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Amongst various environmental constraints, abiotic stresses are increasing the risk of
food insecurity worldwide by limiting crop production and disturbing the geographical
distribution of food crops. Millets are known to possess unique features of resilience
to adverse environments, especially infertile soil conditions, although the underlying
mechanisms are yet to be determined. The small diploid genome, short stature,
excellent seed production, C4 photosynthesis, and short life cycle of foxtail millet make
it a very promising model crop for studying nutrient stress responses. Known to be
a drought-tolerant crop, it responds to low nitrogen and low phosphate by respective
reduction and enhancement of its root system. This special response is quite different
from that shown by maize and some other cereals. In contrast to having a smaller root
system under low nitrogen, foxtail millet enhances biomass accumulation, facilitating
root thickening, presumably for nutrient translocation. The low phosphate response of
foxtail millet links to the internal nitrogen status, which tends to act as a signal regulating
the expression of nitrogen transporters and hence indicates its inherent connection with
nitrogen nutrition. Altogether, the low nitrogen and low phosphate responses of foxtail
millet can act as a basis to further determine the underlying molecular mechanisms.
Here, we will highlight the abiotic stress responses of foxtail millet with a key note on its
low nitrogen and low phosphate adaptive responses in comparison to other crops.

Keywords: foxtail millet, abiotic stresses, nitrogen limitation, phosphate starvation, transporter

INTRODUCTION

Abiotic and biotic environmental stresses reduce plant growth and yield below optimum levels.
According to an FAO report released in 2007, only 3.5% of the global area is not affected by
environmental constraints, contributing to 50–70% of crop yield reduction (Boyer, 1982; Mittler,
2006). Being sessile in nature, plants encounter these environmental challenges while obtaining
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the carbon, water, and nutrients necessary for development,
growth, and biomass production. The dynamic and complex
responses of plants to abiotic stresses can be elastic (reversible)
or plastic (irreversible) (Cramer, 2010; Skirycz and Inze, 2010).
Plant growth is based on cell proliferation, which requires the
persistent availability of nutrients, water, and energy; hence,
plants survive through acclimatory responses to nutrient, water,
light, and temperature fluctuations.

Roots are vital for optimum crop production because, as well
as their water and nutrient uptake functionality, they provide
anchorage of plants to soils, store essential elements, and have
symbiotic relationships with microorganisms present in the
rhizosphere (Bechtold and Field, 2018). Drought, soil salinity,
and nutrient toxicity and deficiency are frequent stresses directly
encountered by plant roots, leading them to modify or alter
their growth as per environmental signaling. The geochemical
processes of rock weathering replenish soils with nutrients,
except for nitrogen, which originates primarily from atmospheric
nitrogen (N) fixation. The natural impoverishment of some
nutrients leads to their deficiencies in soils. Nutrient limitation is
a limiting factor in crop growth and production that originates
from a combination of natural and anthropogenic processes
(Sanchez and Salinas, 1981; Giehl and von Wirén, 2014).

N is an important macronutrient governing crop productivity
through the regulation of growth and development. N exists
in soils heterogeneously, either as inorganic forms, i.e., nitrate
and ammonium, or organic forms, like amino acids, peptides,
and lipids. Organic forms of nitrogen persist in specific habitats
such as boreal and tropical ecosystems. Nitrate and ammonium
are the predominant forms of N in most soils, and their
availability is controlled by soil physical properties, leaching, and
microbial activities, more often than not resulting in formation
of N-depletion zones in soils (Miller and Cramer, 2004; Jones
and Kielland, 2012; Werdin-Pfisterer et al., 2012); upon N
limitation, plants develop physiological alterations to enhance
nitrogen acquisition (Good et al., 2004; Hermans et al., 2006;
Nacry et al., 2013) or farmers apply synthetic fertilizers to ensure
yield. The latter often leads to the deterioration of soil physical
properties on the one hand, whereas it results in N losses
through leaching (polluting ground-water reservoirs), runoff
(deposition in fresh-water bodies, causing eutrophication), NH3-
volatilization, and denitrification on the other hand. Excessive
N deposition negatively influences air quality and ecosystem
health by impacting human health, unbalancing greenhouse gas
emissions, disturbing soil and water chemistry, and narrowing
biological diversity (Tilman et al., 2006; Guo et al., 2009; Sutton
et al., 2011; Stevens et al., 2015; Liu et al., 2016). Hence, to
counter (1) environmental risks and economic losses associated
with N-fertilization, and (2) the scarcity of N in natural soils,
it is worth investigating the morphological, physiological, and
molecular adaptive alterations adopted by plants to survive in
N-limiting environments.

