
Frontiers in Plant Science | www.frontiersin

Edited by:
Poul Erik Jensen,

University of Copenhagen, Denmark

Reviewed by:
Randy V. Lewis,

Utah State University, United States
John George Hardy,

Lancaster University, United Kingdom

*Correspondence:
Congyue Annie Peng

congyup@clemson.edu
William R. Marcotte Jr

marcotw@clemson.edu

Specialty section:
This article was submitted to

Plant Biotechnology,
a section of the journal

Frontiers in Plant Science

Received: 16 November 2019
Accepted: 27 January 2020

Published: 25 February 2020

Citation:
Peng CA, Kozubowski L and Marcotte

WR Jr (2020) Advances in Plant-
Derived Scaffold Proteins.
Front. Plant Sci. 11:122.

doi: 10.3389/fpls.2020.00122

REVIEW
published: 25 February 2020
doi: 10.3389/fpls.2020.00122
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Scaffold proteins form critical biomatrices that support cell adhesion and proliferation for
regenerative medicine and drug screening. The increasing demand for such applications
urges solutions for cost effective and sustainable supplies of hypoallergenic and
biocompatible scaffold proteins. Here, we summarize recent efforts in obtaining plant-
derived biosynthetic spider silk analogue and the extracellular matrix protein, collagen.
Both proteins are composed of a large number of tandem block repeats, which makes
production in bacterial hosts challenging. Furthermore, post-translational modification of
collagen is essential for its function which requires co-transformation of multiple copies of
human prolyl 4-hydroxylase. We discuss our perspectives on how the GAANTRY system
could potentially assist the production of native-sized spider dragline silk proteins and
prolyl hydroxylated collagen. The potential of recombinant scaffold proteins in drug
delivery and drug discovery is also addressed.

Keywords: spider silk, collagen, elastin, scaffold, regenerative medicine, extracellular matrix
INTRODUCTION

Scaffold proteins, synthetic or natural, provide promising innovative solutions to regenerative
medicine (Lavine et al., 2012; Bourzac, 2015; Gould, 2015). A broad range of functional proteins
with superb biocompatibility and biodegradability such as helical collagen (Parry et al., 2005),
elastin (Mithieux and Weiss, 2005), silkworm silks (Dicko et al., 2006), and spider silks (Gosline
et al., 1999) are candidates for proteinaceous scaffold biomaterials. The source of proteins to be
processed to biomaterial scaffolds is often limited, unsustainable, or sometimes carries the risks of
human pathogen contamination (Wong Po Foo and Kaplan, 2002). Recombinant production
systems, such as mammalian cells, insect cells, silkworms, yeast (Pichia pastoris), Escherichia coli,
and plants provide opportunities to produce scaffold proteins in full length or as representative
motifs. Recombinant production of scaffold proteins also allows the flexibility of engineering
variants or combinations of motifs that are difficult or impossible to obtain from natural sources.
Each system has gained some successes, but the intrinsic nature of the host systems and economic
feasibility are often a source of limitations.

Plant host systems demand less in energy input, chemical reagents, and contaminationmanagement
(Shoseyov et al., 2014). In theory, sustainable and cost-effective production of recombinant scaffold
proteins are feasible using plant hosts (Scheller and Conrad, 2005). Depending on the recombinant
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proteins, eukaryotic post-translational modifications can
presumably be achieved inside plant cells as the proteins mature
(Ruggiero et al., 2000). This review summarizes the advances and
challenges in plant host-derived scaffold proteins: spider silk
protein, collagen, elastin, and a bone matrix protein, with the
focus on fusion tags that facilitate protein accumulation in the
endoplasmic reticulum (ER) and subsequent protein purification.
Techniques with the potential to improve yield to meet the
requirement of economical application, methods allowing
efficient transformation of several genes or large repeat domains,
and the utilization of scaffold proteins for drug screening are
also discussed.
SPIDER SILK-BASED SCAFFOLD
PROTEIN PRODUCED FROM PLANTS

Major Ampullate Spidroin Sequence,
Structure and Folding
Both spider silk and silkworm silks are superior materials for tissue
regeneration (Holland et al., 2019). The abundant availability of
silkworm silk extracted from silkworm cocoons permits its
extensive application in tissue engineering through materials
fabrication (Huang et al., 2018). Purification of silkworm silks
requires a degumming process to remove sericin, a protein
component in the silkworm cocoon and the outer layer of the
silkworm silks that stimulates immune response (Altman et al.,
2003). Spiderdragline silk, the life-lineof anorb-weaving spider, has
impressive mechanical strength and toughness, which makes it a
potential candidate for applications such as bone regeneration
(Gosline et al., 1999; Gomes et al., 2011; Andersson et al., 2016;
Lee M. et al., 2016). In addition, spider silk propagates light as an
opticalfiber (Hubyet al., 2013).Although the cannibalistic nature of
Frontiers in Plant Science | www.frontiersin.org 2
spiders precludes the possibility of farming (Nentwig, 2013),
recombinant production of spider silk proteins provides
alternatives to obtain spider silk-like proteins. Recombinant
production also allows generation of biomaterials in a diverse
range of forms, such as hydrogels, films, coatings, meshes, and
nanoscale particles and tubes.

