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The ARP2/3 complex and formins are the only known plant actin nucleators. Besides their
actin-related functions, both systems also modulate microtubule organization and
dynamics. Loss of the main housekeeping Arabidopsis thaliana Class I membrane-
targeted formin FH1 (At3g25500) is known to increase cotyledon pavement cell lobing,
while mutations affecting ARP2/3 subunits exhibit an opposite effect. Here we examine the
role of FH1 and the ARP2/3 complex subunit ARPC5 (At4g01710) in epidermal cell
morphogenesis with focus on pavement cells and trichomes using a model system of
single fh1 and arpc5, as well as double fh1 arpc5mutants. While cotyledon pavement cell
shape in double mutants mostly resembled single arpc5 mutants, analysis of true leaf
epidermal morphology, as well as actin and microtubule organization and dynamics,
revealed a more complex relationship between the two systems and similar, rather than
antagonistic, effects on some parameters. Both fh1 and arpc5 mutations increased actin
network density and increased cell shape complexity in pavement cells and trichomes of
first true leaves, in contrast to cotyledons. Thus, while the two actin nucleation systems
have complementary roles in some aspects of cell morphogenesis in cotyledon pavement
cells, they may act in parallel in other cell types and developmental stages.

Keywords: actin nucleation, ARP2/3, At3g25500, At4g01710, cytoskeleton, formin, pavement cell, trichome
INTRODUCTION

The shape of plant cells (and subsequently also organs and tissues) is mainly controlled by
orchestrated action of microfilaments, microtubules, and membrane trafficking in the cortical
cytoplasm, resulting in spatially and temporally controlled cell growth and cell wall synthesis.
Cortical microtubules direct cellulose deposition (see Paredez et al., 2006; Bashline et al., 2014),
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microfilaments participate in exocytosis (e.g. Sampathkumar
et al., 2013), and actomyosin-driven cytoplasmic streaming
also contributes to cell expansion (Peremyslov et al., 2015).
The cortical cytoplasm also controls localization of membrane
proteins including auxin transporters, contributing thus to cell
differentiation and affecting tissue- and organ-scale developmental
processes (e.g., Žárský et al., 2009; Qi and Greb, 2017).
Microfilament organization and dynamics are regulated by
numerous proteins, including de novo actin nucleators. Formins
and the ARP2/3 complex are the only two actin-nucleating systems
found so far both in plants and opisthokonts, representing thus
conserved molecular mechanisms inherited from the common
eukaryotic ancestor (e.g. Vaškovičová et al., 2013).

Formins share the conserved FH2 domain whose dimer can
nucleate and cap actin filaments, usually accompanied by a
profilin-G-actin-binding FH1 domain and by additional
domains mediating regulatory or structural interactions that
vary both within and between lineages. Angiosperms have two
clades of formins consisting of multiple paralogs, with over 20
genes in Arabidopsis (Grunt et al., 2008). Besides their actin-
related roles, formins contribute to the coordination between
microfilaments and microtubules (Bartolini and Gundersen,
2010; Wang et al., 2012; Henty-Ridilla et al., 2016). Binding of
formins to microtubules has been documented also in plants
(Deeks et al., 2010; Li et al., 2010; Yang et al., 2011; Wang et al.,
2013). Some formins are associated with membranes and
modulate endomembrane dynamics (see Gurel et al., 2014;
Cvrčková et al., 2014). Typical plant Class I formins are
transmembrane proteins that can anchor cytoskeletal structures
to the plasmalemma, its distinct domains, and/or endomembranes
(e.g., Deeks et al., 2010; Martinière et al., 2011; Diao et al., 2018;
Oulehlová et al., 2019). Plant Class II formins typically harbor a
Phosphatase and Tensin (PTEN)-like domain implicated in
phospholipid binding and membrane localization (van
Gisbergen et al., 2012). Direct or interactor-mediated membrane
association, or role in endomembrane organization, is
documented also for some opisthokont formins lacking
membrane insertion motifs (reviewed in Cvrčková, 2013; see,
e.g., Copeland et al., 2016).

Mutations affecting the main Arabidopsis housekeeping Class
I formin, FH1, or pharmacological inhibition of formin function
by the SMIFH2 compound, have only minor phenotypic
consequences that include increased pavement cell and
trichome shape complexity, but a profound impact on both
actin and microtubule organization and dynamics (Rosero
et al., 2013; Rosero et al., 2016; Cvrčková and Oulehlová, 2017;
Oulehlová et al., 2019). Changes in microtubule organization
were also reported for mutants of the rice microtubule-binding
Class II formin FH5 (Yang et al., 2011; Zhang Z. et al., 2011).

The other evolutionarily conserved actin nucleation system
found in plants, the ARP2/3 complex, comprises two actin-related
proteins (ARP2 and ARP3) and five additional conserved subunits
termed ARPC1-5. Some subunits might be dispensable in specific
cellular contexts (see Pizarro-Cerdá et al., 2017). Upon activation by
regulatory complexes termed the NPFs (nucleation promoting
factors), which exhibit considerable diversity across eukaryotes
Frontiers in Plant Science | www.frontiersin.org 2
(Dominguez, 2016), the ARP2/3 complex mediates nucleation of
new actin filaments (see e.g. Rotty et al., 2013; Yanagisawa et al.,
2013). Characteristic for ARP2/3-initiated filament arrays is their
branching angle of about 70°, also documented in plants (Fišerová
et al., 2006). Like formins, the ARP2/3 complex also has roles
outside controlling actin dynamics. In metazoans, it can associate
with microtubule-nucleating gamma tubulin complexes (Hubert
et al., 2011) and some NPFs bind to microtubules and
endomembranes (Campellone et al., 2008). Plant ARPC4 and
ARPC2 localize to microtubules, with the later binding them also
in vitro (Zhang et al., 2013b; Havelková et al., 2015). ARPC4 is
associated with endomembrane compartments and the NPF
complex subunit NAP1 localizes to the endoplasmic reticulum
(Yanagisawa et al., 2013; Zhang et al., 2013a), as well as
autophagosomes (Wang et al., 2016).

Arabidopsis mutations affecting the ARP2/3 complex function
and regulation result in typical “distorted” trichome phenotype
and reduced pavement cell lobing (Mathur et al., 2003a, see Ivakov
and Persson, 2013; Sahi et al., 2018), as well as altered microtubule
organization (Saedler et al., 2004; Zhang et al., 2005). Mutants also
exhibit changes in cell wall composition, although the responsible
mechanism remains to be characterized (Sahi et al., 2018).