Phosphorus (P), a key component of nucleic acid and
phospholipids, is another macronutrient that is essential for plant
growth and development. It exists in soils either as inorganic
phosphorus (Pi) interacting strongly with divalent and trivalent
cations or as organophosphates releasing phosphorus for root

uptake upon hydrolysis. In traditional agricultural systems,
farmers either rely on the inherent fertility of the soil or the
addition of manures and phosphate fertilizers to supply Pi for
plant growth (Syers et al., 2008). However, the acquisition of
phosphorus from soils is challenging for plants because of the
low solubility of phosphates of aluminum, iron, and calcium
(Schachtman et al., 1998). Pi also has high sorption capacity
to soil particles; thus, its uptake by plants depends upon their
ability to find immobile Pi in soils. Hence, the unavailability
of P in soils and agricultural intensification have resulted in a
dependency on the application of Pi fertilizers to increase crop
yield (Cordell et al., 2009).

Different plants have evolved differential responses to cope
with N, P, and other abiotic stresses. Research on the abiotic
stress responses of plants has come to the forefront but now
needs to be extended beyond maize, rice, wheat or Arabidopsis
thaliana to enhance crop diversity. Foxtail millet (Setaria italica
L.), thought to be native of South Asia, is one of the oldest
cultivated millets around the globe. The cultivation of foxtail
millet for human consumption dates back to 4000 years ago
(Baltensperger, 1996). China, Russia, India, Africa, and the
United States are the regions where it is widely grown. It is being
cultivated for food and fodder throughout Eurasia and the Far
East. It is primarily grown for hay in the United States and can
produce 2.47–8.65 tones ha−1 aboveground biomass (Schonbeck
and Morse, 2006). Its C/N ratio is 44, and it contains 48 kg
ha−1 N in aboveground biomass (Creamer and Baldwin, 1999).
It produces high yield with low levels of prussic acid (Sheahan,
2014). In contrast to other millets, foxtail millet can be grown
in cooler and droughty regions in spite of having a shallow
root system (Hancock Seed, 2014). It is a water-efficient crop: it
requires 1/3 less water than maize and can produce one ton of
forage in 2½ inch moisture (Koch, 2002). Foxtail millet is also a
preferred choice for the restoration of steep slopes or mine lands
because it grows fast and produces more biomass than annual rye
(Burger et al., 2009).

Since the release of genome sequences of foxtail millet by the
Joint Genome Institute (JGI) of the United States Department
of Energy, the importance of this species has been increasingly
growing. Owing to its close relationship with bioenergy crops
like switch grass (Panicum virgatum), Napier grass (Pennisetum
purpureum), and pearl millet (Pennisetum glaucum), foxtail
millet is also considered as a model system for biofuel grasses
(Doust et al., 2009). Bennetzen et al. (2012) and Zhang et al.
(2012) have compiled two full reference genome sequences
along with high-density linkage maps with another foxtail
millet line and green foxtail and have examined the evolution
and mechanisms of C4 photosynthesis in foxtail millet. The
availability of the foxtail millet genome provides an important
resource for studying C4 photosynthesis in the context of carbon,
N, and P metabolism and nutrient use efficiency. The molecular
basis of drought tolerance can also be investigated through
drought-associated genes (Zhang et al., 2012). Intensive studies
are expected to be conducted on foxtail millet as a model crop
for plant nutrient use efficiency, which may benefit agricultural
sustainability and food security by enhancing crop diversity
(Doebley, 2006). Therefore, the current review will be focusing on