Major Ampullate Spidroin Types
Two major spidron proteins were identified from Nephila clavipes
spider dragline silk, namely major ampullate spidroins 1 and 2
(MaSp1, MaSp2). Each protein contains conserved tandem block
repeats and theflankingnon-repetitiveN-andC- terminaldomains
that are conserved in all orb-weaving spiders (Xu and Lewis, 1990;
Hinman et al., 1992, Figure 1). The predicted 3.45 Gb genome of
N. clavipes encodes eight potential MaSps, ranging in sizes from
~100 toover3,000 aminoacidswithmotifsmapped to theoriginally
discovered MaSps. To differentiate MaSps discovered from the
genome assembly, the new nomenclature set of MaSp-a through
MaSp-h is used (Babb et al., 2017). Studies prior to the genome
assembly have used the previous nomenclature:MaSp1 andMaSp2.
MaSps are diverse but some motifs are conserved among arachnid
species (Gatesy et al., 2001). Proteotranscriptomic study of the
N. clavipesmajor ampullate gland detected transcripts and protein
products of the two primary spidroins: MaSp1 and MaSp2.
Importantly, proteins involved in ion transport, folding and
conformation regulation, post-translational modification, and
fibrillar preservation and protection were simultaneously
detected, indicating the complexity of spidroin production and
the following transition into solid fibers (Santos-Pinto et al., 2019).
Despite similar domain structures, the isoelectric point of the two
spidroins differs. Isoelectric focusing analysis indicate the pI of
MaSp1 is above 8.5 and the pI of MaSp2 is between 5.1 and 5.9
(Sponner et al., 2005a).
FIGURE 1 | Schematic representation of Nephila clavipes major ampullate spidroin domains (A) and the fiber assembly model in major ampullate spinning duct (B).
The colored blocks represent repeat blocks with the color variation indicating the glycine-rich motif and the poly-alanine motif. Along the tapered spinning duct, with
the increase of shear force and the decrease of pH, N. clavipes major ampullate spidroins transit from the liquid unfolded state into oligomeric state through the
dimerization of N-terminus and the facilitation of C-terminus. The oligomeric state ultimately transitions into a two-phased state, which is comprised of unordered
amorphous regions and ordered b-sheet crystalline regions.
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Major Ampullate Spidroin Repeat Domain
The tandem block repeat domains of MaSp1 and MaSp2 differ
slightly from each other but can be generalized into the following
consensus sequences (Hayashi et al., 1999):

MaSp1: (GGA) GQ (GGY) (GGL) (GGQ) GAGR (GGL) (GGQ)
(GA)2 (A)3

MaSp2: (GPGGY) (GPGQQ) (GPGGY) (GPGQQ) GPSGPS (A)9

The ~100 block repeats cover about 95% of each protein
sequence. The main difference between MaSp1 and MaSp2 is
that MaSp1 repeat region is essentially devoid of proline. Proline
is believed to contribute to the major structural and mechanical
difference between MaSp1 and MaSp2 (Marhabaie et al., 2014).
The proline kink in the polypeptide backbone causes a reduction
in hydrogen bond donor capacity and adversely affects b-sheet
extension of the poly alanine residues.

Major Ampullate Spidroin C-Terminal Domain (CTD)
The short non-repetitive C-termini of MaSp1 and MaSp2 share
75% identity (Beckwitt and Arcidiacono, 1994). Three conserved
sites were identified between N. clavipes MaSp and minor
ampullate spidroin (MiSp) CTDs (Collin et al., 2018). The
CTD folds into five parallel helices and forms a homodimer
stabilized through a disulfide bond between conserved cysteine
residues and two salt bridges (Hagn et al., 2010). In vitro
experiments show that recombinant CTDs attached to the
repeat domain lead to faster aggregation of the repeat domain
and are more susceptible to buffer-induced fibril assembly
(Huemmerich et al., 2004a; Huemmerich et al., 2004b; Sponner
et al., 2005b; Hedhammar et al., 2008). The CTD reinforces
protein alignment, exposes its hydrophobic region to attract CO2

for binding, and facilitates b-amyloid like nucleation (Ittah et al.,
2006; Eisoldt et al., 2010; Andersson et al., 2014).

Major Ampullate Spidroin N-Terminal Domain (NTD)
The non-repetitive, hydrophilic NTD is conserved among species,
within different types of spider silk proteins (dragline, flagelliform,
and cylindriform silk), and amongwaxmoth and silkworm fibroins
(Bini et al., 2004; Motriuk-Smith et al., 2005; Rising et al., 2006;
Collin et al., 2018). In spundragline silk, theNTDcanbedetected in
both inner and outer core regions (Andersson et al., 2013),
indicating it is not being cleaved in the process of fiber assembly.
MaSp1 NTD is composed of five anti-parallel a-helices, forms
thermally stable homodimers at pH 6, and restricts CO2 binding
(Askarieh et al., 2010; Hagn et al., 2011; Andersson et al., 2014).
Asymmetric interaction of amino acid residues and salt bridge
formation isdetectedand isbelieved to contribute to theplasticityof
the N. clavipes NTD (Atkison et al., 2016). Folding at the area
surrounding a conserved tryptophan residue in the stable NTD
homodimer compels the downstream repeat domains to initiate b-
sheet orientation (Askarieh et al., 2010; Gaines et al., 2010). NTD
motifs, essential for folding and response to acidic pH, are
structurally homologous between species (Heiby et al., 2017). The
dipole-dipole interaction of NTD monomers at acidic pH may
reduce the free energy barrier required to initiate dimer association
Frontiers in Plant Science | www.frontiersin.org 3
and become the driving force for fiber assembly (Ries et al., 2014:
Barroso da Silva et al., 2016).

Major Ampullate Spidroin Post-Translational
Modification (PTM)
Major ampullate spidroins obtained from dragline silk fibers and
gland extractions contain post-translational modifications, such
as tyrosine or serine phosphorylation (Michal et al., 1996). L-
Dopa (3,4-dihydroxyphenylalanine) and dityrosine are detected
from hydrolyzed major dragline silk solutions, but it is not clear
if this result may be the result of tyrosine oxidation during
sample preparation or the exposure of fibers post-spinning to uv
radiation (Santos-Pinto et al., 2014). Phosphorylation sites found
in MaSp1 isoforms A and B reside almost exclusively in the GGX
region of the repeat domain (Santos-Pinto et al., 2015). For
MaSp2, phosphorylation sites are found both in the repeat
domain and C-terminus. The phosphorylation sites of MaSp2
repeat domain reside at identical positions within each repeat
domain (Santos-Pinto et al., 2016). The reason why only certain
locations in the repeat domain are phosphorylated is unknown.
We speculate that these special locations may reflect the inter-
and intra-molecular interaction in the 3D structure after protein
folding, through which a hierarchical network can be formed and
eventually lead to the fiber assembly.

N. plumipes dragline silk displays an arginine hydrogen
bonding with the amorphous regions, and hydroxyproline is
detected through Dynamic Nuclear Polarization (DNP) NMR
spectroscopy (Craig et al., 2019). Peptide glycosylation is
detected in the solubilized dragline silk of N. clavipes, although
the oligosaccharide molecule is still unknown (Guehrs et al.,
2008). While PTM may play a critical role in fiber assembly, the
mechanisms of PTM of spidroins in spider ampullate gland are
poorly understood. The recent proteomic data of the gland may
shed some light on the mechanism involved in PTM of spidroins
(Santos-Pinto et al., 2019).

