators of this pathway (Zhou et al., 2019).

TFs Involved in JA-Auxin and
Ethylene-Auxin Crosstalk
Transcription factors are specific implementers of numerous
regulation processes. Each hormone crosstalk involves many
important TFs. Here we focus on ERF family and HD-ZIP TFs
in JA-auxin and ethylene-auxin crosstalk.

Ethylene response factor family TFs are plant specific
and involve in a variety of plant development processes
and stress responses. Many ERFs are responsive to ethylene.
ERF1 negatively regulates primary root elongation in an
auxin biosynthesis-dependent manner. Being downstream and
a direct target of EIN3, ERF1 activates ASA1 by binding to
GCCGCC motifs (GCC-boxes) in the promoter of ASA1. The
up-regulation of ASA1 increases auxin biosynthesis, promotes
auxin accumulation in root tip, and consequently suppresses root
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elongation (Mao et al., 2016). Therefore, ERF1 acts as a critical
crosstalk joint connecting ethylene and auxin in regulating
primary root elongation (Figure 1).

HOMEOBOX PROTEIN52 (HB52) belongs to the HD-ZIP
transcription factor family. The HD-ZIP transcription factor
family only found in plants with 47 members in Arabidopsis.
According to protein structures and functions, HD-ZIP family
members can be divided into four subfamilies (I-IV), and
HB52 belongs to the HD-ZIP I subfamily (Ariel et al., 2007).
HD-ZIP I family genes are responsive to external stimuli
like drought, high temperature, osmotic stress, and lights.
HB52 was identified from the study of ethylene-mediated root
inhibition (Mao et al., 2016). HB52 is highly expressed in
roots and is responsive to the ACC treatment as a direct
target of EIN3. HB52 regulates primary root elongation through
affecting auxin transport. HB52 binds to the homeodomain-
binding cis-elements in the promoters of PIN2 and WAG1/2
to activate their expression (Figure 1). WAG1/2, closely related
to PINOID, can phosphorylate PIN2 to increase its auxin
efflux carrier ability (Willige et al., 2012). Therefore, HB52
serves as another important crosstalk node between ethylene
and auxin to regulate root elongation (Miao et al., 2018).
Together, ERF1 and HB52 constitute the ethylene-responsive
modules for auxin biosynthesis and transport, respectively, in
root elongation regulation.

ERF109 is another member of the ERF family and responsive
to the JA signaling pathway. ERF109 binds to GCC-boxes in the
promoter regions of its target genes. Under normal conditions,

FIGURE 1 | Integration of Ethylene into Auxin Signaling in Arabidopsis Root
Development. Environmental cues trigger the biosynthesis of ethylene in
Arabidopsis, and then ethylene binds to ETR receptors to inactivate CTR1,
which functions to repress EIN2. When EIN2 is released by CTR1, it can be
cleaved and then helps to stabilize EIN3/EIL1, leading to the activation of
downstream transcriptional cascades. Ethylene inhibits primary root growth
by regulating auxin biosynthesis, transport, and signaling. ERF1 and HB52
function as crosstalk nodes between ethylene and auxin in this process. An
increase in endogenous ethylene enhances auxin transport and reduces
lateral root formation depending on AUX1, PIN3, and PIN7. The ERF1 and
HB52 regulatory modules are part of the molecular mechanisms in the
adaptive response of root growth to environmental cues.

ERF109 is expressed at a very low level in roots. After MeJA
treatment, the transcription level of ERF109 was significantly
induced in both roots and shoots, especially in the lateral root
primordium region and the tip and base of lateral roots (Cai
et al., 2014). Genetic analyses showed that ERF109 positively
regulates lateral root formation through upregulating auxin
biosynthesis. In vitro and in vivo experiments showed that
ERF109 binds to the GCC-boxes in ASA1 and YUC2 promoters
and directly activates their expression, leading to increased auxin
biosynthesis and accumulation in the root (Cai et al., 2014).
Thus, ERF109 serves as an important crosstalk node between JA
and auxin signaling (Figure 2). Recently, three research groups
independently reported that ERF109 has a novel function in
plant regeneration depending on its roles in upregulating ASA1
expression (Ye et al., 2019; Zhang G. et al., 2019) or activating
ERF115 and CYCD6;1 (Zhou et al., 2019).

ERF1, ERF109, and HB52 are representative TFs involved in
the crosstalk of JA-auxin and ethylene-auxin signaling pathways
in regulating root development. Other TFs participated in the
processes are yet to be identified.

CONCLUSION AND PERSPECTIVES

Crosstalk between hormone signaling are fundamental process
in plant development, yet the underlying mechanisms are far
from clear. In this review, we summarized recent advances on the
understanding of ethylene and JA integration into auxin signaling
in the regulation of root development.

FIGURE 2 | Integration of JA into Auxin Signaling in Arabidopsis Root
Development. Plants generate JA in response to environmental cues. COI1
receptor perceives JA, and then recruits JAZs subjected to degradation.
Subsequently, MYC2 can activate transcription of early JA-responsive genes.
JA promotes lateral root formation by regulating auxin biosynthesis (via ASA1
and YUC2) and transport (via PID and PIN2/4). Transcription factor ERF109
functions as a key crosstalk node in this process. JA inhibits primary root
development by repressing the expression of PLT1 and PLT2. Auxin
modulates JA homeostasis by regulating GH3.3/5/6 through ARF6/8/17, then
influences adventitious root formation. Therefore, the ERF109 regulatory
module plays critical roles in the growth and development of lateral, primary
and adventitious roots in the adaptive response of the root system to
environmental factors.
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Auxin plays the central role in regulating root development.
Plant roots constantly perceive environmental cues and generate
hormonal signals in order to adjust developmental programs
for better adaptation to the changing surroundings. JA and
ethylene are two representative hormones in plants responding
to environmental changes. These two hormonal signals can
be relayed to auxin signaling, the master regulator of root
development. In the signal relay, TFs play critical roles to
integrate other hormonal signal into auxin signaling through
modulating auxin biosynthesis (for example, ERF1 and ERF109)
or auxin transport (for example, HB52) to fine-tune the
regulation of primary root growth and/or lateral root formation.

To unravel the complete network of JA-auxin and ethylene-
auxin crosstalks in root development, we need to identify
the more components involved in these processes, as well as
understand the spatial-temporal relationships between these
components. Some attempts have been recently made by
identifying the root epidermis cells where the interaction between

ethylene and auxin takes place (Vaseva et al., 2018; Mendez-
Bravo et al., 2019). Moreover, local auxin biosynthesis is critical
in ethylene-auxin crosstalk (Brumos et al., 2018). With the
advance of new technology such as single-cell sequencing and
high-resolution microscope, in-depth details in the crosstalk
will be revealed.
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