Frontiers in Plant Science | www.frontiersin.org 2 February 2020 | Volume 11 | Article 187

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-11-00187 February 26, 2020 Time: 18:8 # 3

Nadeem et al. Abiotic Responses of Foxtail Millet

the abiotic stress responses of foxtail millet, with special emphasis
on its responses to low N and Pi (Figure 1).

FOXTAIL MILLET: A MODEL CROP FOR
STRESS BIOLOGY

Foxtail millet is a herbicide (Zhu et al., 2006) and is a drought
and salt-tolerant crop (Jayaraman et al., 2008; Krishnamurthy
et al., 2014; Sudhakar et al., 2015). Foxtail millet produces 1 g
of dry mass at the cost of 257 g of water, which is far less than
that required by maize and wheat (Li and Brutnell, 2011). Auxin
response factors (ARFs) regulate embryogenesis, leaf expansion
and senescence, and lateral root and fruit development by
controlling the expression of auxin response genes (Wilmoth
et al., 2005). Since ARF1 isolation (Regad et al., 1993), ARFs
have been identified in plant species like Arabidopsis, rice, tomato,
potato, maize, carrot, wheat, tobacco, and barley. In maize, ARF
proteins are involved in the transformation of lipid composition
indirectly (Verwoert et al., 1995), and overexpression of ZmARF1
in Arabidopsis enhances growth rates by increasing leaf and seed
size (Yuan et al., 2013). Similarly, overexpression of ZmARF2 in
Arabidopsis produces larger leaves and seeds and taller plants
due to enhanced cell expansion (Wang et al., 2012). ARF

proteins play roles in biotic and abiotic stress tolerance in crop
plants. Identification of ARF/ARL gene family members in foxtail
millet and rice, together with characterization of their structure,
organization, duplication and divergence and expression patterns
in different tissues, has been reported (Muthamilarasan et al.,
2016). A total of 25 ARF genes were identified in foxtail millet
diverged from a common ancestor. More efforts are required to
investigate ARF genes in specific tissue under a specific stress
condition to gain clear clues on tissue-specific and/or stress-
inducible promoters. WRKYs are one of the largest transcription
factor families and contain W-box in their promoter region
to control gene expression and regulation in plants (Eulgem
et al., 2000). Comprehensive computational approaches have
also been used to identify WRKY genes in foxtail millet.
Differential expression patterns of candidate SiWRKY genes
under abiotic stresses suggest their stress-related regulatory
functions (Muthamilarasan et al., 2015).

Foxtail millet responds to abiotic stresses through enhanced
biochemical activities like higher levels of antioxidants, reactive
oxygen species, and their scavenging enzymes, enzyme activities
of catalase and superoxides, and synthesis of osmolytes and their
stress-related proteins (Lata et al., 2011b). Aldo-Keto reductases
(AKRs) are known to be cytosolic, monomeric oxidoreductases
catalyzing NADPH-dependent reduction activities on carbonyl