Molecular Basis of Major Ampullate Spidroin
Biomaterials Assembly
The transition from liquid crystalline folding of spidroins to solid
fibers in the spider duct is a complex process that is far from
being understood (Vollrath, 2016). The current model on
spidroin fiber assembly is shown in Figure 1. Progress has
been made to capture the fiber assembly initiator structures
such as transient oligomers (Landreh et al., 2017) or oligomeric
micelles (Bauer and Scheibel, 2017), providing evidence that fiber
assembly may involve formation of initial “seed” scaffolds for
further nucleation of additional spidroins. The transition
requires 300–700 MPa shear force and at least 6 poly alanine
modules (Giesa et al., 2016). In the solid fiber state, 40% of
alanine forms oriented b-sheet stacked crystallites and about
60% of alanine folds into poorly oriented b-sheet (Simmons
et al., 1996; Ene et al., 2009). The ordered and amorphous regions
provide the molecular basis that allows physical strength and
extensibility in one fiber (Patil et al., 2014; Xu et al., 2014). This
two-phased structural arrangement also contributes to phonon
propagation bandgap along the fiber axis (Schneider et al., 2016).
February 2020 | Volume 11 | Article 122
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Plant-Derived Spidroins
Recombinant spidroin analogs have provided useful testing
materials for in vitro assessment of issues such as protein
solubility and/or premature aggregation, translational pause,
and post-translational modification. Host system selection,
however, impacts the quality and quantity of the recombinant
protein production. Each host system offers promising
possibilities but possesses also some limitations.

To attain the desiredmechanical properties, recombinantmajor
ampullate spidroin proteins (rMaSp1 and rMaSp2) are expected to
contain large numbers of repeat domains, ideally equivalent to the
native protein (~100 repeat domains) and produce a large protein
with molecular weight greater than 300 kDa. Engineering ~100
repeat domains is a challenge for cloning, protein solubility during
purification, and host transcriptional regulation (Guerette et al.,
1996; Lewis et al., 1996; Fukushima, 1998; Xia et al., 2010;
Hauptmann et al., 2013). The frequent demand for alanine and
glycine depletes the correspondent tRNA pools quickly and causes
translational pause (Candelas et al., 1990). With the advances in
function elucidation of the non-repetitive terminal domains, many
efforts are devoted to incorporation of native N- and C-termini in
recombinant spidroins to enhance solubility, protein alignment,
and fibril assembly (Ittah et al., 2006; Barroso da Silva et al., 2016).
Efforts to functionalize rMaSp-based biomaterials to have desired
property include additives or linkers that recognize cell binding site,
or are targeted to the affinity binding domains (Bini et al., 2006;
Widhe et al., 2013; Jansson et al., 2014) that improve physical
properties (Teulé et al., 2012), and that control tertiary structures
through phosphorylation and dephosphorylation (Winkler
et al., 2000).

Although not specifically discussed in the literature, other
potential challenges may include: 1. the accumulation of
negatively charged rMaSp1 that may cause toxicity to the host
cell, 2. the post-translational modification system in the host may
not match that of the spiders, 3. lack of economic feasibility to
obtain a desired yield of rMaSp, 4. challenges with optimization
of the process of fiber assembly and biomaterials development.

Non-plant hosts that have been used to produce major
ampullate spidroins include E. coli and Salmonella (Lewis et al.,
1996;Arcidiaconoet al., 1998;Widmaier et al., 2009; Xia et al., 2010;
Edlund et al., 2018), yeast Pichia (Fahnestock and Bedzyk, 1997;
Gaines and Marcotte, 2011; Liu et al., 2018), protozoa Leishmania
(Lyda et al., 2017), mammalian cell lines (Lazaris et al., 2002),
silkworm transformed with fusion protein or CRISPR/Cas9 site
specific exchange (Miao et al., 2006; Teulé et al., 2011; Zhang et al.,
2019), and mice or goats (Service, 2002; Xu et al., 2007). Here we
focus on the efforts and strategies of recombinant spidroin
production from plants.

Targeted Recombinant Spidroin Accumulation
Recombinant production localized at the endoplasmic reticulum
(ER), using the ER retention signal KDEL at the C-terminus, can
improve the yield of recombinant proteins as evidenced by the
results summarized in Figure 2. Thermally stable MaSp1 repeat
domain analogs (up to 100 kDa) with a C-terminal KDEL ER
retention signal accumulatedup to2%of total soluble protein (TSP)
in tobacco and potato leaf (Scheller et al., 2001), which
Frontiers in Plant Science | www.frontiersin.org 4
demonstrated for the first time that rMaSp can be produced from
plant host. The yield of rMaSp targeted to ER is four times higher as
compared to the MaSp1 analogs 1f5 and 1f9 (fusion protein with a
tetramer or octamer of the repeat domain) that accumulated in
tobacco leaf without an ER target signal (0.5% of TSP) (Piruzian
et al., 2003).MaSp2 andMaSp1/MaSp2 analog rADF-3 (containing
the repeat motifs ASAAAAAA, GPGGQGPYGPG, GGYGPGS,
and (GPGQQ)n) were also targeted to the ER (using KDEL) and
produced in tobacco leaves (Menassa et al., 2004). The maximum
production yield for ER-directed MaSp1 and MaSp2 analogs were
0.68 and3.05mg/kg fresh leaf tissue, respectively.Theproductionof
spidroin-like proteins was successfully retained when stably-
transformed tobacco plants were transferred into the fields.

MaSp1 synthetic analogues (8 or 16 copies of DP1B monomer
sequence GQGGYGGLGSQGAGRGGLGGQGAGA7GGA) were
transformed into Arabidopsis using the cauliflower mosaic virus
(CaMV) 35S promoter for leaf expression and the b-conglycine
a' subunit promoter for Arabidopsis seed and somatic soybean
embryo expression. Although Arabidopsis seeds showed better
recombinant spidroin recovery, soybean embryos produced
lesser amounts of the 127 kDa DP1B 16-mer (Barr et al.,
2004), indicating that the length of the recombinant spidroin
repeat domain affects tissue specific production yield. Yang and
colleagues compared the yield of the same synthetic MaSp1
analogs targeted to apoplast, ER lumen, and vacuole in
Arabidopsis leaf or seeds using sporamin-targeting determinant
peptides and the ER retention KDEL peptide. Transgenic plants
with seed-specific ER targeting constructs produced the highest
amount of recombinant spidroins (18% TSP) (Yang et al., 2005).

