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Knotted1-like Homeobox (KNOX) proteins play important roles in regulating plant growth,
development, and other biological processes. However, little information is available on
the KNOX gene family in apple (Malus domestica Borkh.). In this study, 22 KNOX genes
were identified in the apple genome. The gene structure, protein characteristics, and
promoter region were characterized. The MdKNOX family members were divided into
three classes based on their phylogenetic relationships. Quantitative real-time PCR
analysis revealed that the majority of MdKNOX genes exhibited strongly preferential
expression in buds and were significantly up-regulated during the flower induction period.
The transcript levels ofMdKNOX genes were responsive to treatments with flowering- and
stress-related hormones. The putative upstream regulation factor MdGRF could directly
bind to the promoter of MdKNOX15 and MdKNOX19, and inhibit their transcriptional
activities, which were confirmed by yeast one-hybrid and dual-luciferase assays. The
results provide an important foundation for future analysis of the regulation and functions
of the MdKNOX gene family.

Keywords: Malus domestica, Knotted1-like Homeobox, flower induction, growth-regulating factor, yeast
one-hybrid
INTRODUCTION

Homeobox proteins are considered to act as sequence-specific DNA-binding proteins and contain a
60 amino-acid-long DNA-binding domain termed a homeodomain (HD) that directly regulates the
expression of specific groups of target genes (Hayashi and Scott, 1990). Different HD proteins have
been grouped into separate families (or classes) based on either sequence identity within the HD or
conserved protein motifs outside of the HD (Bürglin and Affolter, 2016). Although their structures
Abbreviations: KNOX, Knotted1-like Homeobox; GRF, Growth-regulating factor; 6-BA, 6-Benzylaminopurine; GA3,
gibberellic acid; ABA, abscisic acid; SA, salicylic acid; AbA, Aureobasidin A; DAFB, days after full bloom.
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are similar, different homeodomains are able to recognize diverse
DNA binding sites (Berger et al., 2008). KNOTTED1-LIKE
HOMEOBOX (KNOX) genes belong to the three amino acid
loop extension (TALE) homeodomain superfamily and are
generally distinguished by four characteristic domains—
KNOXI, KNOXII, ELK, and HD—although some genes lack
the ELK and HD domains (Gao et al., 2015). The first homeobox
gene reported in a plant species was ZmKN1 from maize
(Vollbrecht et al., 1991). Subsequently, a number of KNOX
proteins have been characterized in many plant species (Hay
and Tsiantis, 2010). Arabidopsis KNOX proteins can be divided
into Classes I and II based on sequence similarity conventionally.
Further, KNOX lost the HD domain was found in Arabidopsis,
which defined a novel class, named as the KNATM (Magnani
and Hake, 2008). Four Class I (SHOOT-MERISTEMLESS (STM),
KNAT1, KNAT2, and KNAT6) and Four Class II KNOX
(KNAT3, KNAT4, KNAT5, and KNAT7) genes were identified
from Arabidopsis. Class I genes have been intensively studied and
shown to play important roles in meristem maintenance, control
of leaf blade shape, internode elongation, hormone homeostasis,
and establishment of inflorescence architecture (Tsuda et al.,
2011; Tsuda and Hake, 2015). Loss-of-function mutations in the
Arabidopsis STM resulted in embryos that lack a SAM (Barton
and Poethig, 1993). KNAT1 transcripts are detected in whole-
shoot and inflorescence tissue but not in leaves, and KNAT2
transcripts are present at high levels in shoot and inflorescence
tissue as expected but are of low abundance in leaves, which
affects leaf morphological development (Byrne et al., 2000).
KNAT6 is expressed at the site of lateral root initiation, and is
involved in meristem activity and organ separation (BellesBoix
et al., 2006). With regard to Class II KNOX genes, expression
patterns have been characterized in maize by RNA gel-blot
analysis (Kerstetter et al., 1994). Serikawa et al. (1997) detected
Arabidopsis KNAT3 expression patterns through the use of
promoter-GUS (b-glucuronidase) fusion analysis and in situ
hybridization. The varied expression patterns indicate that
KNAT3 plays several different roles in plants, depending on
when and where it is expressed. Despite several reports of
expression patterns, comparatively little is known about the
function of Class II KNOX genes in plants. In Arabidopsis,
domain exchange and phenotypes analysis suggest that the
sequences outside of the third helix and N-terminal arm of the
homeodomain endow the specificity of KNAT3 and KNAT1
(Serikawa and Zambryski, 1997). The Class II genes KNAT3,
KNAT4 and KNAT5 perform redundant and important
functions in root (Truernit and Haseloff, 2007) and lateral
organ differentiation (Furumizu et al., 2015). Promoter-GUS
and fluorescent protein analysis have demonstrated the
transcriptional regulation and protein products localization of
KNAT3, KNAT4, and KNAT5 in specific domains and cell types
of the Arabidopsis root (Truernit et al., 2006). KNAT3 may also
modulate abscisic acid (ABA) responses to regulate germination
and early seedling development (Kim et al., 2013). KNAT3 and
KNAT7 are involved in secondary cell wall biosynthesis in
Arabidopsis and Populus (Li et al., 2012; Wang et al., 2020)
and GhKNL1 participates in the regulation of fiber development
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in cotton (Gong et al., 2014). Three Class II KNOX genes,
MtKNAT3/4/5-like, from Medicago truncatula regulate legume
nodule boundaries and shape development (Di Giacomo
et al., 2017).

Additional research has revealed that KNOX genes are
involved in diverse developmental processes mainly by
affecting the metabolism and signaling pathway of hormones
(Chan et al., 1998; Himmelbach et al., 2002; Bolduc and Hake,
2009). KNOX genes activate cytokinin biosynthesis (Jasinski
et al., 2005; Yanai et al., 2005). For example, in M. truncatula,
MtKNOX3 activates the cytokinin biosynthesis ISOPENTENYL
TRANSFERASE (IPT) genes, regulates nodule development, and
activates cytokinin biosynthesis upon nodulation (Azarakhsh
et al., 2015). KNOX proteins have been reported to repress the
production of gibberellins (GAs). On the one hand, KNOX
negatively modulates the accumulation of GAs by controlling
the abundance of GA2-oxidase, by binding to an intron of ga2ox1
and up-regulating the metabolic gene (Bolduc and Hake, 2009).
On the other hand, KNOX inhibits GA biosynthesis by down-
regulation of the key biosynthetic gene GA20-oxidase (Kusaba
et al., 1998; Rosin et al., 2003). In addition, KNOX proteins are
involved in other hormonal signaling pathways. KNOX change
the abundance of proteins associated with auxin transporter
signaling components to regulate abscission in tomato (Ma
et al., 2015). Rice HOMEOBOX 1 (OSH1) represses the
brassinosteroid phytohormone pathway through activation of
brassinosteroid catabolism genes (CYP734A2, CYP734A4, and
CYP734A6) and then arrests the growth of the SAM (Tsuda et al.,
2014). KNAT3 interacts with a BELL-like homeodomain (BLH)
protein and synergistically modulates ABA responses during
germination and early seedling development in Arabidopsis
(Dachan et al., 2013).