Relations between the formins and the ARP2/3 complex are so
far poorly understood. Formins appear to generate actin bundles,
while the ARP2/3 complex produces fine, branched microfilament
arrays (see Carlier and Shekhar, 2017). Coordination of the two
actin nucleation systems may be ensured by several possible
mechanisms. The balance between ARP2/3 and formin-driven
actin assembly in some metazoan cell types and fission yeast may
involve the profilin/G-actin ratio or competition for G-actin
monomers bound to profilin (Rotty et al., 2015; Suarez et al.,
2015). While profilin-dependent, formin-mediated actin
nucleation is limiting for the rate of Arabidopsis epidermal cells
elongation (Cao et al., 2016), the relevance of competition between
the two nucleation mechanisms for free or profilin-bound G-actin
is questionable in plants, which generally have a higher ratio of free
to polymerized actin than opisthokonts (Blanchoin et al., 2010).
Another possible shared regulatory mechanism involves the
heterodimeric capping protein, which controls the availability of
barbed ends and participates in the control of actin dynamics in
both opisthokonts (Edwards et al., 2014) and plants (Pleskot et al.,
2012; Jimenez-Lopez et al., 2014; Li et al., 2014). In opisthokonts,
the two actin nucleation systems also share regulatory inputs from
RHO clade small GTPases (Liu et al., 2009). Plant-specific RHO
GTPases, ROPs, control cell morphogenesis including pavement
cell lobing (Fu et al., 2002). However, since plant formins lack the
GBD/FH3 small GTPase-interacting domain, common in the
opisthokonts (Grunt et al., 2008), the actual regulatory
mechanism must differ between opisthokonts and plants. The two
actin nucleating systems may also share interactors, including
regulatory ones. Common interactors, or at least genetic
interaction, of formins and ARP2/3 or the NPF complexes, were
also found in fission yeast (Carnahan and Gould, 2003) and
Drosophila (Liu et al., 2009), and mammalian formins and ARP2/
3 complex subunits co-localize in tight junctions (Grikscheit and
Grosse, 2016). Thus, while the existence of numerous interactions
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and/or co-ordination between ARP2/3 and formins is likely, a
consistent model of the “division of labor” between these two
ancient actin nucleation systems is still lacking even in opisthokonts.

In this study, we characterize the effects of mutational
inactivation of genes encoding the main housekeeping Class I
formin of Arabidopsis vegetative tissues, FH1 (At3g25500), one of
the ARP2/3 complex subunits, ARPC5 (At4g01710), or both genes
simultaneously, on epidermal cell morphogenesis and cytoskeletal
organization and dynamics. Both fh1 and arpc5 mutations were
previously shown to cause opposite alterations in epidermal
pavement cell shape, i.e. the arpc5 mutation, as well as FH1
overexpression, led to a decrease and fh1 mutation to an
increase in pavement cell lobing (Mathur et al., 2003b; Li et al.,
2003; Rosero et al., 2016; Sahi et al., 2018; Oulehlová et al., 2019).
The layout of pavement cell lobes is determined by reorganization
of cortical microtubules prior to lobe emergence, while the role of
microfilaments in this process remains controversial (Panteris and
Galatis, 2005; Armour et al., 2015). In addition, ARPC5 is also
identical to CROOKED (CRK), a gene whose mutation resulted in
trichome deformation characteristic for the distorted class
mutants (Mathur et al., 2003b). Remarkably, overexpression of
GFP-tagged FH1 results in a distorted trichome phenotype, while
loss-of-function fh1 mutants exhibit an increase in trichome
branch number (Oulehlová et al., 2019), consistent with possible
antagonistic function of FH1 and the Arp2/3 complex in
trichome development.

Based on these known phenotypes of fh1 and arpc5 mutants,
we hypothesized that the two actin nucleation systems might
play opposite roles in pavement cell, and possibly trichome,
shaping. This would lead to the prediction that double fh1 arpc5
mutants might, in part or completely, revert to a phenotype
closer to the wild type (wt) than either mutation alone. Though
our observations do not support this hypothesis, they indicate a
more complex relationship between the two systems and reveal
similar, rather than antagonistic, effects on some parameters. We
also documented unexpected differences between the mutant
phenotypes in cotyledons and true leaves, suggesting a
developmental stage-dependent relationship between the two
actin nucleation systems.

MATERIALS AND METHODS

Plants
The following Arabidopsis thaliana T-DNA insertional mutants
obtained through The Nottingham Arabidopsis Stock Centre
(NASC) have been used in this study. For the FH1 (At3g25500)
gene, we employed fh1-1 (SALK-032981), one of the two alleles
used to establish the effects of fh1 mutation on cytoskeletal
organization and dynamics in our previous work (Rosero et al.,
2013; Rosero et al., 2016) and fh1-4 (SALK-N551065), shown to
affect epidermal cell shape in the same manner as fh1-1
(Oulehlová et al., 2019). Both alleles were successfully
complemented by expression of GFP-tagged wt FH1 protein at
near-native levels (Oulehlová et al., 2019). For the ARPC5
(At4g01710) gene, we used the arpc5-1 (SALK-123936) allele
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previously documented to produce epidermal phenotypic
deviations indistinguishable from those caused by a recessive
EMS-generated mutation in the same gene, crk-1 (Li et al., 2003;
Mathur et al., 2003b; see also Mathur, 2005). In some
experiments, previously characterized T-DNA insertion
mutants arp2 (SALK-077920) and arpc4 (SALK-013909) have
been employed (Sahi et al., 2018). The trichome morphogenesis
defect of arpc5-1mutants was fully complemented by expression
of GFP-tagged wt ARPC5 (J. Martinek and K. Schwarzerová,
unpublished). For the purpose of line verification and in
subsequent crosses, the allelic status of T-DNA insertions was
determined by PCR as reported in our previous studies (Rosero
et al., 2013; Sahi et al., 2018; Oulehlová et al., 2019).

The fh1:CRISPR mutant was generated as follows. An
expression vector harboring a two target gene-specific gRNA
has been constructed based on the published system of Xing et al.
(2014). Reverse and forward primers for two FH1 gene-specific
gRNAs (Supplementary Data S1) were designed using the
CRISPR-P web tool (Lei et al., 2014). Target sequence
fragments were amplified from pCBC-DT1T2 using Q5
polymerase (New England Biolabs) according to the
manufacturer's instructions and cloned into the vector
pHSE401E using the Golden Gate cloning reaction with
enzymes from New England Biolabs. The resulting construct
expressing two gRNAs was transformed into A. thaliana Col-8
by standard Agrobacterium tumefaciens infiltration. Transgenic
plants were selected by hygromycin resistance and presence of
homozygous single base insertion was verified by sequencing (for
primer see Supplementary Data S1, for fh1:CRISPR allele
sequence see Supplementary Data S2).