Spidroin Mimics Design
The sequences of the rMaSp in the aforementioned efforts are
derived from MaSp repeat domains. The importance of non-
repetitive domains at the N-, and C-terminus in spidroin
solubility and fiber assembly has propelled the inclusion of the
terminal domains in synthetic constructs (Huemmerich et al.,
2004a; Ittah et al., 2006; Hagn et al., 2011). In this context,
mimetic spidroins with native N- and C-terminal domains
flanking various numbers of consensus block repeat domains of
MaSp1 or MaSp2 were produced in tobacco leaves (Peng et al.,
2016). For MaSp1, constructs with 8 and 16 copies of repeat
domains with flanking terminal domains were detected from
tobacco leaf extracts and the yield for rMaSp1R8 (8 copies of
repeats) was 0.7% TSP. For MaSp2, 8, 16, and 32 copies of the
repeat domains with flanking terminal domains were detected, and
the yield of rMaSp2R8 (8 copies of repeats) was 2% TSP. Each
rMaSp was represented as an intact full-length protein from the
crude leaf extracts despite some autonomous removal of the C-
terminal intein tag of rMaSp2. The N- and C-terminal domains
substantially increased the solubility of the rMaSp and allowed
retention of the concentrated rMaSp in a liquid state even after
freeze-drying (Peng et al., 2016).

Elastin-Like Polypeptide Tags That Facilitate Protein
Purification and Protein Body Formation
Fusing the MaSp1 repeat domain mimic protein with 100 copies
of VPGXG (X= G, V, or A) elastin-like polypeptide (ELP) tag led
February 2020 | Volume 11 | Article 122
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to a high yield (80 mg/kg leaf) when the fusion protein was
directed to the ER of tobacco and potato leaves (Scheller et al.,
2004). The solubility of ELPs is temperature-dependent and at
temperatures below the melting temperature rMaSp1-100xELP
fusion protein is insoluble and, therefore, isolable from other
soluble proteins through precipitation. Through an inverse
transition cycling to increase the temperature, the rMaSp1-
100xELP fusion can be reconstituted into the buffer (Meyer
and Chilkoti, 1999). ELP also induces protein bodies that
sheath the recombinant proteins, leading to increased
recombinant protein accumulation (Conley et al., 2009a).

Post-Translational Modification (PTM) and In Vitro
Modification
Plants, as eukaryotic hosts, can provide PTM as recombinant
proteins mature in vivo. However, the PTMs equivalent to those
described in silk glands have not been reported from spidroins
produced from plants. This may result from either the lack of
PTM analysis being performed or the PTM of plant-derived
spidroin is undetectable due to low efficiency of the equivalent
plant enzymes. With the variation of number of domains
designed and the sequence variation within domains, the PTM
patterns may be different from each study.

Plant hosts have been shown to process an N-terminal
precursor peptide, the legumin type B precursor signal peptide
(LeB4), fromMaSp1 repeat domain analogs produced in tobacco
leaves and potato leaves (Scheller et al., 2001).
Frontiers in Plant Science | www.frontiersin.org 5
Intein-mediated PTM has facilitated repeat domain elongation
and produced rMaSps with large numbers of repeat domains, some
reaching the size of native spidroins. A flagelliform (FLAG) spidron
flanked by intein self-splicing elements can be directed to the ER in
tobacco leaves. After translation, intein self-splicing, and end
joining, FLAG proteins of various sizes were produced
(Hauptmann et al., 2013). Synthetic FLAG spidroin sequence,
flanked by intein splicing elements and directed to the ER in
tobacco seeds, produced multimers of up to 450 kDa with an
estimated yield of 20–190 mg per kg seed (fresh weight). The
recombinant FLAG proteins produced in tobacco seeds are stable
at 15°C for one year (Weichert et al., 2016). Another example of in
vitro PTM is multimerization of rMaSp1-100x ELP fusion protein
tagged with lysine or glutamine by transglutaminase, which can
produce near native sized spidroin-like recombinant protein
(Weichert et al., 2014).

Plant-Derived Spidroin-Based Biomaterials
and Their Applications
Spidroin analogue-based materials are hypoallergenic, non-toxic,
non-hemolytic, and minimally induce inflammatory reactions
(Gomes et al., 2011; Dams-Kozlowska et al., 2013; Thurber et al.,
2015; Hauptmann et al., 2015; Kuhbier et al., 2017). Therefore,
their potential use in biomedical application is propitious and
emerging. To be applied biomedically, spidroin analogue-based
fibers, or materials can be autoclaved in water. The conformation
or cytotoxicity of the materials does not change by sterilization
FIGURE 2 | Schematic representation of the recombinant spidroin constructs introduced into a plant host system and the estimated yield. The colored squares represent
the designed recombinant repeat blocks. Color variation indicates repeat block sequence variation in each application. The NTD and CTD are represented as in Figure 1.
The elastin-like protein tag is shown as a blue helix and the ER retention signal is shown as a colored arrow. CaMV 35S, Cauliflower mosaic virus promoter; AMV, Alfalfa
mosaic virus translational enhancer; PR1b, tobacco secretory signal peptide PR1b; MMV, Mirabilis mosaic virus full length promoter; PCISV, Peanut chlorotic streak
caulimovirus full length promoter; USP, unknown seeds protein promoter; LeB4, LeB4 signal peptide; IntN, intein N-terminus; IntC, intein C-terminus.
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(Lucke et al., 2015). Spidroin analogue-based materials can also
be sterilized through ultra-violet radiation (Hafner et al., 2017),
although UV may reduce the strength of the fibers (Lai and Goh,
2015). Here, we describe biomaterial formation from plant-
derived spidroin mimics and their potentials in regenerative
medicine and other applications.