In addition to being a transcriptional regulator, KNOX genes
are regulated by other protein factors to prevent misexpression.
Arabidopsis BELL-like homeodomain proteins BLH2/SAW1 and
BLH4/SAW2 act redundantly to regulate expression of one or
more KNOX genes and to establish leaf shape (Kumar et al.,
2007). NtSVP, a MADS-box transcription factor from tobacco,
acts as a repressor of the BP-like Class I KNOX gene NtBPL by
directly binding to the NtBPL promoter, causing shortened
pedicels (Wang et al., 2015). YABBY contributes to the
repression of KNOX genes (STM, KNAT1/BP and KNAT2) to
prevent development of ectopic meristems in Arabidopsis
(Kumaran et al., 2002). The Arabidopsis polycomb group
(PcG) p ro t e in FERTIL IZATION- INDEPENDENT
ENDOSPERM (FIE) and CURLY LEAF (CLF) could also
repress expression of KNOX genes (Katz et al., 2004). In
particular, transcription of KNOX genes is indicated to be
suppressed by a growth-regulating factor (GRF), and such
interactions have been confirmed in several species, including
barley (Osnato et al., 2010), Arabidopsis and rice (Kuijt et al.,
2014). This result implies that the GRF–KNOX regulatory
module was relatively conservative.

Although roles of KNOX genes in plant development have
been partly elucidated in Arabidopsis and other species, little
information is available about the possible roles of these genes in
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fruit crops. Apple (Malus domestica) is one of the most widely
cultivated fruit trees. To date, only two studies have been
reported concerning KNOX genes from apple (Watillon et al.,
1997; Gao et al., 2015). Here, we conducted the genome-wide
identification of members of the KNOX gene family in M.
domestica. The expression profiles in various tissues and in
response to exogenous hormone treatment as well as during
the floral development period were explored. In addition, the
regulatory interaction between MdKNOX and the putative
upstream regulator MdGRF was tested. This study may provide
a foundation for further investigation of the regulation and
functions of the MdKNOX gene family.
MATERIALS AND METHODS

Identification of KNOX Encoding Genes
in the Apple (Malus domestica Borkh.)
Genome
Arabidopsis thaliana and Oryza sativa KNOX protein sequences
were downloaded from The Arabidopsis Information Resource
(TAIR, https://www.arabidopsis.org/) and the Rice Genome
Annotation Project (http://rice.plantbiology.msu.edu/cgi-bin/
ORF_infopage.cgi) databases. To identify the genes encoding
KNOX proteins in the apple (M. domestica) genome, the
BLASTP program was used to search for potential KNOX-
encoding genes in the complete genome, using the known
KNOX sequences from Arabidopsis and rice as queries. All
non-redundant putative protein sequences were manually
checked with the Pfam database (http://pfam.xfam.org/search/
sequence) and the NCBI Conserved Domains database (https://
www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi). The 22
MdKNOX genes obtained were designated MdKNOX1 to
MdKNOX22 based on their chromosomal locations. Protein
physicochemical characteristics were predicted with the
ExPASy program (http://web.expasy. org/protparam/).

Multiple Sequence Alignment and
Phylogenetic Analysis
The full-length amino acid sequences of KNOX proteins from
Arabidopsis, rice, and apple were used for multiple alignment
performed with DNAMAN software. We chose the following
parameter settings—substitution matrix: Blosum62, mismatch
score: −15, and gap open/extend penalty: 10/5. Phylogenetic trees
were constructed using the MEGA 7.0 program (Kumar et al.,
2016). Sequence alignment was carried out using MUSCLE
(Edgar, 2004) program with default parameters. The optimal
protein substitution model was the Jones–Taylor–Thornton
(JTT) model with gamma distribution. The evolutionary
history was inferred using the neighbor-joining method based
on the JTT matrix-based model and gamma distribution.
Support for the phylogeny topology was assessed by means of
a bootstrap analysis with 500 replications. Sequence logos were
generated using the Weblogo online platform (http://weblogo.
berkeley.edu/logo.cgi).
Frontiers in Plant Science | www.frontiersin.org 3
Gene Structure, Conserved Motif,
and Promoter Sequence Analysis
A gene structures map was obtained with the Gene Structure
Display Server (http://gsds.cbi.pku.edu.cn). Conserved motifs in
MdKNOX protein sequences were elucidated with the MEME
platform (http://meme-suite.org/) (Bailey et al., 2006). The
dimensional structure of MdKNOX proteins was predicted
with the PHYRE server v2.0 (http://www.sbg.bio.ic.ac.uk/
phyre2/html/page.cgi?id=index). The 1,500-bp genomic DNA
sequence upstream of the start codon (ATG) of each
MdKNOX gene was obtained from the apple genome sequence.
Cis-elements in the promoters were identified using the
PlantCARE database (http://bioinformatics.psb.ugent.be/
webtools/plantcare/html/).

Homologous Gene Pairs and Synteny
Analysis
Information on syntenic blocks within the apple genome and
between the Arabidopsis and apple genomes were downloaded
from the Plant Genome Duplication Database (http://chibba.
agtec.uga.edu/duplication/). The genome sequences of
homologous KNOX proteins from Arabidopsis and apple were
assessed using BLASTP. The OrthoMCL algorithm was used to
identify paralogous genes within the apple genome as well as
between the apple and Arabidopsis genomes (Li et al., 2003). The
MCScan algorithm (Wang et al., 2012) was applied to detect
syntenic blocks containing apple KNOX genes. Circos
(Krzywinski and Schein, 2009) was used to visualize the
syntenic relationships between the genomes.

Plant Materials and Treatments
Samples were collected from six-year-old apple Fuji/T337/Malus
robusta Rehd. trees for tissue-specific expression analysis,
comprising roots, stems, leaves, buds, flowers, and fruits.
Newly developed lateral roots of 1–2 mm diameter, stems of
2–3 mm diameter near to the shoot apices, fully expanded leaves
adjacent to buds, flower buds, flowers at anthesis, and young
fruits were collected, immediately frozen in liquid nitrogen, and
stored at −80°C until use.