Crosses between fh1-1, fh1-4, and arpc5-1mutants and between
actin nucleator mutants and reporter lines were performed to obtain
double mutants and to introduce cytoskeletal markers into mutant
backgrounds. For detection of cytoskeletal organization and
dynamics, fluorescent marker protein constructs GFP–MAP4 and
UBQ : Lifeact-GFP were used as described previously (Cvrčková
and Oulehlová, 2017). In the indicated experiments, lines carrying
the GFP-FABD (Voigt et al., 2005) or GFP-TUA6 (Ueda et al.,
1999) markers were employed. Additional plant lines expressing
these proteins were obtained by crossing or by transformation in
case of UBQ : Lifeact-GFP, which was introduced into the double
mutant fh1arpc5 using the floral dip method. A transformed plant
with a moderate level of fluorescence was subsequently backcrossed
with wt and wt and single or double mutant lines were selected out
of its progeny.

Growth Conditions
For morphological analyses of pavement cells and cytoskeleton
observations, plants were grown in vitro at 22°C with a 16 hour-
light/8 hour-dark cycle on vertical MS plates following
stratification of imbibed seed by 2 days at 4°C, as described
previously (Rosero et al., 2016). Plants for propagation, crossing,
macroscopical observations, and trichome morphology analysis
were grown in peat pellets (Jiffy) at 22°C with a 16 hour-light/8
hour-dark cycle.
March 2020 | Volume 11 | Article 148
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Organ Area Measurements
Cotyledon or leaf area was measured on images captured by a
Nikon D 3200 camera using the ImageJ software (Schindelin
et al., 2015). Approximately 20 cotyledons and leaves per
genotype were analyzed.

Pavement Cell Morphometric Analysis and
Quantification of Epidermal Gaps
Pavement cell shape parameters were determined from the
adaxial epidermis of the apical third of cotyledons or leaves
stained with 1 mM FM4-64 for 1–2 hours in the dark (Rosero
et al., 2016). Images were taken using confocal laser-scanning
microscope Zeiss TCS 880 with a 20 x water-immersion objective
in ZEISS ZEN Black program.

Cell shape parameters of area, circularity, solidity, and aspect
ratio were determined using the built-in circularity function of
ImageJ by measuring all in-focus cells crossing or touching the
diagonal of a microscopic field as described previously
(Oulehlová et al., 2019). This will be further referred to as the
semi-manual method. For an independent estimate of area,
circularity and solidity, as well as for determination of
pavement cell lobe parameters (lobe number and average
equatorial lobe width), the PaCeQuant software (Möller et al.,
2017; Möller et al., 2019) involving automated algorithmic cell
segmentation was employed. Comparison of cell area, circularity,
and solidity values obtained by both approaches from the same
images revealed a non-linear relationship between results of the
two methods, with PaCeQuant often reporting smaller cell size
and higher circularity and solidity than the semi-manual approach
(Supplementary Data S3). Based on visual examination of the
progress of cell detection in PaCeQuant, we believe that the reason
may be less efficient segmentation of large or very lobed cells by the
PaCeQuant algorithm compared to small or moderately lobed ones.
To avoid this source of bias and maintain compatibility with our
previous studies, we subsequently used the semi-manual approach for
estimation of cell shape parameters while PaCeQuant was applied to
determine the lobe parameters. The only exception was acquisition of
data for principal component analysis (PCA) where PaCeQuant was
employed for collecting both cell and lobe parameters to ensure
match between values originating from the same individual cells.

Gaps between the pavements cells were counted from the
same images as described previously (Sahi et al., 2018).

All measurements were done in 2–3 biological replicates, each
including at least 60, but usually more than 100, cells per
genotype from at least 7, but usually over 20 plants.

Cytoskeleton Structure and
Dynamics Evaluation
Stills of the actin and microtubule networks in epidermal
pavement cells were taken by a Zeiss LSM880 microscope with
a Plan-Apochromat 40 x/1.2 W objective and 488-nm argon laser
for excitation, videos were taken by an inverted spinning disc
confocal microscope (Yokogawa CSU-X1 on a Nikon Ti-E
platform, laser box Agilent MLC400, camera Andor Ixon) with
100 x/1,45 O plan apochromatic objective, excitation laser line
set at 488 nm, and image interval 1 s as described previously
Frontiers in Plant Science | www.frontiersin.org 4
(Rosero et al., 2016). Cytoskeleton bundling and density were
quantified as described previously (Higaki et al., 2010) with
minor modifications (Rosero et al., 2013; Rosero et al., 2019).

Cytoskeletal dynamics measurements were done in two
biological replicates: with at least 40 cells from at least 20
videos analyzed using the QuACK method (Cvrčková and
Oulehlová, 2017).

Actin networks in developing trichromes were visualized using
an inverted spinning disc confocal microscope (Zeiss Axio Observer
7 microscope with a vertical stage equipped with a Yokogawa CSU-
W1 spinning disk unit and Photometrics Prime 95B camera) with
Zeiss Plan Apochromat 40 x/1.2 W objective and 488-nm laser
excitation line.

Trichome Shape Analysis
First true leaves of 24 days after germination (DAG) plants were
cleared for 6 days in a solution prepared by mixing 120 g chloral
hydrate, 7.5 ml glycerol, and 150ml of water, embedded in the same
solution and imaged using the transmission light microscope
Olympus Provis AX 70 with a 20 x water-immersion objective.
Trichome branch number was counted visually and branch length
was measured after manual tracing on photos using the length
measurement tool of ImageJ. All measurements were done in two
biological replicates involving analysis of all trichomes from at least
five longitudinal leaf halves originating from different plants (with a
minimum of 100 trichomes per genotype). Measurements for
terminal branch length determination were performed in at least
50 three-branched trichomes, and at least 15 (but usually more than
20) four-branched trichomes per genotype. For PCA of 3-branched
trichome shape, at least 50 trichomes were measured.

Statistics and Data Presentation
Unless stated otherwise, statistical evaluation of quantitative data
was performed using ANOVA with post-hoc Tukey HSD test
using the online calculator available at http://astatsa.com/.
Results of cytoskeletal dynamics measurements, which could
not be assumed to fulfill the normal distribution requirement
for ANOVA, were statistically evaluated using the Kruskal–
Wallis test followed by pairwise Wilcoxon–Mann–Whitney test
with Bonferroni correction as described previously (Cvrčková
and Oulehlová, 2017). The significance of between-genotype
differences in trichome branch number distribution
(categorical data) was assessed using pairwise Chi-square test
with Yates correction for low count categories and Benjamini-
Hochberg correction for multiplicity. PCA was performed using
the PAST (PAleontological STatistics) software (Hammer et al.,
2001) version 3.25 or 3.26. Box plots were generated using
BoxPlotR (Spitzer et al., 2014).
RESULTS

Plants Lacking Both FH1 and ARPC5
Show No Obvious Phenotypic Defects
To examine effects of simultaneous perturbation of both actin
nucleation systems, we generated mutant plants doubly homozygous
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for fh1 and arpc5 by crossing single mutants. While our analyses were
restricted to a single, well-characterized, loss of function allele of arpc5
in the Columbia 0 background, which exhibited hallmark
characteristics of ARP2/3 complex disruption in several previous
studies (Li et al., 2003; Djakovic et al., 2006; Li et al., 2013; Sahi et al.,
2018), we included three different fh1mutant alleles into our analyses.
Besides of two T-DNA insertion mutants, fh1-1 and fh1-4, derived
from the Columbia 0 (Col-0) background (Rosero et al., 2013; Rosero
et al., 2016; Oulehlová et al., 2019), we also generated a Columbia 8
(Col-8)-derived plant line incapable to express the FH1 protein using
the CRISPR method, further referred to as fh1:CRISPR, and used it for
some experiments.