FIGURE 1 | Flow chart of the nitrogen- and phosphorus-limitation responses of foxtail millet. Si, Sitaria italica; AMT, ammonium transporter; NRT, nitrate transporter;
NAR, nitrate assimilation-related protein; PHT, phosphate transporter; IAA, indole-3-acetic acid; GA3, gibberellic acid; ABA, abscisic acid; C/N, carbon to nitrogen
ratio; R/S, root to shoot ratio; NUtE, nitrogen utilization efficiency; N, nitrogen.
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metabolites (Bohren et al., 1989). A broad range of substrates like
sugars, prostaglandins, chalcones, aliphatic/aromatic aldehydes,
and some toxins can be metabolized by AKRs (Narawongsanont
et al., 2012). AKRs are also known for their effective detoxification
of reactive carbonyls produced during severe oxidative stress.
AKR (MsALR) proteins in transgenic tobacco plants improve
tolerance against methylviologen, heavy metals, osmotic stress,
and long periods of oxidative stresses induced by drought
(Oberschall et al., 2000), cold (Hegedus et al., 2004), and UV
radiation (Hideg et al., 2003). In tobacco plants, heterologous
expression of OsAKR1 shows better tolerance against heat
(Turoczy et al., 2011). Overexpression of Arabidopsis AKR4C9
in barley enhances freezing tolerance and post-frost regenerative
capacity (Eva et al., 2014). Moreover, overexpression of
peach AKR1 (PpAKR1) in Arabidopsis enhances salt tolerance
compared to wild type plants (Kanayama et al., 2014). In contrast,
GmAKR1 protein overproduction inhibits nodule development
in the hairy roots of soybean (Hur et al., 2009). Malondialdehyde
(MDA), a product of lipid peroxidation, is a biomarker of
oxidative stresses (Bailly et al., 1996); lower MDA levels indicate
better oxidative stress tolerance. OsAKR1 overexpression in
tobacco lowers levels of MDA and methylglyoxal (MG) in leaf
tissues under chemical and heat stress treatments (Turoczy et al.,
2011). Foxtail millet AKR1 is a promising stress-responsive gene
that modulates and enhances stress tolerance in major crops
(Kirankumar et al., 2016). Thus, investigation of the functions
of AKR in reactive carbonyl detoxification and the promotion of
abiotic stress tolerance in foxtail millet is of interest.

Reactive oxygen species (ROS) are involved in various
signal transduction pathways (Apel and Hirt, 2004; Laloi
et al., 2004) under stress conditions (Mustilli et al., 2002;
Neill et al., 2002). ROS also regulate gene expression under
N, P, and potassium deficiency (Shin and Schachtman, 2004;
Shin et al., 2005). Superoxide dismutase converts O2

−, an
important component of ROS, into H2O2 (Fridovich, 1997).
Several classical peroxidases like ascorbate peroxidase (APX),
glutathione peroxidases, and catalase (CAT) quench the resulting
H2O2. APX and glutathione reductase (GR) detoxify H2O2 in
green leaves (Sofo et al., 2015). They likely act as dehydration
stress-responsive components in foxtail millet (Lata et al.,
2011b). Maintenance of membrane stability, relative water
content, higher levels of APX, CAT, and GR activities, and
lower levels of lipid peroxidation and electrolyte provides
resistance against the drought stress in foxtail millet (Lata
et al., 2011b). Upregulation of phospholipid hydroperoxide
glutathione peroxidase (PHGPX) in salt-tolerant foxtail millet
lines suggests its role in salt resistance (Sreenivasulu et al.,
2004). Aldose reductase is involved in sorbitol biosynthesis
and the detoxification of 4-hydroxynon-2-enal (a lipid
peroxidation product) in foxtail millet under salt stress;
glutathione S-transferase also catalyzes 4-hydroxynon-2-enal
detoxification under stress conditions (Veeranagamallaiah
et al., 2009). Differentially expressed ESTs and peptides
between salt-tolerant and sensitive cultivars (Puranik et al.,
2011a), along with other proteins involved in the NaCl stress
(Veeranagamallaiah et al., 2008), can be extended to future
studies in foxtail millet.