For hormone treatments, apple trees of uniform growth in the
experimental orchard of the College of Horticulture, Northwest
A&F University, Yangling, China (108°04′ E, 34°16′ N) were
chosen and randomly divided into six groups. Each group was
treated with 4 mmol/L salicylic acid (SA), 150 mmol/L ABA, 700
mg/L gibberellin (GA3), 300 mg/L 6-Benzylaminopurine (6-BA)
or water (control). Solutions were applied by spraying the leaves
with a low-pressure hand-wand sprayer, followed by sampling at
30, 50, and 70 days after full bloom (DAFB). Plant samples were
immediately frozen in liquid nitrogen after collection and stored
at −80°C until use.

RNA Extraction, cDNA Synthesis,
and Quantitative Real-Time PCR
Total RNA was isolated using a RNA extraction kit (OMEGA,
Doraville, GA, USA). RNA integrity was verified by
electrophoresis and RNA concentration was determined using
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a Nanodrop 2000 spectrophotometer. One microgram of total
RNA was used as the template for first-strand cDNA synthesis,
using the PrimeScript™ RT Reagent kit (Takara, Shiga, Japan)
following the manufacturer's instructions.

Primer pairs for quantitative real-time PCR (qRT-PCR) were
designed using Primer Premier 6.0 (Premier Biosoft, Palo Alto,
CA, USA) (Supplementary Table 1). It was difficult to distinguish
the amplification products because of the high similarity in coding
regions among several MdKNOX genes. Therefore, the same
primer pair was used to analyze the expression of both
MdKNOX1 and MdKNOX20, MdKNOX2 and MdKNOX5,
MdKNOX4 and MdKNOX12, MdKNOX10 and MdKNOX22.
Consequently, 18 pairs of primers were designed for 22
MdKNOX genes. Each primer pair was checked via RT-PCR
followed by 1.2% agarose gel electrophoresis to verify the
specificity of the amplification products.

Real-time RT-PCR was performed in a total volume of 20 ml
containing 2 ml cDNA, 10 ml of 2×SYBR® Green II Mix, 0.5 mM
of each primer, and distilled deionized H2O. Analyses were
conducted with the Bio-Rad CFX Connect™ Real-Time PCR
Detection System (Bio-Rad, Hercules, CA, USA). The PCR
protocol was as follows: 94°C pre-incubation for 3 min;
followed by 40 cycles of denaturation at 94°C for 10 s, and
annealing at 60°C for 30 s. At the end of the amplification, a
melting curve from 65 to 95°C with 0.5°C increments was
performed to verify the presence of gene-specific PCR
products. Apple Actin (MD04G1127400) and HistoneH3
(MD01G1035300) were used as internal standard genes. Three
biological replicates for each sample and three technical
replicates for each biological replicate were analyzed. The
relative expression levels were calculated using the relative
2−△△Ct method (Livak and Schmittgen, 2001).

Yeast One-Hybrid (Y1H) and Dual-
Luciferase Assays
To clone the promoters of MdKNOX15 and MdKNOX19,
genomic DNA was isolated from fresh young leaves of apple
‘Fuji' and used as the DNA template. Each PCR system contained
the Phusion® High-Fidelity PCR Master Mix, 0.5 mM primer
pairs (proKNOX15-F/proKNOX15-R for MdKNOX15
promoter, and proKNOX19-F/proKNOX19-R for MdKNOX19
promoter) and 1 ng/ml genomic DNA. The standard thermal
profile was as follows: 95°C for 2 min; 30 cycles of 95°C for 10 s,
57°C for 20 s, and 72°C for 1 min; followed by a final extension
for 10 min at 72°C. The PCR products were cloned into the
pBlunt vector (CloneSmart, USA) for sequencing.

A yeast one-hybrid (Y1H) assay was performed using the
Gold Matchmaker™ Gold Yeast One-Hybrid System (Clontech,
Mountain View, CA, USA). The open reading frame of MdGRF
was cloned using the primers MdGRF-F1 and MdGRF-R1, and
inserted into the pGADT7 vector. Then the 277-bp or 434-bp
promoter fragment of the MdKNOX gene (proKNOX) was
inserted into the pAbAi vector. After linearization, the
constructs were transformed into the yeast cells, which were
plated on SD/−Ura media supplemented with aureobasidin A
(AbA) to determine the minimal inhibitory concentration of
Frontiers in Plant Science | www.frontiersin.org 4
AbA. Growth of the co-transformant yeast cells (harboring
pGADT7-MdGRF and pAbAi-proMdKNOX) was detected on
SD/−Ura medium supplemented with AbA.

For dual-luciferase assays, the complete expression units of
improved firefly (coleopteran) luciferase (FLuc) and Renilla
(Renilla reniformis) luciferase (RLuc) were cloned from pGL3
basic-2X35S-Rluc-2X35S-Fluc plasmid (Gu et al., 2013), and
inser ted into the mult ip le c loning s i te (MCS) of
pCAMBIA0309 vector to generate the dual reporter expression
vector. To detect the effect of MdGRF on the promoter activities
of MdKNOX, the 2× 35S promoter upstream of the luciferase
gene was replaced by the promoter of the KNOX gene to generate
the reporter, and the open reading frame of MdGRF was cloned
using the primers MdGRF-F2/MdGRF-R2 and inserted into
pRI101-AN vector o generate the effector (MdGRF-OE)
plasmid. The recombinant vectors were transformed into
Agrobacterium strain GV3103. Tobacco leaves were infected
with the mixed Agrobacter ium ce l l s by means of
Agrobacterium-mediated transient injection (Krenek et al.,
2015). RLuc/FLuc activity was assessed using the Dual-
Luciferase® Reporter Assay System (Promega, USA).

Statistical Analysis
Data were subjected to analysis of variance and the means were
compared using Student's t-test at the 5% significance level using
SPSS 11.5 software (SPSS, Chicago, IL, USA).
RESULTS

Genome-Wide Identification of Arabidopsis
and Apple KNOX Genes
Nine KNOX genes were previously identified and reported in the
A. thaliana genome, named KNATM, KNAT6, STM, KNAT7,
KNAT2, KNAT1/BP, KNAT5, KNAT4, and KNAT3. To identify
apple KNOX genes, a BLASTP search of the apple genome was
conducted with the nine AtKNOX protein sequences as queries.
After manual checking and confirmation using the NCBI
Conserved Domains database, 22 candidate MdKNOX genes
were obtained (Table 1). The MdKNOX genes were named in
accordance with their chromosomal locations (MdKNOX1–
MdKNOX22). The 22 MdKNOX genes were located on 12
chromosomes in the apple genome. The chromosomes 6 and
15 harbored the highest number of genes (three genes each), the
chromosomes 4, 8, 10, 14 and 15 contained two genes, and
chromosome 3, 5, 9,12, 16, and 17 each carried a single gene
(Table 1).