Given the relatively minor phenotypic consequences of both
arpc5 and fh1 mutations, as well as the probable redundancy
within the plant Class I formin family, we expected that the
double mutants should be free from major developmental
defects. Indeed, all single mutants examined, as well as double
fh1-1 arpc5-1, and fh1-4 arpc5-1mutants, were viable, fertile, and
indistinguishable from isogenic wt plants at the first macroscopic
glance (Figure 1A). Upon closer inspection, however, a subtle
leaf shape alteration was apparent in all plant lines involving
arpc5 (Figure 1B), albeit there was no significant difference in
the size of either cotyledons (Figure 1C) or first true leaves
(Figure 1D).

ARPC5 Is Epistatic Over FH1 in
Determining Cotyledon Pavement Cell
Shape
One of the hallmark phenotypic effects of mutations affecting the
ARP2/3 complex subunits is reduced cotyledon pavement cell
lobing (Mathur et al., 2003b; Li et al., 2003), while loss of FH1 has
an opposite effect, i.e. increases pavement cells lobing in the
cotyledon epidermis (Rosero et al., 2016; Oulehlová et al., 2019).
These observations from single mutants have been confirmed in
epidermal pavement cells of five DAG cotyledons, while
pavement cell shape (as well as the quantitative parameters of
circularity, solidity, and lobe width) of double arpc5 fh1 mutants
resembled those of single arpc5 mutants (Figures 2A–C). The
allelic status of ARPC5 rather than FH1 thus determines
cotyledon pavement cell shape in the double mutants.
Therefore, the arpc5 mutation appears to be epistatic over fh1 in
the sense of the original Bateson's definition of epistasis (Phillips,
2008) as far as cotyledon pavement cell shape is concerned. Minor
and only in some cases statistically significant differences consistent
with this interpretation were observed also for two additional cell
shape parameters—aspect ratio (Figure 2B) and lobe number
(Figure 2C), indicating that single and double mutants involving
arpc5 have somewhat less elongated cells with fewer lobes.

In line with previous reports (Zhang et al., 2008; Rosero et al.,
2016; Sahi et al., 2018) single fh1 or arpc5mutations also brought
about an increase in pavement cell size. The extent of this effect
was comparable for both single mutants and for the double fh1
arpc5 mutants, i.e. the effect of both mutations was not additive,
nor did they compensate for each other's effects (Figures 2 A, B).
Since no changes in organ size were observed (compare Figures
1C, D), mutant cotyledons must consist of fewer cells than wt
Frontiers in Plant Science | www.frontiersin.org 5
ones, suggesting developmental coupling between cell division
and cell expansion (compare Rosero et al., 2016).

PCA involving five parameters (cell area, circularity, solidity,
lobe number, and lobe width) demonstrated that while cotyledon
pavement cells of fh1 mutants generally resemble those of wt
plants, those of double fh1 arpc5 mutants are clearly similar to
those from single arpc5 mutants (Figure 2D). Remarkably, PCA
failed to visualize differences between wt and fh1 plants in spite
of the observed increase in cell lobing. We believe that this may
be due to the method employed to collect data for this approach,
which appears to suffer from a detection bias against highly lobed
cells (see Methods and Supplementary Data S3).

The changes in cotyledon pavement cell shape and size
observed in five DAG plants persisted at least until 14 DAG
(Supplementary Data S4), confirming earlier observations
(Zhang et al., 2008; Rosero et al., 2016; Sahi et al., 2018).

Effects of arpc5 and fh1 Mutations on
Cytoskeletal Organization and Dynamics
To investigate microfilament and microtubule organization and
dynamics, we introduced fluorescent protein markers (GFP-
MAP4 for microtubules and UBQ : Lifeact-GFP for
microfilaments) previously used to investigate cytoskeletal
dynamics in fh1 plants (Rosero et al., 2016; Cvrčková and
Oulehlová, 2017) also into arpc5, and fh1 arpc5 double mutants.
To further examine robustness and biological relevance of any
cytoskeletal structure or dynamics alterations observed in the arpc5
mutants, we prepared additional plant lines expressing alternative
cytoskeletal markers in a genetic background impaired in the
function of the ARP2/3 complex. These included arpc5 and arp2
plants carrying the microtubule marker GFP-TUA6 (Ueda et al.,
1999), as well as lines carrying the actin reporter GFP-FABD, used
in our previous work (Rosero et al., 2016), in the arpc5, arp2, or
arpc4 background.

Somewhat surprisingly, given the expected disruption of actin
nucleation, no dramatic changes in actin organization were
observed in any of the mutants examined (Figure 3A,
Supplementary Data S5). Contrary to our previous observations
in plants carrying the GFP-FABD actin marker, which suggested
increased bundling and decreased density of microfilaments in fh1
mutants compared to the wt (Rosero et al., 2013; Rosero et al.,
2016), LifeAct-GFP-labeled microfilaments in cotyledon pavement
cells of 5 DAG fh1 mutants were bundled comparably (Figure 3B)
but slightly denser (Figure 3C) than those in wt plants. In the arpc5
mutants, as well as in double fh1 arpc5 mutants, enhanced
microfilament bundling was detected using the Lifeact-GFP
marker (Figure 3B), together with a minor increase in actin
filament density comparable to that seen in fh1 mutants (Figure
3C). Increased actin bundling in arpc5 plants was also confirmed
using the alternative marker GFP-FABD, although no effect on
microfilament density was observed; no significant change was,
however, seen in arp2 and arpc4 mutants (Supplementary Data
S5), previously shown to affect pavement cell shape in a manner
similar to arpc5 (Sahi et al., 2018).

While there was no significant influence of single actin
nucleator mutations on the actin structures lifetime compared
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to the wt, arpc5 and double fh1 arpc5 mutants exhibited
somewhat longer lifetimes than fh1 mutants (Figure 3D). A
trend toward decreased lateral actin mobility was observed in fh1
mutants, although less dramatic than in our previous studies
(Rosero et al., 2016; Cvrčková and Oulehlová, 2017).
Remarkably, arpc5 and fh1 arpc5 double mutants exhibited a
statistically significant effect in the same direction, namely
decrease of lateral actin mobility (Figure 3E). While the
biological relevance of these effects on microfilament dynamics
remains questionable due to their low extent, as well as to the fact
Frontiers in Plant Science | www.frontiersin.org 6
that no significant changes were found using the GFP-FABDmarker
in arpc5, arp2, or arpc4 mutants (Supplementary Data S5), they fit
the pattern already observed in pavement cell shape and actin
organization—namely epistasis of arpc5 over fh1. However, an
additive effect of both mutations cannot be excluded, since the
double fh1 arpc5 mutant presents an even more pronounced
decrease in actin lateral movement compared to wt and to fh1
mutants (although the difference is not statistically significant).