APETALA 2/ethylene responsive element binding factor
(AP2/ERF) superfamily members contain a characteristic
conserved AP2 domain to bind the core DRE (Dehydration
Responsive Element) (5′-A/GCCGAC-3′) cis-acting element in
the promoter region of target genes (Yamaguchi-Shinozaki and
Shinozaki, 1994; Yamaguchi-Shinozaki and Shinozaki, 2006).
The single nucleotide polymorphism (SNP) of a dehydration-
responsive element binding (DREB) gene is associated with stress
tolerance (Lata et al., 2011a). A similar SNP accounts for 27% of
variations in stress-induced lipid peroxidation in foxtail millet
(Lata and Prasad, 2013). Re-sequencing of foxtail millet may
identify vast libraries of SNPs and other markers (Bai et al., 2013;
Jia et al., 2013). Small interfering RNAs and non-coding RNAs
also have their regulatory roles in drought responses in foxtail
millet (Qi et al., 2013). In addition, late embryogenesis-abundant
proteins protect higher plants against environmental stresses;
SiLEA14 plays an important role in resisting abiotic damage in
foxtail millet (Wang et al., 2014). Its small genome (∼490 Mbp;
Bennetzen et al., 2012; Zhang et al., 2012) and a wide array of
stress responses make foxtail millet a model cereal crop for stress
biology and functional genomics (Table 1).

RESPONSES OF FOXTAIL MILLET TO N
LIMITATION

Roots are the means by which plants take up nutrients; hence,
root architectural modifications become vital to explore N under
its low availability. Different crop species respond to external low-
N conditions differentially. Legumes, for example, develop root
nodules to capture atmospheric N through N-fixation (Postgate,
1998), whereas cereals such as maize enhance their root surface
area by means of increasing axial and lateral root length to access
N in a heterogeneous environment (Wang et al., 2003; Chun et al.,
2005). As mentioned before, plants undergo these morphological
and physiological alterations to maximize their N use efficiency
(NUE), which can be discussed as either N utilization efficiency
(NUtE) or N uptake (acquisition) efficiency (Garnett et al., 2009;
Xu et al., 2012; Wang et al., 2019). At one extreme, the carbon
to N ratio and biomass accumulation (dry weight; root to shoot
ratio) in roots of foxtail millet increase under low N, which
suggests that its higher N utilization efficiency contributes to
maximize its N use efficiency, whereas on the other extreme,
foxtail millet responds to increase N translocation efficiency by
root thickening. These adaptive responses of foxtail millet to low
N signals along with regulation of N uptake activities through N
influx transporters located at the plasma membrane eventually
maximize N acquisition efficiency (Nadeem et al., 2018).

Surprisingly, foxtail millet produces a specific root length
(SRL) of 46852 cm g−1 of root dry weight under low N (Nadeem
et al., 2018), which is 10 times that of maize seedlings under
similar conditions (Han et al., 2015). In addition to the SRL,
the average root diameter of low-N foxtail millet also increases
(Nadeem et al., 2018). Resource absorption and transportation
are two important resource acquisition processes for roots, with
the former being used by cortex and the latter by stele (Guo
et al., 2008). The ratio of cortex to stele thickness determines
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TABLE 1 | Genes functionally characterized in foxtail millet.

Gene Functions References

SET domain genes Abiotic stress tolerance Yadav et al., 2016

PHT1 gene family Phosphate transporters Ceasar et al., 2014

Argonaute protein 1 encoding gene Regulation of stress responses Liu et al., 2016

Abscisic acid stress ripening gene (ASR) Tolerance to drought and oxidative stresses Feng et al., 2016

Autophagy-related gene (ATG) Tolerance to nitrogen starvation and drought stresses Li et al., 2015

Late embryogenesis abundant protein (LEA) Tolerance to salt, osmotic, and drought stresses Wang et al., 2014

ABA-responsive DRE-binding protein (ARDP) Tolerance to salt and drought stresses Li et al., 2014

WD-40 Associated with dehydration stress-responsive pathway Mishra et al., 2012

Acetyl-CoA carboxylase Resistance to sethoxydim herbicide Dong et al., 2011

Dehydration-responsive element-binding protein 2 (DREB2) Dehydration tolerance Lata et al., 2011a

NAC transcription factor Salinity tolerance Puranik et al., 2011b

Si69 Aluminum tolerance Zhao et al., 2009

Aldose reductase Associated with salinity stress-responsive pathway Veeranagamallaiah et al., 2009