Multiple sequence alignment showed that the majority of the
MdKNOX proteins shared four conserved domains: KNOXI,
KNOXII, ELK, and HOX domain (Figure 1). The ELK and HOX
domains were located at the C terminus of the MdKNOX
protein, whereas the KNOXI and KNOXII domains were
located at the N terminus. Among the proteins, ELK and HOX
domains were absent in five MdKNOX proteins (MdKNOX7,
MdKNOX8, MdKNOX14, MdKNOX17, and MdKNOX18)
(Figure 1).
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Gene Characterization and Structure
Analysis of MdKNOX
KNOX protein characteristics were analyzed using the ExPASy
portal, including molecular weight, isoelectric point, grand
average of hydropathicity, instability index, major amino acid
Frontiers in Plant Science | www.frontiersin.org 5
content, and aliphatic index (Table 2). The molecular weight of
the analyzed MdKNOX proteins ranged from 11.99
(MdKNOX14) to 40.81 kDa (MdKNOX1). The molecular
weight of the MdKNOX proteins was greater than 13 except
for MdKNOX14, which indicated that MdKNOX is a group of
macromolecular proteins. The isoelectric point ranged from 4.66
(MdKNOX7) to 6.89 (MdKNOX11) (Table 2). Given that the
instability index values were greater than 40, all KNOX proteins
were considered to be unstable except for KNOX7. Grand
average of hydropathicity values indicated that the MdKNOX
proteins were hydrophilic. The aliphatic index values ranged
from 54.15 (MdKNOX4) to 85.18 (MdKNOX17). Amino acid
content analysis showed that Lys and Ser were the predominant
residues, and that Glu, Ala, Gln, and Lys also accounted for a
large proportion of the proteins. Alpha helices, b sheets,
extended strands, and random coils were present in the
predicted protein structures of all the MdKNOX proteins
except for MdKNOX16 (Supplementary Figure 1). The Gene
Structure Display Server was used to display the exon–intron
structure based on the annotated apple genome. All MdKNOX
family members contained 3–6 introns. The number and
distribution of introns for MdKNOX genes was rather
conserved within each cluster (Figure 2). For example, the
KNAT2/6 cluster, including MdKNOX15, MdKNOX16, and
MdKNOX21, was highly conserved and comprised four introns
and five exons. However, although the genes MdKNOX2 and
MdKNOX5 showed high similarity in protein sequences, the
distribution and location of exons were distinct. These
differences suggested that the two genes have functionally
diverged during evolution.

Synteny Analysis and Phylogenetic
Relationships Among KNOX Genes
To clarify the evolutionary relationships among KNOX proteins,
a neighbor-joining tree was constructed derived from
Arabidopsis, rice, and apple KNOX protein sequences.
According to the phylogenetic tree (Figure 3), the KNOX
FIGURE 1 | Multiple sequences alignment of MdKNOX proteins.
TABLE 1 | Arabidopsis thaliana and apple KNOX gene families.

Name Gene ID Location CDS
(bp)

Peptide
(aa)

KNATM AT1G14760 chr1:5,084,315..5,084,315 429 142
STM AT1G62360 chr1:23,058,582..23,058,582 1,149 382
KNAT1/
BP

AT4G08150 chr4:5,147,699..5,147,699 1,197 398

KNAT2 AT1G70510 chr1:26,576,486..26,576,486 933 310
KNAT6 AT1G23380 chr1:8,297,241..8,297,241 990 329
KNAT3 AT5G25220 chr5:8,735,944..8,735,944 1,296 431
KNAT4 AT5G11060 chr5:3,509,833..3,509,833 1,182 393
KNAT5 AT4G32040 chr4:15,493,989..15,493,989 1,152 383
KNAT7 AT1G62990 chr1:23,337,167..23,337,167 876 291
KNOX01 MD02G1012900 Chr03:821,764..821,764 1,083 360
KNOX02 MD04G1069700 Chr04:9,546,107..9,546,107 765 254
KNOX03 MD04G1215500 Chr04:29,846,452..29,846,452 993 330
KNOX04 MD05G1352500 Chr05:46,891,824..46,891,824 1,161 386
KNOX05 MD06G1071100 Chr06:17,202,997..17,202,997 867 288
KNOX06 MD06G1171700 Chr06:31,218,154..31,218,154 1,056 351
KNOX07 MD06G1232400 Chr06:36,328,062..36,328,062 426 141
KNOX08 MD08G1075200 Chr08:6,111,898..6,111,898 750 249
KNOX09 MD08G1153600 Chr08:16,709,140..16,709,140 1,293 430
KNOX10 MD09G1112500 Chr09:8,548,362..8,548,362 1005 334
KNOX11 MD10G1276200 Chr10:36,731,509..36,731,509 621 206
KNOX12 MD10G1326500 Chr10:40,664,274..40,664,274 1,182 393
KNOX13 MD12G1205700 Chr12:28,622,790..28,622,790 990 329
KNOX14 MD13G1018900 Chr13:1,182,375..1,182,375 330 109
KNOX15 MD13G1095800 Chr13:6,760,799..6,760,799 1,059 352
KNOX16 MD14G1177200 Chr14:27,054,900..27,054,900 933 310
KNOX17 MD14G1239200 Chr14:31,827,706..31,827,706 426 141
KNOX18 MD15G1062700 Chr15:4,315,813..4,315,813 753 250
KNOX19 MD15G1130800 Chr15:9,443,279..9,443,279 1,314 437
KNOX20 MD15G1159800 Chr15:11,950,827..11,950,827 1,107 368
KNOX21 MD16G1097200 Chr16:6,783,377..6,783,377 1,077 358
KNOX22 MD17G1102600 Chr17:8,723,554..8,723,554 987 328
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proteins were clustered into three groups, designated Class I,
Class II and Class KNATM. Class I was further divided into four
subgroups: STM, KNAT2, KNAT6, and BP. Six apple proteins
(MdKNOX1 , MdKNOX2 , MdKNOX5 , MdKNOX9 ,
MdKNOX19, and MdKNOX20) were clustered in Class II, and
eleven apple proteins were clustered in the Class I. MdKNOX7,
MdKNOX8, MdKNOX14, MdKNOX17, and MdKNOX18 were
Frontiers in Plant Science | www.frontiersin.org 6
clustered in Class KNATM (Figure 3), which lakes the HOX
domain (Figure 1)

Segmental and tandem duplications are reported to be the
predominant mechanisms of diversification of the KNOX gene
family (Cannon et al., 2004). To analyze MdKNOX gene
duplication events, the Circos software was used to detect
duplicated blocks in the apple genome. More than ten pairs of
FIGURE 2 | Analysis of MdKNOX gene structure. An unrooted neighbor-joining tree was constructed derived from MdKNOX protein sequences (left) and exon–
intron composition analysis (right).
TABLE 2 | Amino acid compositions as well as physical and chemical characteristics of KNOX proteins.