Regenerative Medicine
Coatings derived from rMaSp1(repeats)-100x ELP fusion protein
produced in tobacco leaves led to increased human chondrocyte
cell growth and cellular mass. The overall stimulatory effect was
equivalent to that observed with collagen coatings and twice as
much as the non-coated control plate (Scheller et al., 2004).
Collagen coating also induced long fibroblastoid morphology,
which is disfavored in chondrocyte culturing. On rMaSp1-100x
ELP coating, however, the chondrocyte cells are round-shaped
similar to cells found in vivo. Coatings of similar rMaSp1
(repeats)-100x ELP fusion protein produced from tobacco
leaves formed polymer films. Coatings of these proteins
significantly stimulated murine embryonic fibroblast cells after
24 hours of incubation, an indication of cell proliferation
(Hauptmann et al., 2015). In addition, hydrogels made from
tobacco-derived rMaSp1R8 (N- and C-termini flanking eight
copies of repeats) and rMaSp2R8 (N- and C-termini flanking 8
copies of repeats) promoted human dental pulp stem cell
attachment and proliferation (Hafner et al., 2017).

Diabetes
Recombinant spidroin-like proteins are stable under normal seed
storage conditions (Weichert et al., 2016). An economic
advantage of transgenic crop seeds producing recombinant
protein for medicinal usage is that subjects can be fed directly
thereby bypassing cumbersome protein purification. Transgenic
rice producing Araneus ventricosus MaSp repeats and C-
terminus was used to feed diabetic BKS.Cg-m+/+Leprdb mice.
The transgenic rMaSp-producing rice lowered the blood glucose
of the diabetic mice. While the mechanism(s) by which A.
ventricosus rMaSp lowers blood glucose in this animal model is
in question, the study reports differences in cellular localization
of receptor substrate 1 (IRS1), six-transmembrane protein of
prostate 2 (STAMP2), and adenosine monophosphate-activated
protein kinase (AMPK) (Park et al., 2019).
COLLAGEN-BASED SCAFFOLD PROTEINS
PRODUCED FROM PLANTS

Collagen Sequence, Structure, and Folding
Collagen is a primary extracellular matrix scaffold protein of many
tissues including connective tissues, basement membrane, skin,
vascular tissue, brain, and spinal cord (Miller and Gay, 1982).
Collagen biosynthesis is initiated from its precursor protein,
procollagen. Variation in sequence, chain length, and chain
combination leads to 29 different human collagen molecules
(Sorushanova et al., 2019). Post-translational modification of
procollagen chain includes lysyl and prolyl hydroxylation by lysyl
Frontiers in Plant Science | www.frontiersin.org 6
hydroxylase (LH) and prolyl 4-hydroxylase (P4H) (Hutton et al.,
1967; Kivirikko et al., 1992; Myllyharju, 2003). The collagenous
region of the procollagen chain is essentially composed of repetitive
motif, Gly-Xaa-Yaa, where Xaa is proline and Yaa is
hydroxyproline. The procollagen molecule has flanking non-
collagenous N- and C-terminal propeptides, which play critical
roles in chain registration andhelix formation through a zipper-like
propagation starting from the C-propeptide trimerization of
disulfide bond (Figure 3; Kirk et al., 1987; Engel and
Prockop, 1991).

Three collagen monomer chains assemble into a triple alpha
helical fibril, as a homotrimer or a heterotrimer (Brodsky and
Ramshaw,1997).TheflankingN-andC-propeptidesare cleavedby
the procollagen N- and C-proteinases and the newly formed N- C-
terminus are denoted as the N- and C-telopeptides. The resulting
tropocollagen self-assembles into collagen microfibrils through
cross l inking events mediated by lysyl oxidase and
transglutaminase or through non-enzymatic glycation (Koide and
Nagata, 2005). The collagen microfibrils assemble into collagen
fiber with a characteristic D-periodic striation structure (Shoulders
and Raines, 2009). Hydroxyproline composition of a non-
recombinant human type I collagen homotrimer is 10.8%, and
10.3% for non-recombinant human type I collagen heterotrimer
(Nokelainen et al., 2001). Hydroxyproline is critical for triple helix
stability (Kotch et al., 2008).

Plant-Derived Collagen
Although collagen is ubiquitously present in Animalia, the
amino acid sequences and the physical properties vary among
species (Stover and Verrelli, 2010). Collagen can be obtained
from animal tissues, such as bovine, fish, or mouse but collagen
from animal sources causes allergic reaction and sometimes may
contain pathogen contamination (Mullins et al., 1996).

Recombinant collagen has been produced in the yeast Pichia
pastoris (Nokelainen et al., 2001; Olsen et al., 2005), Saccharomyces
cerevisiae (Toman et al., 2000), mammalian cells (Geddis and
Prockop, 1993; Fukuda et al., 1997; Frischholz et al., 1998),
mammals (mouse, John et al., 1999), and silkworm (Tomita et al.,
2003) with some success but yield is often limited and/or the
recombinant proteins lack post-translational prolyl and lysyl
hydroxylation. Although plant hosts produce an indigenous
prolyl 4-hydroxylase (P4H), its specificity and affinity to collagen
Xaa-Yaa-Glymotif are different than the animal P4H (Tanaka et al.,
1981; Hieta and Myllyharju, 2002). For stable triple helix assembly
of plant-derived collagen, co-transformation of human P4H
is required.