Effects of actin nucleator mutations on microtubule arrangement,
as documented using the GFP-MAP4 marker, are rather subtle
FIGURE 1 | Actin nucleator mutants do not exhibit gross phenotypic alterations. (A) Representative photos of 21 DAG plants carrying the arpc5 and fh1mutations analyzed in
this report, double mutant plants, and relevant wild types (wt). (B) Representative photos of 1st true leaves of 21 days after germination (DAG) plants. (C) Area of wt and mutant
5 DAG cotyledons. (D) Area of 1st true leaves of 14 DAG wt and mutant plants. None of the between-genotype differences in (C, D) is statistically significant.
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(Figure 4A). The arpc5 mutation did not affect microtubule
organization but an increase in microtubule bundling was found in
fh1 mutants compared to wt, arpc5, and fh1 arpc5 plants, consistent
with epistasis of arpc5 over fh1 (Figure 4B). Minor differences were
also found in the density of microtubule structures (Figure 4C).
However, the alternative microtubule marker GFP-TUA6 did reveal
some decrease in microtubule bundling in both arpc5 and arp2
mutants, though the extent of the effect was rather small
(Supplementary Data Figure S6).Consistent with previous
observations suggesting that the fh1 mutant phenotype may be due
Frontiers in Plant Science | www.frontiersin.org 7
mainly to altered microtubule function, though possibly secondary to
changes in the actin cytoskeleton (Rosero et al., 2013; Rosero et al.,
2016), pronounced changes in microtubule dynamics have been
found in plants carrying the fh1 mutation. These mutants exhibited
a markedly shortened microtubule lifetime, while no change in the
lifetime was found in arpc5 mutants. Surprisingly, microtubule
lifetime in double fh1 arpc5 mutants was as short as in fh1 mutants
(Figure 4D), while only minor changes were detected in lateral
microtubule mobility—namely a slight but significant decrease in
arpc5 mutants (Figure 4E). No changes in microtubule dynamics
FIGURE 2 | Pavement cell shape in the adaxial epidermis of 5 days after germination (DAG) cotyledons of actin nucleator mutants and wt plants. (A) Representative images of
wt, fh1-1, arpc5-1, and fh1-1 arpc5-1 cotyledon epidermis. Epidermal continuity defects are marked by arrowheads. (B) Selected morphometric parameters of cotyledon
pavement cells as determined by the semi-manual approach (seeMethods): cell circularity and solidity as measures of cell shape complexity, cell area, aspect ratio as a measure
of shape anisotropy. (C) Average cell lobe number and equatorial lobe width as determined by PaCeQuant. (D) Scatter plot of PCA results for five morphometric parameters
(cell circularity, solidity and area, lobe number, and average equatorial lobe width) determined by PaCeQuant, shown at an arbitrary scale. Values labeled by the same letters in
(B, C) do not differ significantly (p < 0.05).
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were observed in either arpc5 or arp2 mutants using the alternative
microtubule marker GFP-TUA6 (Supplementary Data S6).
Collectively, the microtubule dynamics parameters would thus
suggest epistasis of fh1 over arpc5, in contrast to the pattern
observed in all other parameters analyzed so far.

Mutations of Both Actin Nucleators Have
Similar Effects on True Leaf Pavement Cell
Shape
We previously observed that the effect of the arpc5 mutation on
cotyledon pavement cell shape does not, somewhat surprisingly,
extend to the true leaves. True leaf pavement cells of arpc5 plants
are larger than those of wt plants (similar to the cotyledon
pavement cells), but they are more rather than less lobed,
opposite to the situation in cotyledons (Sahi et al., 2018). We
thus examined morphological parameters of true leaf pavement
cells in our actin nucleator mutants (Figure 5A). The previously
reported decrease in cell circularity in arpc5 mutants has been
reproduced, while fh1 mutants still exhibited increased lobing,
similar to the situation in cotyledons, and their cell circularity
was thus indistinguishable from arpc5 or the double mutants
Single fh1 or arpc5mutations and double fh1 arpc5mutation also
caused similar increase in true leaf pavement cell size, except of
Frontiers in Plant Science | www.frontiersin.org 8
the fh1-CRISPR allele that did not have significant effects (Figure
5B). Somewhat surprisingly, while the effects of the examined
mutations on cell solidity mimicked those on circularity in
cotyledon pavement cells, only minor changes in solidity and
other parameters (aspect ratio, lobe number, or lobe width) were
observed in true leaves (Figures 5B, C). Although leaf pavement
cells in most mutants were larger than in wt plants (Figure 5B),
no obvious changes in leaf size were observed, comparable to the
situation in cotyledons (see Figures 1A, B, D).

Generally, the effect of fh1 or arpc5 mutations on epidermal
cell shape in true leaves was much weaker than in the cotyledons.
Overall leaf pavement cell shape similarity between all studied
genotypes was also confirmed by PCA (Figure 5D).
ARPC5 is Epistatic Over FH1 in
Determining Epidermal Continuity
Mutations disrupting the ARP2/3 complex function often result in
the formation of gaps between adjacent epidermal pavement cells
(see e.g. Mathur et al., 2003a; Mathur et al., 2003b; Sahi et al., 2018).
We also observed gaps between pavement cells in our plants
carrying the arpc5 mutation, regardless of the allelic status of FH1
(see Figures 2A and 6A). This prompted us to investigate epidermal
FIGURE 3 | Actin cytoskeleton organization and dynamics in the adaxial cotyledon epidermis of 5 days after germination (DAG) actin nucleator mutants expressing
Lifeact-GFP. (A) Representative images of microfilament organization in wt, fh1-1, arpc5-1, and fh1-1 arpc5-1 seedlings. (B) Quantitative estimate of actin bundling,
measured as skewness of fluorescence intensity distribution among labeled structures. (C) Quantitative estimate of actin network density, measured as pixel
occupancy of skeletonized meshwork. (D) Microfilament structure lifetime, represented by maximum values observed over 120 s in structures crossing a 20 µm
transect. (E) Microfilament structure lateral mobility, represented by maximum trajectories observed over 120 s in structures crossing a 20 µm transect. Statistical
significance of differences is denoted by asterisks (* for p < 0.05, ** for p < 0.01).
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gap formation quantitatively in younger and older cotyledons, as
well as in true leaves. We found that epidermal gaps appear, almost
exclusively, in both cotyledons and true leaves of single arpc5
mutants, as well as in double fh1 arpc5 mutants, while the fh1
mutation neither causes epidermal continuity defects nor affects the
formation of epidermal gaps caused by arpc5 (Figure 6B). Thus,
arpc5 mutation appears to be epistatic over fh1 also with respect to
its effect of epidermal continuity.