Name pI MW Instability Index GRAVY Major Amino Acid Aliphatic Index

MdKNOX01 5.19 40.81 53.81 −0.747 S(9.4%)L(9.4%)E(8.6%)D(7.5%) 72.03
MdKNOX02 6.27 29.08 58.41 −0.729 L(10.2%)E(9.0%)S(7.4%)G(7.0%) 74.45
MdKNOX03 5.14 36.83 41.83 −0.547 G(10.3%)E(9.6%)S(8.7%)L(8.4%) 67.36
MdKNOX04 6.3 43.04 44.81 −0.726 S(11.9%)G(7.5%)L(6.9%)A(6.7%) 54.15
MdKNOX05 6.31 32.85 59.96 −0.739 L(10.7%)Q(9.0%)S(8.3%)E(7.9%) 76.18
MdKNOX06 5.15 39.57 46.5 −0.636 S(10.2%)L(7.9%)A(7.4%)D(7.1%) 65.38
MdKNOX07 4.66 15.73 36.75 −0.655 L(13.4%)E(11.3%)K(8.5%)S(8.5%) 83.05
MdKNOX08 5.87 27.70 49.68 −0.895 S(9.6%)N(9.2%)G(8.8%)Q(7.6%) 57.19
MdKNOX09 5.95 48.31 47.72 −0.788 L(9.3%)S(8.8%)A(7.2%)N(7.2%) 71.02
MdKNOX10 6.32 37.72 48.13 −0.61 L(10.1%)S(9.8%)A(7.4%)E(7.1%) 68.71
MdKNOX11 6.89 24.08 45.14 −0.723 L(11.6%)K(9.7%)E(7.7%)S(7.2%) 71.99
MdKNOX12 6.32 43.91 48.22 −0.734 S(11.1%)L(7.6%)A(7.1%)G(6.8%) 56.41
MdKNOX13 5.14 36.82 41.95 −0.663 S(9.4%)E(9.1%)G(9.1%)L(8.2%) 63.74
MdKNOX14 4.88 12.00 40.56 −0.492 S(9.1%)A(8.2%)D(8.2%)K(8.2%) 64.5
MdKNOX15 5.17 39.87 46.5 −0.679 S(10.7%)L(8.8%)E(8.5%)D(7.1%) 65.2
MdKNOX16 4.94 34.65 50.12 −0.553 S(10.9%)L(8.7%)A(8.3%)D(7.0%) 67.45
MdKNOX17 4.72 15.78 49.08 −0.561 L(12.7%)E(11.3%)S(9.2%)K(7.8%) 85.18
MdKNOX18 5.85 27.74 46.13 −0.857 S(10.0%)G(9.2%)N(9.2%)Q(7.6%) 57.76
MdKNOX19 6.01 48.66 49.41 −0.762 S(8.9%)L(8.6%)A(7.3%)Q(7.0%) 68.99
MdKNOX20 5.43 41.65 47 −0.799 S(8.9%)L(8.6%)D(7.8%)E(7.6%) 68.61
MdKNOX21 5.62 40.88 43.57 −0.643 S(10.3%)L(8.9%)E(7.8%)A(7.2%) 67.37
MdKNOX22 6.16 37.11 47.42 −0.564 L(10.3%)S(10.3%)A(7.9%)E(7.3%) 71.46
KNATM 5.64 16.44 56.91 −0.349 L(14.0%)S(11.2%)K(9.1%)E(8.4%) 87.89
STM 6.19 42.75 55.48 −0.652 S(12.0%)A(7.8%)L(7.0%)E(6.8%) 55.99
KNAT1/BP 6.02 45.84 50.08 −1.113 N(10.5%)S(10.0%)L(7.5%)E(7.2%) 56.41
KNAT2 4.9 35.64 48.97 −0.705 D(9.6%)L(9.6%)S(8.3%)E(8.0%) 70.87
KNAT6 4.92 37.19 53.6 −0.542 S(10.0%)L(9.1%)D(8.5%)E(8.5%) 73.56
KNAT3 5.86 47.60 57.27 −0.696 A(9.2%)L(8.8%)S(8.5%)Q(7.6%) 69.56
KNAT4 5.87 44.39 67.02 −0.856 S(9.6%)L(8.9%)E(8.3%)Q(8.3%) 66.82
KNAT5 6.03 43.28 55.48 −0.651 L(9.3%)S(9.3%)E(7.5%)T(6.7%) 73.79
KNAT7 6.1 32.91 47.98 −0.61 L(10.3%)E(8.2%)A(7.2%)G(6.8%) 76.43
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MdKNOX genes, such as MdKNOX1/MdKNOX20, MdKNOX2/
MdKNOX5, MdKNOX4/MdKNOX12, MdKNOX7/MdKNOX17,
MdKNOX8 /MdKNOX18 , MdKNOX10 /MdKNOX22 ,
MdKNOX12/MdKNOX21, were located in duplicated genomic
regions. Chromosomes 1, 3, 5, 7, and 12 did not contain any
duplicated genes, whereas Chromosomes 6 and 15 contained the
highest number of duplications (Figure 4A). Given that
Arabidopsis is a well-characterized model plant species, we
generated a comparative KNOX synteny map between
Arabidopsis and apple to investigate orthologous genes and
extract information on evolutionary relationships between the
two species. Five pairs of syntenic orthologous genes were
matched between the two species, including KNAT5/
MdKNOX19, KNAT2/MdKNOX21, STM/MdKNOX12, STM/
MdKNOX4, and KNAT7/MdKNOX2 (Figure 4B).

MdKNOX Expression Patterns in Different
Tissues
Arabidopsis KNOX genes have been well characterized, whereas
little information on expression of apple KNOX genes is
Frontiers in Plant Science | www.frontiersin.org 7
available. To elucidate the expression patterns of MdKNOX
genes in apple, the expression patterns in a variety of tissues
were analyzed by qRT-PCR. A heat map was drawn to visualize
the expression profiles of individual MdKNOX genes based on
the qRT-PCR data (Figure 5). The majority of (fourteen)
MdKNOX genes exhibited strongly preferential expression in
the floral bud. MdKNOX8, MdKNOX15, MdKNOX16, and
MdKNOX19 were highly expressed in the floral bud and stem.
Low expression levels in the root and fruit were recorded for all
MdKNOX genes except for MdKNOX16 and MdKNOX12. Only
MdKNOX2/5, MdKNOX3, MdKNOX10/22, MdKNOX13, and
MdKNOX16 were highly expressed in the flower, and
MdKNOX14, MdKNOX15, MdKNOX17, and MdKNOX19 were
highly expressed in the leaf.