ER-Targeted Recombinant Collagen Accumulation
A fusion construct of a human procollagen chain helical region,
with flanking N- and C-telopeptide, the bacteriophage T4 fibritin
foldon (a fusion polypeptide that is expected to facilitate helix
assembly), and an ER-targeting signal, collectively called hCIa1,
was transformed into barley. The stably transformed barley cells
produced an ~130 kDa unprolylhydroxylated peptide (rhCIa1) up
to 0.136 mg/kg (fresh weight). The rhCIa1, however, was unstable
with a low melting temperature and no PTM phosphorylation was
detected (Figure 4; Ritala et al., 2008). ER-targeted full-length
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FIGURE 3 | Schematic representation of pre-procollagen structure and the formation of tropocollagen. Pre-procollagen is translated and post-translationally
modified by various enzymes including the prolyl hydroxylase and lysyl hydroxylase. The mature procollagen initiates triple helix formation through C-propeptide
alignment and disulfide bond formation and twists along the helix motifs reach the N-propeptide. Several triple helix chains clusters align with each other and the
N- and C- propeptide are cleaved by the N- and C- proteinase, either intracellularly or extracellularly, resulting in newly formed N- and C-termini, named N- and
C-telopeptide. This tropocollagen helix stacks and packs into staggered collagen fibrils and alternately forms collagen fibers through multiple crosslinking reactions.
FIGURE 4 | Schematic representation of the recombinant collagen constructs introduced into a plant host system and the estimated yield. The blue helix represents
the designed recombinant collagen helix block, the N- and C- propeptide is represented by green and orange rectangles. The N- and C- telopeptide is represented
with grey and black rectangles. The NTD and CTD are represented as in Figure 1. The foldon sequence is represented by a purple hairpin shape and a green arrow
represents the ER-retention signal. GluB1, rice glutelin B1 promoter; a-amy, barley a -amylase fusion promoter 46 /4-6; BAAAS, Barley a -amylase signal sequence;
Ubi-I, maize ubiquitin promoter and first intron; SS, Arabidopsis basic chitinase signal sequence; ϵ, the 5'UTR of Cocksfoot mottle virus; Pg1b, maize embryo
specific globulin-1 promoter; PGNpr2, embryo-specific maize globulin-1 promoter; L3, L3 promoter.
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rhCIa1 chain helical region,withflankingN- andC-telopeptides, is
barely detectable in transgenic barley seeds (Eskelin et al., 2009).
However, a 45 kDa abbreviated proa1(I) chain helical region, with
flanking N- and C-telopeptides, can be produced in barley seeds.
When expressed under the rice glutelin B1 promoter, the 45 kDa
rhCIa1 accumulated to 140 mg/kg in T1 seeds, whereas the barley
a-amylase fusion promoter 46/4-6 only directed expression of 2
mg/kg in T1 seeds. Doubled haploid (DH) progeny were generated
and the 45-kDa rhCIa1production achieved from the bestDH lines
was 13mg/kg dry seeds under the ubiquitin promoter and 45mg/kg
dry seeds under the glutelin promoter. Purified 45 kDa
rhCIa1displayed only low levels of hydroxylated proline (2.8%,
Eskelin et al., 2009).

Full-length proa1(I) chain, with the flanking N- and C-
telopeptides and foldon, has also been produced in transgenic
corn seeds after Agrobacterium-mediated transformation into
corn immature embryos. The rhCIa1 yield is estimated to be
0.04% of TSP, with a low prolylhydroxylation rate (1.23%) and
low melting temperature (26-27°C). A portion of the rhCIa1 is
able to form triple alpha helices. Sequencing revealed that the N-
terminal telopeptide had been removed but it remains unknown
whether the removal occurred during in vivo protein maturation
or during the protein purification steps (Zhang et al., 2009a).
Protein purification optimization using this low yield rhCIa1-
producing corn seeds was assessed after spiking with Pichia-
produced proa1(I) chain with or without foldon. A combination
of high purity without too much compromise on yield is
achieved when the foldon is cleaved after the fusion protein is
precipitated from the crude extract (Setina et al., 2015). While
there is no difference in the rhCIa1 recovered from dry milling
or wet milling of the transgenic corn seeds, dry milling may be
preferred for practical reasons at the farm (Zhang et al., 2009b).

Collagen Mimics Design
Recombinant human procollagen proa1(I) chain (~120 kDa)
with the flanking N- and C-terminal telopeptides plus
propeptides, or the C-terminal telopeptide plus propeptide
alone have been stably transformed into tobacco. Absence of
the N-terminal propeptide led to production of truncated
rhCIa1 protein of various lengths indicating it is required to
maintain the integrity of full-length rhCIa1 during translation
and protein extraction. Interestingly, the N-terminal propeptide
of rhCIa1 was intact in plantlet extracts but removed from
rhCIa1 found in mature tobacco leaf extracts. The C-terminal
propeptide forms a disulfide bond in the precursor protein but
C-terminal propeptides are cleaved both in plantlets and mature
plants. The rhCIa1 is minimally prolylhydroxylated and
unstable. However, alpha helices are formed and can be
detected through circular dichroism spectra. Triple helix chain
assembly may be facilitated by protein disulfide isomerase
(Ruggiero et al., 2000). The above tobacco leaf-derived
unhydroxylated collagen I (without N-terminal telopeptides)
was used to determine the function of hydroxyproline in
collagen folding and fibril formation. Hydroxyproline stabilizes
the triple helix chain and assists a faster reassembly after
denaturation. Unprolylhydroxylated collagen adopts more
flexible conformation as compared to prolylhydroxylated
Frontiers in Plant Science | www.frontiersin.org 8
collagen under the same temperature. Unprolylhydroxylated
collagen fails to form the D-periodic striation in the fibrils at
physiological ionic strength conditions but can form the D-
periodic striation at lower ionic strength (Perret et al., 2001).

Post-Translational Modification (PTM) and In Vitro
Modification
Human procollagen proa1(I) chain (with N- and C- telopeptides
but without N- propeptide) has been produced in tobacco leaves
through transient or stable transformation along with a chimeric
proline-4-hydroxylase (P4H) consisting of a Caenorhabditis
elegans a subunit and mouse P4H b subunit. Stable co-
expression in this system yielded approximately 0.14-20 mg
rhCIa1 per kg of leaf and 8.41% prolylhydroxylation.
Transient co-expression led to 0.5–1 mg rhCIa1 per kg of leaf
material and 6.84% prolylhydroxylation. The helical structure
was assembled and the melting temperature (37°C) agreed with
the level of prolylhydroxylation (Merle et al., 2002).

Transgenic plants containing human procollagen proa1(I)
and proa2(I) chains constructs targeted to the vacuole, apoplast,
or untargeted were obtained through co-transformation into
tobacco. Only plants directing vacuole-targeted procollagen
expression produced suitable protein products. An additional
transgenic line created by co-transformation of human p4H a
subunit, human p4H b subunit, and human lysyl hydroxylase 3
(LH3), that were also targeted to tobacco vacuole, was crossed
with the procollagen-expressing line. The resulting heteromeric
recombinant collagen-expressing line displayed PTM prolyl
hydroxylation and lysyl hydroxylation, which was comparable
to native human collagen. The harvested leaves yielded ~2% of
TSP of rhCIa1, stable triple helical fibrils resistant to pepsin
digestion were formed, and the characteristic D-periodic
striation structures were observed (Stein et al., 2009).

Human procollagen proa1(I) coding sequence with or
without the P4H a subunit and P4H b subunit fusion
construct was transformed into corn. The production of the
P4H a and b subunit caused the reduction of overall full-length
rhCIa1 yield but resulted in 18.11% of hydroxyproline
modification in recombinant collagen, which formed stable
triple helices (Xu et al., 2011). Despite prolyl hydroxylation
and lysyl hydroxylation, no phosphorylation was detected
(Merle et al., 2002) and no glycosylation was detected of a
44 kDa rhCIa1 fragment from corn seeds (Zhang et al., 2009c).