Effects of arpc5 and fh1 Mutations on
Trichome Shape
Mutations affecting the function of the ARP2/3 complex are known
to cause characteristic deformations of the typical architecture of the
branched unicellular A. thaliana trichomes. This is the case also of
arpc5, whose trichomes are distorted and have shorter branches
than those of wt plants (Mathur et al., 2003b; Li et al., 2003). On the
other hand, trichomes of fh1mutants are, at the first glance, shaped
normally but mutant plants exhibit a somewhat larger fraction of
four-branched trichomes compared to the wt (Oulehlová et al.,
2019). We did not observe any gross abnormalities in microfilament
organization during early trichome development in single arpc5 or
fh1 mutants (Supplementary Data S7), although possible
Frontiers in Plant Science | www.frontiersin.org 9
differences in the extent of microfilament bundling may deserve
further attention.

We confirmed these observations in single mutants and found
that double fh1 arpc5 mutants also have distorted trichomes
(Figure 7A). An increase in the frequency of four-branched
trichomes was observed not only in fh1 plants, but also in arpc5
mutants, as well as in double fh1 arpc5 mutants, which did not
significantly differ from fh1 plants in this parameter (Figure 7B).
Terminal branches of typical three-branched trichomes of fh1
mutants were shorter than those of wt plants, and their length
was further reduced in arpc5 mutants. Trichomes of double
mutants resembled those of arpc5 plants also in this parameter
(Figure 7C). A similar, though less distinct, difference in
trichome branch length was documented also for four-
branched trichomes (Supplementary Data S8). PCA involving
six parameters (the length of each internal or apical branch and
overall trichome size) confirmed that three-branched fh1
trichomes resemble those of wt plants, while those of double
fh1 arpc5 mutants are indistinguishable from single arpc5
mutants (Figure 7D).

Thus, the double fh1 arpc5 mutants resemble single arpc5
mutants with respect to trichome shape and are indistinguishable
FIGURE 4 | Microtubule organization and dynamics in the adaxial cotyledon epidermis of 5 days after germination (DAG) actin nucleator mutants expressing GFP-
MAP4. (A) Representative images of microtubule organization in wt, fh1-1, arpc5-1, and fh1-1 arpc5-1 seedlings. (B) Quantitative estimate of microtubule bundling,
measured as skewness of fluorescence intensity distribution among labeled structures. (C) Quantitative estimate of microtubule network density, measured as pixel
occupancy of skeletonized meshwork. (D) Microtubule or bundle lifetime, represented by maximum values observed over 120 s in structures crossing a 2 µm
transect. (E) Microtubule or bundle lateral mobility, represented by maximum trajectories observed over 120 s in structures crossing a 2 µm transect. Statistical
significance of differences is denoted by asterisks (* for p < 0.05, ** for p < 0.01).
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from either single mutant with respect to trichome branching.
Together, these observations suggest epistasis of arpc5 over fh1
with respect to trichome development.
DISCUSSION

In contrast to opisthokonts, who possess multiple actin nucleation
systems, plants currently seem to engage only two classes of actin
nucleators: the ARP2/3 complex and formins (e.g. Blanchoin and
Staiger, 2010; Vaškovičová et al., 2013; Yanagisawa et al., 2013).
Frontiers in Plant Science | www.frontiersin.org 10
Multiple reports describe the role of one or another of these actin
nucleation machineries in plant cell morphogenesis and
development both in Arabidopsis (e.g. Li et al., 2003; Rosero et al.,
2013; Rosero et al., 2016; Sahi et al., 2018) and in other angiosperms
(e.g. Yang et al., 2011; Zhang Z. et al., 2011; Hossain et al., 2012;
Huang et al., 2013; Facette et al., 2015; Gavrin et al., 2015; Qiu et al.,
2015; Qi et al., 2017). In the present study, the impact of
simultaneous perturbation of both actin nucleation systems on
Arabidopsis epidermal cells shaping was investigated for the first
time, with focus on interdigitated epidermal pavement cells
and trichomes.
FIGURE 5 | Pavement cell shape in the adaxial epidermis of 1st true leaves of 14 days after germination (DAG) actin nucleator mutants and wt plants. (A) Representative
images of wt, fh1-1, arpc5-1, and fh1-1 arpc5-1 true leaf pavement cells. (B) Selected morphometric parameters of leaf epidermal pavement cells as determined by the semi-
manual approach (seeMethods): cell circularity and solidity as measures of cell shape complexity, cell area, aspect ratio as a measure of shape anisotropy. (C) Average cell lobe
number and equatorial lobe width as determined by PaCeQuant. (D) Scatter plot of PCA results for five morphometric parameters (cell circularity, solidity and area, lobe number,
and average equatorial lobe width) determined by PaCeQuant, shown at an arbitrary scale. Values labeled by the same letters in (B, C) do not differ significantly (p < 0.05).
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Actin nucleation may be expected to be essential for
eukaryotic cell functioning. Indeed, in budding yeast (Winter
et al., 1999) or fission yeast (e.g. Cabrera et al., 2011), loss of some
ARP2/3 complex subunits is lethal; mutations affecting other
subunits cause severe cell morphogenesis defects. Disrupting the
metazoan ARP2/3 complex also tends to result in tissue- or
organ-level problems rather than cellular lethality (e.g. Di Nardo
et al., 2005; van der Kammen et al., 2017). In plants, the ARP2/3
complex appears to be needed for proper cell morphogenesis and
development but not for cell viability. Perturbation of the ARP2/
3 complex in the moss Physcomitrella patens prevents
completion of the developmental cycle and disturbs polar
growth and cell morphogenesis (Harries et al., 2005; Finka
et al., 2008). In angiosperms, including A. thaliana, loss of the
ARP2/3 complex or its regulators results in altered shape of
trichomes and epidermal pavement cells, but does not cause
gross developmental defects (Mathur et al., 2003a; see Ivakov and
Persson, 2013; Facette et al., 2015). Impairment of ARP2/3
Frontiers in Plant Science | www.frontiersin.org 11
function resulted in additional rather subtle phenotypic
changes—for example, altered stomata closure dynamics in
several mutants affecting ARP2/3 complex function, including
the arpc5-1mutant analyzed in the present study (Li et al., 2013).
A possible reason for the lack of dramatic phenotypic effects may
be that plant cells can generate new actin filaments by other
mechanisms, such as nucleation by formins or elongation of
short actin filaments generated by severing proteins (Michelot
et al., 2007; Staiger et al., 2009). ARP2/3 complex subunits are
encoded by single copy or duplicated genes in Arabidopsis (Li
et al., 2003), and the knock-out of individual single-copy genes
leads to similar phenotypic effects (Li et al., 2003; Mathur et al.,
2003b; Djakovic et al., 2006; Li et al., 2013; Sahi et al., 2018)
underscoring their functionality within the same complex.