MdKNOX Expression Patterns During the
Flower Induction Period
Fourteen MdKNOX genes that exhibited strongly preferential
expression in the floral bud were chosen to detect MdKNOX
expression patterns during the flower induction period
FIGURE 3 | Neighbor-joining tree representing phylogenetic relationships among KNOX genes from apple, Arabidopsis, and rice.
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FIGURE 5 | MdKNOX gene expression profiles in different tissues. The heat map was generated using MEV software. Relative expression profiles are based on
quantitative real-time PCR data.
FIGURE 4 | Analysis of evolutionary relationships among KNOX gene family members. Relative positive positions are depicted according to apple chromosomes,
colored lines indicate syntenic regions of the apple genome (A). Synteny analysis of KNOX genes between Arabidopsis and apple; relative positive positions are
depicted according to apple and Arabidopsis chromosomes, colored lines indicate syntenic regions of the apple and Arabidopsis genomes (B).
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(Figure 6). The transcript level of the majority of theseMdKNOX
genes was increased, including MdKNOX1/20, MdKNOX4/12,
MdKNOX7 , MdKNOX8 , MdKNOX10/22 , MdKNOX15 ,
MdKNOX18, and MdKNOX19. However, the gene expression
level ofMdKNOX6 was not significantly up-regulated and that of
MdKNOX11 showed a downward trend.

Effect of Phytohormone Treatments on
MdKNOX Expression During the Flower
Induction Period
To assess the potential effects of phytohormones on MdKNOX
expression during the flower induction period, the transcript
levels were estimated after treatment with 6-BA, GA3, ABA, or
SA. Treatment with 6-BA significantly increased the transcript
levels of MdKNOX4/12, MdKNOX7, MdKNOX8, MdKNOX10/
22, and MdKNOX18 at DAFB30 (Figure 7). At DAFB50, all
MdKNOX genes showed lower transcript levels compared with
that of the control except for MdKNOX11. MdKNOX11 was
down-regulated in response to 6-BA treatment in both the early
and late sampling periods but was significantly induced at
DAFB50. MdKNOX1/20 , MdKNOX4/12 , MdKNOX7 ,
MdKNOX8, MdKNOX10/22, MdKNOX15, MdKNOX16,
MdKNOX18, and MdKNOX19 also showed higher transcript
levels than that of the control at DAFB70. In response to
exogenously applied GA3 (Figure 7), MdKNOX expression was
unaffected at DAFB30, whereas all MdKNOX genes except
MdKNOX11 were down-regulated at DAFB50, especially
MdKNOX4/12, MdKNOX7, MdKNOX8, MdKNOX10/22, and
Frontiers in Plant Science | www.frontiersin.org 9
MdKNOX18. The transcript abundance of MdKNOX4/12,
MdKNOX7, MdKNOX8, MdKNOX10/22, and MdKNOX18
remained at lower levels than that of the control at DAFB70.
MdKNOX expression patterns varied over time in response to SA
and ABA treatment (Figure 8).MdKNOX4/12,MdKNOX15, and
MdKNOX18 were initially up-regulated in response to SA
treatment and subsequently showed no significant difference at
DAFB50 and DAFB70. MdKNOX15 transcription was
suppressed at DAFB50. MdKNOX1/20 was significantly
inhibited by SA at DAFB70 and MdKNOX19 was significantly
inhibited at DAFB50. MdKNOX10/22 was up-regulated by SA at
DAFB50, while down-regulated at DAFB70. With regard to ABA
(Figure 8) , MdKNOX4/12 , MdKNOX7 , MdKNOX8 ,
MdKNOX10/22, MdKNOX15, and MdKNOX16 were up-
regulated at DAFB30. However, no significant difference was
observed for all theMdKNOX at subsequent time points between
control and ABA-treated group except for MdKNOX15
and MdKNOX19.

Analysis of the cis-Elements in the
MdKNOX Promoters
To further investigate the regulatory mechanisms and potential
functions of MdKNOX genes, cis-element motifs associated with
responses to environmental factors and phytohormones were
detected in the 1.5-kb promoter region upstream of the start
codon (ATG) (Figure 9). Stress-related elements were detected
in the promoters of all MdKNOX genes except for MdKNOX2.
Meristem-related cis-elements were also identified in the
FIGURE 6 | MdKNOX gene expression profiles during the flower induction period. Samples were collected at 30, 50, and 70, days after full bloom (DAFB). Each
value represents the mean ± standard error of three replicates. Asterisks (*) means significant difference at the 0.05 level.
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MdKNOX4,MdKNOX5, MdKNOX6, MdKNOX10, MdKNOX15,
and MdKNOX22 promoters. Several hormone-related cis-
elements were detected in all MdKNOX genes, including ABA-,
SA-, GA-, methyl jasmonate-, and auxin-responsive elements.
Among the cis-acting elements involved in hormone-related
responses, the ABA-responsive element was present (as one to
three copies) in all studied promoters except for MdKNOX8.

MdGRF Directly Binds to the MdKNOX15
and KNOX19 Promoter
We conducted Y1H assays to test the interaction between the
MdGRF protein and MdKNOX15 and MdKNOX19 promoters.
The open reading frame of MdGRF was cloned into pGADT7
vector. The promoter fragments of MdKNOX15 and MdKNOX19
(Figure 10A) were inserted into the pAbAi vector, respectively.
Frontiers in Plant Science | www.frontiersin.org 10
Yeast strains carrying the pGADT7-MdGRF and pAbAi-
proKNOX constructs grew normally on selective medium
supplemented with AbA (200 ng/ml for KNOX15 and 250 ng/
ml for KNOX19), whereas the pGADT7 empty vector control did
not grow (Figure 10B). These results suggested that MdGRF
directly interacted with the MdKNOX promoter.