Plant-Derived Collagen-Based
Biomaterials and Their Applications
Collagen from an animal source such as bovine collagen
transplant is frequently associated with dermatomyositis
(Cukier et al., 1993). Recombinant collagens are alternatives to
be used in wound healing (Davison-Kotler et al., 2019), drug
delivery (Olsen et al., 2003), and regenerative medicine
(Werkmeister and Ramshaw, 2012). The rhCIa1 obtained
from the patented production from transgenic tobacco formed
stable triple helical fibrils and supported peripheral blood
mononuclear cells (PBMNCs) proliferation, comparable to
human non-recombinant collagen type I (Stein et al., 2009).
The same tobacco-derived collagens promote the attachment
February 2020 | Volume 11 | Article 122

https://www.frontiersin.org/journals/plant-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


Peng et al. Advances in Plant-Derived Scaffold Proteins
and the multiplication of endothelial, fibroblast, and keratinocyte
cells (Willard et al., 2013). The fibroblast infiltration, epidermal
differentiation, and cellular metabolism of engineered skin based
on tobacco-derived collagen are equivalent to engineered skin
supported by human and animal collagen source. However, the
interleukin 1 beta (IL-1b) accumulation of the macrophage cells
(THP-1) is significantly less evident on engineered skin
containing tobacco-derived collagen, indicating the
hypoimmunogenity of the plant-derived collagen matrix
(Willard et al., 2013).
ELASTIN-BASED SCAFFOLD PROTEIN
PRODUCED FROM PLANTS

Elastin is another fundamental extracellular matrix protein
component that is found in connective tissues, vascular tissues,
and basement membrane (Halper and Kjaer, 2014). As it is
named, elastin is a protein elastomer with superior mechanical
strain and has frequent demand in tissue regeneration practices
(Urry et al., 2002; Daamen et al., 2007). This has sparked
considerable interest in recombinant production of the major
precursor protein tropoelastin. Tropoelastin is a secreted
extracellular matrix protein with predicted alternating
hydrophilic and hydrophobic regions (Wise and Weiss, 2009).
The conserved C-terminal motif GRKRK binds to integrin avb3.

The tandem repeats of elastin-like peptides VPGXG (X= G,
V, or A) have been used as a fusion tag to assist recombinant
protein purification and protein body induction in applications
in recombinant spider silk protein production (Scheller et al.,
2004; Conley et al., 2009b). Recombinant production of full-
length tropoelastin has been just recently explored. A 2175 bp-
ELN orf of tropoelastin was synthesized and transformed into
tobacco plants through transient infiltration. A band
corresponding to ~70 kDa was detected during electrophoresis
of fresh leaf extracts using an antibody against tropoelastin.
However, recombinant tropoelastin degraded into two smaller
molecular weight peptides when leaf extracts were frozen
(Abdelghani et al., 2015). As the instability of protein going
through freeze thaw of the leaf tissues will create a problem for
potential harvesting and storage, recombinant tropoelastin
directed to seeds may be more suitable, since recombinant
protein can be stably stored in the seeds (Weichert et al., 2016).
OSTEOPONTIN-BASED PROTEIN
PRODUCED FROM PLANTS

Osteopontin is a negatively charged glycoprotein that is secreted
to extracellular matrices from bone cells and mesenchymal stem
cells (Reinholt et al., 1990; Scatena et al., 2007). The myriad of
functions of osteopontin in the extracellular matrices include
integrin binding through the RGD site (Yokosaki et al., 2005),
binding to fibronectin (Mukherjee et al., 1995) and collagen
(Chen et al., 1992), inducing cytokine and chronicle immune
response (Lund et al., 2009), and regulatory roles in diabetes and
obesity (Kahles et al., 2014). A human osteopontin (OPN)
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construct driven by the CaMV 35S promoter was transformed
into Nicotiana benthamiana leaves and allowed plant-based
production of a ~50 kDa osteopontin recognized by anti-
osteopontin antibody. Recombinant OPN accumulated up to
~100 µg rhOPN per kg leaf mass. Tobacco-derived OPN
promoted proliferation of human periodontal ligament stem
cells and transcriptional increase of osteogenic differentiation
and bone mineralization related genes, OSX, DMP1, and Wnt3,
indicating that the plant-derived product had retained its
biological activity (Rattanapisit et al., 2017).
EMERGING TOOLS FOR RECOMBINANT
SCAFFOLD PROTEIN PRODUCTION IN
PLANTS

The considerable success of laboratory scale production of scaffold
proteins using plants as a host system has been possible thanks to
advances in molecular biology tools. However, any individual
approach may not produce the same result for each extraction
strategy due to the specific characteristics of the recombinant
proteins being produced, diversity among plant hosts, and
variation in host tissue types. For example, directing recombinant
proteins into the plant vacuole can be a useful tool to store
recombinant protein secluded from the cytoplasmic enzymes
(Marin Viegas et al., 2016). While this method increases
recombinant collagen yield (Stein et al., 2009), it results in no
detectable yield of recombinant spider silk proteins (Yang et al.,
2005). Therefore, there is no universal tool that fits all recombinant
protein types, host systems, and host tissues. The selection ismostly
empirical, and the outcomes are largely unpredictable.