Glutamine synthetase Pyrroline-5-carboxylate reductase Veeranagamallaiah et al., 2007

12-oxophytodienoic acid reductase (OPR1) Drought tolerance Zhang et al., 2007

Photosystem II D1protein Atrazine resistance Jia et al., 2007

Phospholipid hydroperoxide glutathione peroxidase (PHGPX ) Associated with salinity tolerance Sreenivasulu et al., 2004

Nuclear factor-Y (SiNF-YA1, SiNFYB8) genes Drought and salt tolerance Feng et al., 2015

Nitrate transporters (SiNRT ), Ammonium transporters (SiAMT ) Nitrate and ammonium uptake and transport Nadeem et al., 2018

Phosphate transporters (SiPHP) Phosphate transport Ahmad et al., 2018

the suitability of a plant species for adapting to a certain
environment for favorable resource distribution. The increased
thickness of foxtail millet roots under low N indicates the
anatomical modification of stele, where it can accommodate
more conduits like vessels and tracheid for efficient transport of
N and metabolites.

Hormones help plants to adapt to environmental cues through
the regulation of growth and development (Wolters and Jürgens,
2009; Marsch-Martinez and de Folter, 2016). Indole-3-acetic
acid (IAA) regulates primary and lateral root growth (Sabatini
et al., 1999; Casimiro et al., 2001), whereas cytokinins (CKs)
influence apical root dominance (Aloni et al., 2006). IAA and
CK accumulation decreases during root shortening in foxtail
millet under low N despite enhanced carbon allocation toward
the roots (higher dry mass and C/N ratio). Contrary to IAA
and CKs, gibberellic acid (GA3) concentrations increase in
the root and shoot of foxtail millet (Nadeem et al., 2018).
Accumulation of GA3 antagonistic to IAA and CKs could
have contributed to root thickening (increased root diameter)
through tissue differentiation and anatomical modifications to
roots (Yamaguchi, 2008). Abscisic acid (ABA) is known to be
an internal signal of stress responses (Wilkinson and Davies,
2002; Kiba et al., 2011). Higher levels of ABA in N-deprived
roots (Nadeem et al., 2018) is rather a stress response of foxtail
millet that needs to be further dissected to determine the
underlying mechanisms.

Sensing the external nutritional alterations, certain specific
proteins act as channels, pumps, or transporters in roots to
acquire nutrients from their vicinity and transport them within
the root or along the vasculature for long-distance source-to-
sink transport (Tegeder and Masclaux-Daubresse, 2018). To
transport nitrate (NO3

−), a nutrient as well as a signaling

molecule for plant growth and root system modifications (Vidal
and Gutiérrez, 2008; Krouk et al., 2010; Alvarez et al., 2012),
plants have evolved a high-affinity transport system (HATS)
and low-affinity transport system (LATS) (Crawford and Glass,
1998). NRT2.1 belongs to the high-affinity nitrate transport
system (Li et al., 2007), whereas NRT1.1 is a sensor as well as
a dual-affinity nitrate transporter (transceptor) in Arabidopsis
(Tsay et al., 1993; Liu and Tsay, 2003). NRT2 transporters
interact with nitrate accessory protein NAR2.1 (NAR2 like-
proteins) for nitrate absorption. Upregulation of expressions
of SiNRT1.1, SiNRT2.1, and SiNAR2.1, together with root
architectural modifications, optimizes N acquisition in foxtail
millet, which is confirmed by enhanced 15N influx into roots
(Nadeem et al., 2018). Once nitrate is absorbed, the next phase
is its redistribution or translocation from root to shoot and
from mature expanded leaves to the youngest leaves (Okamoto
et al., 2006; Orsel et al., 2006; Tsay et al., 2007; Miller et al.,
2009). In this regard, NRT1.11 and NRT1.12 mediate xylem
to phloem loading and redistribution of nitrate in Arabidopsis
(Arabidopsis thaliana) leaves with normal nitrate provision (Hsu
and Tsay, 2013). Foxtail millet seedlings supplied with only
0.02 mM of NH4NO3 for 7 days show nitrate redistribution in
the shoot through upregulation of SiNRT1.11 and SiNRT1.12
expressions, indicating an extraordinary ability to adapt to
extreme N limitation. Alongside nitrate uptake, ammonium
uptake and transport are controlled by ammonium transporters
(AMTs) (Loqué and von Wirén, 2004). SiAMT1.1 accelerates N
acquisition by upregulating its expression (Nadeem et al., 2018).