MdGRF Inhibited the Promoter Activities
of MdKNOX15 and MdKNOX19
To test whether MdGRF regulated the transcription ofMdKNOX
genes, a transient transformation assay was conducted. A dual
effector–reporter system was established using MdGRF as the
effector and the RLuc gene under the control of the MdKNOX
promoter as the reporter (Figure 11A). The Rluc/Fluc activity
was decreased under co-transformation with 35S:GRF-GFP and
FIGURE 7 | MdKNOX transcript levels in response to 6-benzylaminopurine (6-BA) and gibberellic acid (GA3) treatments. Samples were collected at 30, 50, 70 days
after full bloom (DAFB) after 6-BA or GA3 treatment, with water used as a control. Each value represents the mean± standard error of three replicates. Different
letters means significant difference at the 0.05 level.
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FIGURE 8 | MdKNOX expression levels in response to SA and ABA treatments. Samples were collected at 30, 50, 70 days after full bloom (DAFB) after SA or ABA
treatment, with water used as a control. Each value represents the mean ± standard error of three replicates. Different letters means significant difference at the 0.05 level.
FIGURE 9 | Predicted cis-elements in the MdKNOX promoters. The 1.5 kb sequence upstream from the start codon of MdKNOX genes was analyzed using the
PlantCARE database.
Frontiers in Plant Science | www.frontiersin.org February 2020 | Volume 11 | Article 12811

https://www.frontiersin.org/journals/plant-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


Jia et al. Identification and Expression of MdKNOX Gene
FIGURE 10 | MdGRF binds to MdKNOX15 and MdKNOX19 promoters. (A) Promoter sequences of MdKNOX15 and MdKNOX19 genes used for yeast one-hybrid
(Y1H) assay. The putative GRF binding sites, core CAG repeats or its reverse complementary sequence CTG were marked with gray shadow. (B) The yeast strains
were grown on SD/-Leu and SD/-Leu/+ AbA medium for 3 d.
FIGURE 11 | MdGRF inhibited the promoter activities of MdKNOX15 and MdKNOX19. (A) Schematic diagram of the reporter vector and effector vector. (B) Dual-
luciferase assays showing that MdGRF inhibits the transcription MdKNOX15 and MdKNOX19 in tobacco leaves. The MdGRF effector vector (MdGRF-GFP) or the
control effector vector (GFP) with the reporter vector containing the MdKNOX promoter (proKNOX15 and proKNOX19) were infiltrated into tobacco leaves for
analysis of Rluc/Fluc activity. Each experiment was performed in three replicates. Asterisks (*) indicates a significant difference (p <0.05) compared with the control.
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proKNOX compared with that under co-transformation with
35S:GFP and proKNOX (Figure 11B). These results suggested
that MdGFR negatively regulated the expression level of
MdKNOX15 and MdKNOX19.
DISCUSSION

Identification of Apple KNOX Genes
We identified 22 MdKNOX genes in the apple genome, which is
greater than the number of KNOX genes identified in
Arabidopsis and rice, and may reflect that the apple genome
(881 Mb) is larger than those of rice (466 Mb) and Arabidopsis
(12 Mb). The identified MdKNOX genes were unevenly
distributed on 12 of the 17 apple chromosomes (Table 1).

Multiple sequence alignment showed that the majority of
MdKNOX proteins contained a series of conserved domains:
KNOXI, KNOXII, ELK, and HOX domains (Figure 1). The
HOX domain is located in the C-terminal portion of the protein
and is involved in DNA binding and possibly in homodimer
formation (Scofield and Murray, 2006). The ELK domain is
located adjacent to the HD domain, spans about 21 amino acids,
and is composed of a conserved series of Glu (E), Leu (L), and
Lys (K) amino acids. The ELK domain may function as a nuclear
localization signal and also is considered to be involved in
transcriptional repression, but the precise role of this domain
has not been determined (Kerstetter et al., 1994; Sakamoto et al.,
1999; Nagasaki et al., 2001). The KNOXI and KNOXII domains
are located in the N-terminal half of the protein. KNOXI plays a
role in suppressing target gene expression and KNOXII is
considered to be necessary for homodimerization (Nagasaki
et al., 2001) and transactivation (Scofield and Murray, 2006).

Phylogenesis, Evolution, and Expansion
of MdKNOX Gene
An unrooted neighbor-joining tree was constructed from a
multiple alignment of the KNOX protein sequences from
apple, rice, and Arabidopsis to investigate evolutionary
relationships. The analysis separated the KNOX proteins into
three groups. MdKNOX1, MdKNOX2, KNOX5, MdKNOX9,
MdKNOX19, and MdKNOX20 were clustered with KNAT3,
KNAT4, KNAT5, and KNAT7, which belong to the Class II
group (Figure 3). The majority of MdKNOX genes were
clustered into the Class I group, which consisted of four
subfami l i e s . MdKNOX7, MdKNOX8, MdKNOX14,
MdKNOX17, and MdKNOX18 lost the ELK and HOX
domains, which clustered in the Class KNATM (Figure1 and
3). KNOX genes with similar functions and structural motifs
showed a tendency to cluster in the same subgroup, which
provided a foundation to explore the functions of each
MdKNOX gene.

Previous research has shown that gene duplications are
important in the evolution of species. Genome-wide
duplication events occurred in apple about 60 million years
ago, resulting in expansion from nine to 17 chromosomes and
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diversification of some gene families (Velasco et al., 2010). A
number of apple gene duplications have been reported, such as
the CCOs (Chen et al., 2018), IDD (Fan et al., 2017a), and GASA
families (Fan et al., 2017b). In the present study, eight gene pairs
were tentatively identified as duplicated genes (Figure 4A). Gene
duplications and expansion resulted in MdKNOX gene clusters
and increased the diversification of MdKNOX gene structures
and functions.

Genomic comparisons with orthologous genes from well-
studied plant species may provide a valuable reference for newly
identified genes (Koonin, 2005). Thus, the functions of
MdKNOX were inferred by comparative genomic analyses with
the KNOX genes from Arabidopsis. Five orthologous gene pairs
between Arabidopsis and apple were identified (Figure 4B),
which suggested that the genes in question may share a
common ancestor their functions have been conserved during
evolution. Although many genetic prediction resources are
available, additional research is needed to determine the
specific function of each gene.

MdKNOX Gene Expression Profiles
and Potential Functions
Given the gene functional diversity, all members of the
MdKNOX gene family need to be further functionally
characterized. Analysis of tissue expression patterns of
MdKNOX genes may provide insights into their possible
functions. The majority of MdKNOX family members showed
high transcript levels in floral buds, whereas extremely low
transcript levels were detected in roots (Figure 5). We
observed some differences between the present results and
previous reports for other plant species that Class II KNOX
genes in angiosperms are expressed in differentiating organs,
including leaves, stems, flowers, and roots (Kerstetter et al.,
1994). On the other hand, according to the more accurate
KNAT3 promoter-driven GUS staining patterns, the Class II
KNOX gene KNAT3 is highly expressed in cotyledons, and apical
and floral tissues, and is moderately expressed in roots.
Moreover, light has a significant effect on the expression
profile of KNAT3 (Serikawa et al., 1997). Therefore, we
inferred that the developmental stage, sampling method, and
species specificity may affect the experimental results. Despite
these differences, detection of high transcript levels in floral buds
implied that the majority of genes (MdKNOX1/20, MdKNOX4/
12, MdKNOX6, MdKNOX7, MdKNOX8, MdKNOX10/22,
MdKNOX11, MdKNOX15, MdKNOX16, MdKNOX18, and
MdKNOX19) were involved in the regulation of flowering.