Protein Body Tag
Fusion tags like theZein protein tagZera®, (PPPVHL)8 (Llop-Tous
et al., 2010), hydrophobin-I (Reuter et al., 2016), and the elastin-like
polypeptide (ELP), VPGXG (X= G, V, or A), can induce the
formation of protein body-like organelles (PBs) in transgenic
plants. In these PBs, membrane surrounds the protein body
protecting the recombinant protein from proteolytic degradation.
Thus, protein body tag constitutes a promising tool to enhance
recombinant protein accumulation in plant tissues. The ability to
purify recombinant ELP fusion through inverse transition cycling
(ITC) ameliorates the expensive chromatography steps (Meyer and
Chilkoti, 1999). A total of 30 VPGXG repeats is sufficient for
effective protein recovery through ITC (Conley et al., 2009b). ELP
induces large protein bodies with ER-derived membrane secluding
the recombinant protein, which remains within the ER instead of
being permanently directed to the vacuolar storage. Interestingly,
the fusion tags are not a strict requirement for PB formation and
when the ER-directed recombinant protein concentration reaches
0.2%TSP,PBs canbe formed (Saberianfar et al., 2015).Theability to
induce PB formation has been used to increase expression of
desirable recombinant proteins such as erythropoietin (EPO) and
the human cytokine interleukin-10 (hIL-10) as these co-expressed
recombinant proteins are passively sequestered to the interior of
the PBs.
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GAANTRY System
Recombinantproductionof scaffoldproteins ishinderedbya lackof
tools to assemble large numbers of tandem repeats and by
difficulties in co-transformation of PTM enzymes to achieve the
optimal mechanical property and physiological function of the
product. The recently developed GAANTRY system (Collier et al.,
2018) uses recombinase-facilitated excision of plasmid backbone
sequence and allows gene stacking of up to 10 different modular
sequences from different donor plasmids. The modularity can be
different domains of the same gene, or enzymes with catalytic
functions in the same pathway. To produce tobacco-derived
recombinant collagens with the appropriate PTM, five different
cloning processes, two co-transformations, and a subsequent
breeding were needed (Stein et al., 2009). The GAANTRY system
may minimize the number of transformations, the number of
antibiotics needed for the selection, and could reduce the
subsequent plant breeding steps. The cloning strategies recently
developed for long repeat sequences (Riet et al., 2017) and the
recursivedirectional ligationapproach(Dinjaski et al., 2018)maybe
used to create donor plasmids for the GAANTRY system.
Combinations of different sequence modules from the donor
plasmid will essentially allow an array of molecules, each with a
unique combination of domains.
POTENTIAL APPLICATION OF SCAFFOLD
PROTEINS FOR DRUG DELIVERY AND
DRUG DISCOVERY

Recombinant scaffold proteins produced from plant hosts
promoted cell attachment and proliferation (Stein et al., 2009;
Hauptmann et al., 2015). With the known affinity of spider silk
analogues for liposome binding and encapsulation of low
molecular weight compounds (Antonenko et al., 2010; Hardy
et al., 2013; Agostini et al., 2015), plant derived spider silk
proteins may also be used for controllable intake and release of
therapeutic molecules (Doblhofer and Scheibel, 2015). The
special affinity of spider silk mimics to HER2 expressing cells
(Florczak et al., 2014) and the tumor-homing peptides (Numata
et al., 2011) provides opportunities for the spider silk-based
materials to be used in targeted melanoma cell delivery.

In addition to providing a supporting scaffold, extracellular
matrix proteins (fibronectin, laminin, and collagen) serve as
protection barriers and mediators of signal transduction (Singh
et al., 2012).ExposedorpartiallydegradedECMproteinsareknown
for attracting pathogens and providing scaffold for pathogen
proliferation (Steukers et al., 2012). Agglutinin-like adhesin from
common fungal pathogen Candida albicans specifically binds to
fibronectin, laminin, and collagen IV (Gaur and Klotz, 1997). The
direct connection of fungal pathogenicity with extracellular matrix
protein interaction is postulated based on pathogenic fungi
Paracoccidioides brasiliensis; when cells were pre-coated with
ECM protein laminin, the infection consisting of granulomas
became more severe (Vicentini et al., 1994). Although
extracellular matrix proteins have gained attention in drug
discovery, no antifungal agents are designed targeting the
Frontiers in Plant Science | www.frontiersin.org 10
interaction of fungal pathogen with host extracellular matrix
proteins (Järveläinen et al., 2009). Currently, no known fabricated
extracellular matrices have assisted the screen of antifungals.
Fabrication of extracellular matrices from plant-derived collagen,
tropoelastin, and osteopontin is possible, and have a potential in
future antifungal discovery.
CONCLUDING REMARKS

Economical Feasibility
Despite the success in proof of concept demonstration of a
variety of scaffold proteins produced in plants, the
commercialization of plant-derived scaffold proteins has been
limited (Schillberg et al., 2019). The feasibility and the success of
utilizing biotechnology tools vary depending on specific plant
type and plant tissues and is rather unpredictable. Transient
infiltration production flow can be improved to reduce the cost
using ready-to-use cryo-stock of Agrobacterium tumefaciens
(Spiegel et al., 2019). The yield based on current methods
ranges from microgram to about 200 mill igram of
recombinant protein per kilogram of leaf or seed tissues. The
pilot scale purification of MaSp1-ELP fusion proteins from stable
transformed tobacco leaves using heat and acetone precipitation
followed by centrifugal inverse transition cycling, achieved 80 mg
MaSp1-ELP per kg of leaves (Heppner et al., 2016). This yield
still does not meet the commercially acceptable level (1–5 g
recombinant protein/kg of plant tissue) (Zhang et al., 2009c).
Revolutionary recombinant protein production methods and
strategies are essential to allow industrial scale production.
Other than prolyl hydroxylation detection of recombinant
collagen, other PTMs and the regulation of the plant-derived
scaffold proteins have not been explored.

Biomaterial Assembly and Application
Biomaterials assembled from recombinant fibrous protein or
extracellular matrix proteins have positively enhanced
biomedical applications such as boosting pancreatic islets
survival and promote human fibroblast and human dermal
microvascular endothelial cell adherence and multiplication
(Annabi et al., 2013; Johansson et al., 2015; Widhe et al., 2016;
Pereira et al., 2017; Tasiopoulos et al., 2018). Fusion of scaffold
proteins with antimicrobial peptides can inhibit bacterial
infection (Gomes et al., 2011). Recent N. clavipes genome
assembly revealed novel spidroin motifs, which can be
engineered potentially and add to the complexity of the
plethora of recombinant spidroin molecules. Recombinant
collagen production can also be expanded to the other types of
collagen, especially collagen type IV, which is the major
component of basement membrane. The combination of spider
silk analogues with the motifs from the extracellular matrix
proteins collagen, fibronectin, and laminin may provide
unlimited opportunities for functionalized biomaterials.
Crosslinking methods such as click chemistry (Harvey et al.,
2017) and photocrosslinking (Johansson et al., 2015) are also
applicable to plant-derived scaffold proteins. These scaffold
proteins have potentials to be developed into bioink for precise
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and consistent biomaterial fabrication (Xiao et al., 2011;
DeSimone et al., 2017; Chawla et al., 2018).
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