Interlinked carbon and N metabolism generally give rise
to balanced carbohydrates to N-metabolites ratios in plant
tissues. However, N limitation leads to higher carbon/N ratios
(Sun et al., 2002; Reich et al., 2006; Taub and Wang, 2008). In
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foxtail millet, the root and shoot maintain the balance between
free amino acids and total soluble sugar concentrations owing
to low N concentrations of these tissues under low external N
provision. Interestingly, concentrations of total soluble proteins
in roots increase, in contrast to those in shoots (Nadeem et al.,
2018), indicating the probable role of proteins (enzymes in
particular) in the regulation of carbon and N metabolism-related
cellular activities at the tissue level.

FOXTAIL MILLET RESPONSES TO Pi
STARVATION

Plants have evolved strategies for enhancing their P-uptake
capacity either through arbuscular mycorrhizal symbiosis or
modification of the root system architecture (Marschner, 1995;
Lambers et al., 2008; Cheng et al., 2011). As explained previously,
root system modification is the primary adaptive strategy of
plants coping with low availability of nutrients. Low mobility of
Pi in soils favors shallow root plants (Panigrahy et al., 2009; Péret
et al., 2011; Li et al., 2012; Shi et al., 2013). In Arabidopsis thaliana,
reduced Pi metabolism (Nussaume et al., 2011; Wang et al., 2011),
indirect low-P-mediated stress effects (Thibaud et al., 2010), and
genetic control of root responses to low P (Svistoonoff et al.,
2007; Ticconi et al., 2009) inhibit primary root growth (Abel,
2011; Niu et al., 2013; Giehl et al., 2014). In addition, blue light
suppresses elongation of the primary root of petri dish-grown
Arabidopsis seedlings under Pi deficiency (Zheng et al., 2019).
Thus, environmental factors collectively reshape root structure in
response to Pi starvation.

Plant responses to Pi starvation could also be genotype-
dependent (Reymond et al., 2006). In monocots like rice and
barley, low Pi has a less pronounced effect on primary root
growth, perhaps due to high P reserves in seeds (Calderón-
Vázquez et al., 2011), whereas primary root growth of maize
is stimulated under low Pi (Li et al., 2012). In contrast with
the primary root inhibition, lateral root formation in plants is
enhanced by low Pi (Williamson et al., 2001; Hodge, 2004; Pérez-
Torres et al., 2008). Foxtail millet, on the other hand, develops a
larger root system in terms of crown root length and lateral root
number, length, and density under Pi deficiency (Ahmad et al.,
2018), which is in total contrast to what is observed under low
N (Nadeem et al., 2018). The enlargement of the root system
in response to low Pi and reduction under low N in foxtail
millet could be due to the immobile and mobile nature of Pi
and nitrate, respectively; longer roots can reach immobile Pi at
its location, and shorter roots can intercept mobile nitrate in the
microenvironment of the rhizosphere. This root enlargement of
foxtail millet couples with hormonal enhancements (auxin and
GA3) and increase in root to shoot ratio due to the allocation of
carbon to the P-deficient root.