Unlike ARP2/3 complex subunits, formins comprise large
gene families in most lineages, including metazoans and plants
(Grunt et al., 2008). Thus, loss of a single formin may be
compensated by its functionally overlapping relatives.
Arabidopsis plants lacking the main housekeeping Class I
formin FH1 are viable, fertile, and free from major
developmental defects but exhibit altered root growth,
cytoskeletal drug sensitivity, cytoskeletal dynamics, and also
changed pavement cell shape. Remarkably, these phenotypic
effects of the fh1 mutation, as well as its impact on cytoskeletal
dynamics, were largely phenocopied in seedlings treated by
SMIFH2, a specific inhibitor of formin activity (Rosero et al.,
2013; Rosero et al., 2016). A T-DNA insertion disrupting the
closest FH1 paralog, FH2 (At2g43800), did not significantly alter
pavement cell shape, although it slightly increased pavement cell
size (Rosero, 2013). Since pavement cell size appears to be easily
influenced by numerous conditions, including, e.g., expression of
cytoskeletal markers (Rosero et al., 2016), we consider these
observations consistent with a prominent role of FH1 in
vegetative development at least at the seedling stage, although
contribution of other formins (including, but not limited to,
FH2) would clearly deserve further attention.

Here we show that also double fh1 arpc5 mutants exhibit no
major growth or developmental defects possibly again due to
functional redundancy of the numerous formin paralogs. This enabled
us to investigate the mutual relationships of the two actin nucleation
systems in cytoskeletal organization and epidermal cell morphogenesis.

Plant cell shape is determined by a complex interplay between
vacuole-driven turgor pressure, cell wall synthesis and remodeling,
mechanical stress, cytoskeletal dynamics, and membrane trafficking
(Szymanski and Cosgrove, 2009; Sampathkumar et al., 2014;
Belteton et al., 2018). Epidermal pavement cells and branched
unicellular Arabidopsis trichomes have long served as models to
study these processes (see, e.g. Ivakov and Persson, 2013; Sapala
et al., 2018; Altartouri et al., 2019). Microtubules are believed to
contribute significantly to the control of pavement cells lobes
initiation (Panteris and Galatis, 2005; Armour et al., 2015;
Belteton et al., 2018), whereas orchestrated action of both actin
and microtubule cytoskeleton is needed for later and final stages of
pavement cell development (Smith and Oppenheimer, 2005; Zhang
C. et al., 2011). Changes in cytoskeletal organization responsible for
the layout of pavement cell lobes, especially microtubule bundling,
FIGURE 6 | Epidermal continuity defects in actin nucleator mutants.
(A) Close-up of 14 days after germination (DAG) cotyledon epidermis of
arpc5-1 and fh1-1 arpc5-1 mutants, epidermal gaps marked by arrowheads.
(B) Quantification of gap density in cotyledons and first true leaves. Values
labeled by the same letters do not differ significantly (p < 0.05).
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occur very early in development, when the cells are still convex
(Armour et al., 2015). In plants carrying the actin marker GFP-
FABD whose expression itself causes changes in pavement cell size
and shape, no differences were observed between cells that ceased
expressing the transgene before day 4 after germination and those
with continuous expression (Rosero et al., 2016), indicating
participation of the actin cytoskeleton in very early steps of
pavement cell shape determination. Arabidopsis mutants with
impaired actin nucleation commonly exhibit altered pavement cell
shape and size (e.g. Li et al., 2003;Mathur et al., 2003a; Mathur et al.,
2003b; El-Assal et al., 2004; Basu et al., 2004; Basu et al., 2005;
Rosero et al., 2016; Sahi et al., 2018; Oulehlová et al., 2019), again
consistent with microfilaments contributing to early microtubule
rearrangements that establishes the lobe layout (compare Cvrčková
et al., 2016), albeit cytoskeletal organization and dynamics during
early pavement cell development in these mutants remains to
be characterized.

Cotyledon pavement cells of arpc5 plants are less lobed than
in wt plants (Mathur et al., 2003b; Li et al., 2003), while fh1
Frontiers in Plant Science | www.frontiersin.org 12
mutants show an opposite phenotype, i.e. increased cotyledon
pavement cell shape complexity (Rosero et al., 2016; Oulehlová
et al., 2019). Here we show that cotyledon pavement cells of
double fh1 arpc5 mutants resemble those of arpc5 plants. The
arpc5 mutation is thus epistatic over fh1 with respect to
cotyledon pavement cell shape determination. However, in true
leaves the arpc5 mutant exhibits increased rather than decreased
pavement cell shape complexity (Sahi et al., 2018), and all
mutants examined in this study, i.e. arpc5, fh1, and fh1 arpc5,
displayed a similar decrease in true leaf epidermal pavement cell
circularity and an increase in cell size compared to wt plants.
Thus, pavement cell shaping in cotyledons (embryonic leaves) and
true post-embryonic leaves apparently engages the actin nucleation
mechanisms in a different manner. This is not surprising, because
post-germination cotyledon growth relies solely on cell expansion in
the absence of cell division, while true leaf cells simultaneously
divide and expand (Tsukaya et al., 1994). Additional mechanisms
such as, e.g., mechanical stress and tension may contribute to cell
shaping differently in cotyledons versus true leaves. Although
FIGURE 7 | Trichome shape in wt plants and actin nucleator mutants. (A) Typical trichomes of wt, fh1-1, arpc5-1, and fh1-1 arpc5-1 plants. (B) Distribution of
trichome branch numbers. Statistical significance of between-genotype differences is denoted by asterisks (* for p < 0.05, **for p < 0.01). (C) Length of terminal
branches in three-branched trichomes. Values labeled by the same letters do not differ significantly (p < 0.05). (D) Scatter plot of principal component analysis
(PCA) results for six length parameters (a–f, see inset for definition) describing the three-branched trichome shape and size, shown at an arbitrary scale.
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epidermis growth properties may influence organ shape (Savaldi-
Goldstein et al., 2007), in our system pavement cells shape and size
did not influence organ size, consistent with previous observations
that whole organ size is barely, if at all, affected by cell size and shape
changes induced by actin nucleator disruption, indicating efficient
compensation for altered cell division or cell expansion at the organ
development level (e.g. Rosero et al., 2016; Sahi et al., 2018).