Insufficient production of flower buds is an intractable
problem in the apple industry. The physiological differentiation
of apple flower buds is essential for flowering and fruiting.
Therefore, we analyzed the expression of the MdKNOX genes
that were highly expressed in floral buds during the flower
induction period (floral bud physiological differentiation, at
DAFB30, DAFB50, and DAFB70). The genes were highly
induced at 50 DAFB (Figure 6), suggesting that these genes
may play an active role in floral induction. Several
February 2020 | Volume 11 | Article 128

https://www.frontiersin.org/journals/plant-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


Jia et al. Identification and Expression of MdKNOX Gene
phytohormone-associated cis-element motifs were predicted
within the MdKNOX promoters (Figure 9). In addition, we
analyzed the expression profiles under different hormone
treatments. The exogenous plant hormone 6-BA promotes
flower bud formation (Li et al., 2019), whereas GA3 reduces
flowering rates in apple (Zhang et al., 2016). MdKNOX1/20
showed identical expression patterns in response to 6-BA and
GA3 treatments. The transcription ofMdKNOX1/20 was strongly
induced by both 6-BA and GA3 at DAFB30 and DAFB70, but
was inhibited at DAFB50. MdKNOX4/12 showed a similar
expression pattern to that of MdKNOX1/20 in response to 6-
BA treatment. Treatment with 6-BA also increased the transcript
levels of MdKNOX4/12, MdKNOX7, MdKNOX8, MdKNOX10/
22, and MdKNOX18 in the initial stage of flower induction
(DAFB30), whereas transcription of the genes was suppressed
at the intermediate stage of flower induction (DAFB50). Only
MdKNOX11 was down-regulated by 6-BA (in the early and late
sampling stages), but was induced at 50 DAFB. With regard to
MdKNOX15, MdKNOX16, and MdKNOX19, 6-BA treatment
affected their expression at 30 DAFB, and each gene was
suppressed at 50 DAFB by 6-BA. This finding is similar to
previously reported results, for example, KNAT3 transcript levels
are decreased in response to exposure to kinetin (Truernit et al.,
2006). These results implied thatMdKNOX genes were regulated
by 6-BA and might also regulate the 6-BA hormone signal. All
MdKNOX genes did not show a significant difference in
transcript level at DAFB30 in response to GA3 treatment,
which is consistent with a previous report that GA does not
influence KNAT promoter activity (Truernit et al., 2006). The
transcription of MdKNOX1/20, MdKNOX4/12, MdKNOX7,
MdKNOX8, MdKNOX10/22, MdKNOX15, MdKNOX16,
MdKNOX18, and MdKNOX19 was inhibited at DAFB50
(Figure 7). These results suggested that GA3 inhibited floral
induction in apple, which might be partly achieved by inhibiting
the expression of MdKNOX genes. Environmental factors, such
as drought (which is common on the Loess Plateau), stimulates
ABA accumulation and triggers an early flowering response
(Verslues and Juenger, 2011). Only MdKNOX4/12, MdKNOX7,
MdKNOX10/22, and MdKNOX15 were induced by exogenous
ABA treatment. This was especially the case for MdKNOX4/12,
for which the transcript level increased over time in response to
ABA treatment. Exogenous SA treatment induces accumulation
of SA and accelerates the transition to flowering (MartãNez et al.,
2004). MdKNOX18 was induced by exogenous SA at 30 DAFB,
whereas all other MdKNOX genes were not affected. The
transcript levels of MdKNOX15 and MdKNOX19 were
significantly suppressed at the intermediate stage of flower
induction (50 DAFB) (Figure 8).
MdKNOX Gene Under the Transcriptional
Regulation of MdGRF
KNOX gene expression is regulated at multiple levels to prevent
misexpression. Several regulators of KNOX gene expression have
been identified, including MYB domain transcription factors
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(Waites et al., 1998), ASYMETRIC LEAVES1 (AS1) (Byrne
et al., 2002), CUP-SHAPED COTYLEDON (CUC) (Hibara
et al., 2003), and GROWTH-REGULATING FACTOR (GRF)
(Kuijt et al., 2014), YABBY (Kumaran et al., 2002), and FIE
and CLF (Katz et al., 2004). The plant-specific GRF transcription
factors, which are negative regulators of KNOX genes, were
identified for their roles in developmental processes, including
root, stem, and leaf development, flower and seed formation, and
coordination of growth processes under adverse environmental
conditions (Omidbakhshfard et al., 2015). The MdGRF genes in
the apple genome were identified in previous work in our
laboratory (Zheng et al . , 2018) . The MdGRF gene
(MD00G1142400) used in the present research was
homologous to Arabidopsis AtGRF5 (full-length sequence
identity was 30%, and the characteristic WRC and QLQ
domains were highly conserved), and showed a negative
correlation with MdKNOX15 and MdKNOX19 at the transcript
level in transcriptome data (data not shown). Therefore, the
interaction between MdKNOX and MdGR was evaluated in the
current study. As a transcriptional regulator, MdGRF protein
could direct localization of the GFP marker protein to the
nucleus (Supplementary Figure 2). As shown in Figure 10,
the promoter regions ofMdKNOX15 andMdKNOX19 contained
the putative GRF binding sites, core ‘CAG' repeats or its reverse
complementary sequence ‘CTG' (Kuijt et al., 2014). Therefore,
MdKNOX15 and MdKNOX19 were chosen to detect the
interaction. MdGRF protein interacted with the MdKNOX15
and MdKNOX19 promoter in yeast. In rice, KNOX gene
expression is down-regulated by GRF overexpression and is
up-regulated by RNA interference (RNAi)-mediated GRF
silencing. In the present study, the promoter activities of
MdKNOX15 and MdKNOX19 were inhibited by MdGRF
(Figure 11). Taken together, these results suggest that GRF–
KNOX interactions might be conserved both in herbaceous and
woody plants.
CONCLUSION

Twenty-two KNOX genes were identified in the apple (M.
domestica) genome. The MdKNOX members were divided into
three subfamilies based on their phylogenetic relationships.
Duplications have likely been important for the expansion and
evolution of MdKNOX genes. The majority of MdKNOX genes
exhibit strongly preferential expression in floral buds and are
significantly up-regulated during the flower induction period,
implying that they perform specific roles in floral induction.
Furthermore, most MdKNOX genes are responsive to flowering-
related and stress-related hormone treatments, suggesting that
the genes are involved in flowering and stress response processes.
The putative upstream regulatory factor MdGRF is able to bind
directly to the promoter of MdKNOX15 and MdKNOX19, and
inhibits their transcriptional activities, as confirmed by Y1H and
dual-luciferase assays. To our knowledge, this study is the first
systematic and in-depth analysis of apple KNOX genes. The data
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provide useful information for future functional characterization
of apple KNOX genes.
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