A larger root system functions to enhance Pi acquisition
by transporters (Rausch and Bucher, 2002). Pi transporters are
mostly conserved across cereal crops (Rakshit and Ganapathy,
2014). Pi limitation stimulates transcription of PHT1 members
(Mudge et al., 2002; Rae et al., 2003) and induces OsPHT1.2
expression in the stele and lateral roots, along with upregulation

of OsPHT1.4, probably to improve Pi uptake through roots and
translocation to the shoot (Ye et al., 2015; Zhang et al., 2015).
Substantial upregulation of SiPHT1.1, SiPHT1.2, and SiPHT1.4
expression in root tissues possibly preconditions for enhanced
Pi uptake to replenish the internal P-reserves, whereas down-
regulation of SiPHT1.3 expression probably assists with the
retention of Pi in the shoot (Ahmad et al., 2018). On the
other end, respective down-regulation of expression of SiNRT2.1
and SiNAR2.1 (in roots) and that of SiNRT1.11 and SiNRT1.12
(in shoots) (Ahmad et al., 2018) helps balance the N/P ratio
within permissible limits for proper root and shoot functionality
(Aerts and Chapin, 2000). Such correlative interpretation of
the expression of SiPHRs in relation to Pi uptake and source-
sink remobilization under low Pi calls for in-depth mechanistic
dissection (Jia et al., 2011; Ceasar et al., 2014). Alternatively,
foxtail millet uses internal Pi reserves for higher utilization
efficiency (Rose et al., 2011).

Interestingly, the reduction of SPAD values in the foxtail
millet shoot is in contrast to differential accumulation of free
amino acids (higher in shoot and root) and total soluble
proteins (lower in shoot and root) under low Pi provision
(Ahmad et al., 2018). These variations in the accumulation of
N-metabolites upon low P suggest a potential link between N
and P nutrition at the physiological level. Nutrient provision
affects biomass allocation within plants (Poorter et al., 2012).
N and P are both considered as the limiting factors in
plant growth and development; therefore, the N/P ratio
plays a critical role in resource distribution (Graham and
Mendelssohn, 2016). The uptake of N and P is adjusted by
whole-plant signaling to balance N/P ratios between plant
tissues (Imsande and Touraine, 1994; Raghotama, 1999; Forde,
2002). To maintain the N/P ratio, foxtail millet reduces N
translocation toward the shoot under Pi limitation (Ahmad
et al., 2018), similar to the terrestrial plants that adapt to
low-N conditions by decreasing Pi uptake (Aerts and Chapin,
2000). P and N signals are indeed integrated by nitrate-
inducible GARP-type transcriptional repressor 1 (NIGT1) in
Arabidopsis; PHR1 promotes the expression of NIGT1-clade
genes under low P, which in turn down-regulates NRT2.1
expression to reduce N uptake (Maeda et al., 2018). NIGT1
expression is stimulated when N availability is high in order
to repress N starvation genes (Kiba et al., 2018). NIGT1 also
regulates Pi starvation responses by directly repressing expression
of Pi starvation-responsive genes and NRT2.1 to equilibrate
N and P (Maeda et al., 2018). The potential involvement
of the PHR1-NIGT1-NRT2.1 pathway in low P responses of
foxtail millet and subsequent readouts needs to be further
studied in future.

CONCLUSION

Foxtail millet has been studied for its structural and functional
genomics for the purpose of developing genetic and genomic
resources and delineating the physiology and molecular biology
of stress tolerance, especially drought and salinity stress tolerance.
Apart from its adaptation to drought and salinity, foxtail millet
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is also an N- and P-efficient crop. In parallel to those in major
cereals, studies should be conducted to develop nutrient-efficient
and environment friendly cultivars of foxtail millet. Its small
genome size, short life cycle and inbreeding nature make foxtail
millet a perfect choice for a model crop for studies of a broad
range of plant nutritional biology research. This review presents
a unique perspective of the adaptation of foxtail millet to low
N and low P along with a brief background on various abiotic
stress tolerance strategies. It can serve as a base to plan future
studies in the field of plant nutritional genomics using foxtail
millet as a model crop.
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