Another classic model cell type used to study cell shaping
regulated by orchestrated action of actin and microtubules are leaf
trichomes. Trichome branches initiation appears to be controlled
mainly by microtubules (Sambade et al., 2014) and trichome
branches growth by ARP2/3-nucleated microfilaments (Mathur
et al., 1999; Szymanski et al., 1999; Le et al., 2003; Schwab et al.,
2003; Li et al., 2003; El-Assal et al., 2004; Basu et al., 2004; Basu et al.,
2005; Yanagisawa et al., 2015; Tian et al., 2015). Remarkably,
components of the ARP2/3 complex, as well as the FH1 protein,
localize to nascent tips during early trichome development
(Yanagisawa et al., 2015; Yanagisawa et al., 2018; Oulehlová et al.,
2019). Along with the well-known “distorted trichome” phenotype
(Mathur et al., 2003b), arpc5 plants exhibited shorter terminal
trichome branches and an increase in trichome branch number.
Also fh1 mutants show increased trichome branch number
(Oulehlová et al., 2019). Trichome branch initiation can be
induced by transient microtubule stabilization in branching-
deficient mutants (Mathur and Chua, 2000) or by microtubule-
stabilizing mutation (Buschmann et al., 2009). However, fh1
mutants have more dynamic microtubules in epidermal pavement
cells (Rosero et al., 2016; Cvrčková and Oulehlová, 2017; see also
below). Unless the effects of the fh1 mutation differ between
trichomes and pavement cells, a possible explanation of the
apparent paradox is that increased microtubule mobility in fh1
mutants may promote generation of transient microtubular
structures required for branch initiation, while microtubule
stabilization increases the lifetime of such structures. This would
be consistent with our hypothesis explaining increased pavement
cell lobing in fh1 mutants by enhanced generation of microtubule
bundles at future pavement cell lobe necks (Cvrčková et al., 2016).
Additional observations, focusing on cytoskeletal dynamics during
early stages of trichome ontogeny, are needed to test this hypothesis.
The distorted trichome phenotype of double fh1 arpc5 mutants
indicates epistasis of arpc5 over fh1, as in the case of cotyledon
pavement cells, and is consistent with cell wall expansion required
for proper branch elongation being controlled by ARP2/3
(Yanagisawa et al., 2015; Yanagisawa et al., 2018).

To gain insight into the cytoskeletal basis of observed epidermal
cell shape differences, we analyzed organization and dynamics of
microfilaments and microtubules in epidermal pavement cells of
single and double mutants. Changes were expected in both
cytoskeletal systems, since some ARP2/3 complex subunits
(Zhang et al., 2013b; Havelková et al., 2015) and at least some
formins (Deeks et al., 2010; Li et al., 2010; Yang et al., 2011; Wang
et al., 2012; Wang et al., 2013), bind to microtubules in addition to
their actin-related functions. Thus, phenotypic effects of ARP2/3
complex or formin perturbation may be mediated by either actin or
microtubules, or by both cytoskeletal systems.
Frontiers in Plant Science | www.frontiersin.org 13
In general, loss of FH1 affected the microtubular network more
dramatically than the microfilaments. Enhanced microtubule
dynamics in fh1 mutants was observed, consistent with our
previous observations (Rosero et al., 2016; Cvrčková and
Oulehlová, 2017). Disruption of ARP2/3 complex function has
led to some noticeable, though rather weak, effects upon the actin
cytoskeleton that might secondarily affect microtubules via actin-
microtubule interactions. However, the biological relevance of these
effects is questionable because they were only partly reproduced
using an alternative actin marker. In the double fh1 arpc5mutants,
microfilament organization and dynamics generally resembled that
in single arpc5 mutants, unlike the microtubule behavior, which
reflected that observed in fh1 mutants.

In contrast to our previous observations (Rosero et al., 2016) we
did not observe a significant increase in actin bundling in the fh1
mutants compared to wt plants.We attribute this discrepancy to the
nature and expression level of the markers used to label the actin
cytoskeleton in our previous study, where we employed GFP-FABD
and Lifeact-mRFP markers expressed under the strong 35S
promoter. Those marker lines exhibited transgene silencing in
subsequent generations, leading to decreased and patchy marker
expression after crossing into T-DNA insertional lines, which
possibly resulted in the loss of ability to detect fine, non-bundled
microfilaments (Rosero et al., 2016). Moreover, while GFP-FABD
detects a less bundled microfilament network, it rather dramatically
reverses the pavement cell shape alteration brought about by fh1
mutations. This effect, not observed with a Lifeact-based marker,
makes interpretation of results obtained using GFP-FABD in
formin mutants problematic (Rosero et al., 2016). Although
Lifeact marker constructs stabilize actin network when strongly
expressed, moderate expression levels enable detection of fine,
highly dynamic microfilaments (van der Honing et al., 2011;
Dyachok et al., 2014; Kijima et al., 2018). In the present study, a
pUBQ-driven |Lifeact-GFP actin marker, which was not silenced,
was used. Although microfilament bundling was still observed, we
believe that our current measurements provide a more realistic
estimate of mutant actin dynamics than those in our previous
report where the preferential detection of bundles was further
aggravated by silencing (Rosero et al., 2016).

At the first glance, the observed effects of actin nucleator
impairment on the cytoskeletal organization and dynamics were not
mirrored in cell shape properties in the double fh1 arpc5 mutants.
Microtubules, which are essential for pavement cell lobe and trichome
branch initiation, are more dynamic in fh1mutants and thus prone to
re-organize more readily into structures that establish the layout of a
complex cell shape (Rosero et al., 2016; Cvrčková et al., 2016). In the
double mutants the microtubule cytoskeleton is as dynamic as in single
fh1 mutants but resulting cell shapes are less complex, resembling
instead single arpc5mutants. This could be due to ARP2/3-dependent
nucleation of new actin being required to progress from lobe or
trichome branch initiation (“layout establishment”) to actual lobe or
branch expansion that determines the final cell shape complexity
(Panteris and Galatis, 2005; Yanagisawa et al., 2015). Thus, the loss
of dynamic actin in ARP2/3-defective mutants seems to play a
dominant role in adopting the final shape.
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Cell expansion is intimately linked to cell wall polymer
deposition (Altartouri et al., 2019). Indeed, qualitative changes
in cell wall composition were detected at later stages of ARP2/3-
defective mutant development (Sahi et al., 2018). Consistent with
previous reports describing formation of epidermal gaps in such
mutants (e.g. Mathur et al., 2003a; Mathur et al., 2003b; Sahi
et al., 2018), cell adhesion defects were observed in the epidermis
of arpc5 mutant seedlings, regardless of their fh1 state. Such
defects are also common in plants with altered cell wall
carbohydrate composition, especially altered pectin content
(Bouton et al., 2002) and pectin deficiency-induced signaling
from the cell wall to cell wall synthesis machinery (Verger et al.,
2016). Our observations thus are consistent with the ARP2/3-
controlled actin filaments or the ARP2/3 complex itself being
involved in cell wall biosynthesis by a yet unknown mechanism.

In summary, our results imply that the formin FH1 and the
ARP2/3 complex share complementary roles in some aspects of
cotyledon pavement cell morphogenesis while they act
synergistically in the shaping of trichomes and true leaf pavement
cells. This suggests that the control of actin dynamics, affecting also
microtubule organization and dynamics, is developmentally
regulated, and that the importance of any particular actin
nucleation mechanism changes in the course of ontogeny.
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