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Cellulose, the most abundant constituent material of the plant cell walls, is a major
structural component of plant biomass. Manipulating cellulose synthesis (CesA) genes by
genetic engineering technology, to increase cellulose production may thus offer novel
opportunities for plant growth and development. To investigate this, here we produced
transgenic “Populus 895 plants” overexpressing the cellulose synthase (CesA2) gene
derived from Pinus massoniana under the control of constitutive 35S promoter, via
Agrobacterium-mediated transformation. Relative expression levels of PmCesA2 were
functionally characterized in poplar hybrid clone “Nanlin895” (Populus deltoides × Populus
euramericana). The results demonstrated the transgenic lines showed enhanced growth
performance with increased biomass production than did the untransformed controls. It is
noteworthy that the overexpression of PmCesA2 in poplar led to an altered cell wall
polysaccharide composition, which resulted in the thickening of the secondary cell wall
and xylem width under scanning electron microscopy. Consequently, the cellulose and
lignin content were increased. Hence, this study suggests that overexpression of
PmCesA2 could be used as a potential candidate gene to enhance cellulose synthesis
and biomass accumulation in genetically engineered trees.

Keywords: CesA, cell wall, cellulose synthesis, plant growth, biomass production, poplar
INTRODUCTION

Plant cell walls are a terrifically important source of raw material for food, fuel, and industrially
chemicals (Carroll and Somerville, 2009). In addition, they are responsible for not only conferring a
definitive shape to the cell and enabling overall growth, but it also provides material transportation
and protection of the cells' inner contents. Plant cell walls are rich in complex biopolymers
carbohydrates that comprise cellulose, hemicellulose, and pectin (Daher and Braybrook, 2015) as
well as lignin (Somerville et al., 2004). Cellulose, the linear (1!4)-b-D-glucan, is an important
structural and functional component of both primary and secondary cell walls (Doblin et al., 2002).
Plant primary wall surrounds growing and dividing plant cells while the secondary wall provides
.org February 2020 | Volume 11 | Article 1101
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structural support to the xylem and the plant body (Scheller and
Ulvskov, 2010; Zhong and Ye, 2015).

In most terrestrial plants, cellulose is thought to be
synthesized at the plasma membrane by rosette cellulose
synthase complexes which consist of cellulose synthase
proteins (CESA) (Maleki et al., 2016). The CesA genes belong
to membrane-bound glycosyltransferase family II (GT-2)
enzymes (Sethaphong et al., 2013). These enzymes are
characterized by two domains (A and B domains) which
possess the D, D, and D, QxxRW motif, respectively (Saxena
and Brown, 1997). The first plant CesA gene was successfully
identified from cotton, by screening its expressed sequence tags
(Pear et al., 1996). In Arabidopsis, at least three CesA subunits
encoded by the AtCesA1, AtCesA3, and one of the AtCesA6-
related genes (AtCesA2, AtCesA5, AtCesA6, or AtCesA9) are
required for cellulose biosynthesis in primary cell walls, while
AtCesA4, AtCesA7, and AtCesA8 are required for secondary cell
walls formation (Taylor et al., 2003; McFarlane et al., 2014). In
aspen (Populus tremuloides), the three PtrCesA1, PtrCesA2, and
PtrCesA3 are highly expressed during secondary cell wall
enriched xylem tissues (Joshi et al., 2004). GhCesA gene
identification revealed that CesA2 was a predominant gene for
secondary cell wall formation (Li et al., 2013). Nairn and
Haselkorn (2005) have shown that the phylogenetic and
expression analysis of three loblolly pine CesA genes
representing they are orthologous to the CesA genes in
angiosperms which is responsible for cellulose synthesis in the
secondary cell walls. These data suggested that these three genes
PtCesA1, PtCesA2, and PtCesA3 have been linked to secondary
xylem development in gymnosperms Pinus taeda. Chu et al.
(2007) observed that the knockout of AtCesA2 caused severe
defects in cell wall formation and microtubule orientation that
led to abnormal plant growth and development. Furthermore,
Chu et al. (2007) concluded that cellulose biosynthesis was
needed for the microtubule orientation. It is noteworthy that
microtubule orientation plays a critical role in controlling cell
expansion and elongation. Correspondingly, mutations in CesA
genes are known to loss of impair cellulose synthesis. For
example, cesa5/cesa6 double mutants were seedling lethal
(Desprez et al., 2007), a mutation in CesA6 -related genes
(CesA2, CesA5, and CesA9) revealed only a mild phenotype
(Scheible et al., 2001; Cano-Delgado et al., 2003) and cesa2/
cesa6/cesa9 triple mutants showed pollen lethality (Persson
et al., 2007).

Populus plants are versatile and semi-evergreen forest trees
with a wide distribution in northern China (Li et al., 2018). Their
ease and simplicity of clonal propagation, rapid growth, and
small genome size have made Populus tree species a well-
established model organism for woody plant research
(Bradshaw et al., 2000; Cai et al., 2017; Wang et al., 2018).
Although the functions of CesA proteins are well studied in
plants (Arioli et al., 1998), their genetic manipulation to enhance
cellulose production, especially in timber trees, has remained
demanding. For example, earlier overexpression of CesA genes
has not resulted in improved plant growth in Arabidopsis, barley,
and poplar (Zhong et al., 2003; Joshi et al., 2011; Tan et al., 2015).
Frontiers in Plant Science | www.frontiersin.org 2
In this work, the pBI121:CesA2 binary vector was constructed
and introduced to the poplar hybrid clone “Nanlin895” (Populus
deltoides × Populus euramericana) via the Agrobacterium-
mediated transformation system. We found that PmCesA2
overexpression in Populus influenced its secondary cell wall
thickening as well as morphological and physiological traits.
Analysis of molecular and morphological data and chemical
composition of cell walls in transgenic poplars indicated a
significantly increased PmCesA2 transcript abundance along
with cell wall thickening.
MATERIALS AND METHODS

Source Plant
The biennial Pinus massoniana tree was propagated in the
greenhouse of Nanjing Forestry University (NFU), in Jiangsu
Province, China. Different tissues samples were directly frozen in
liquid nitrogen and kept at -80°C before the RNA extraction. Total
RNA was isolated from each sample using RNAprep Pure Plant
Kit (Polysaccharides & Polyphenolics-rich) (Tiangen Biotech,
Beijing, China) by following the manufacturer's instructions.

Cloning of the PmCesA2 Open Reading
Frame
PmCesA2 was cloned from a cDNA library constructed of RNA
isolated from the needle tissue of P. massoniana using the Prime
Script 1st Strand cDNA Synthesis Kit (Takara, Dalian, China). A
pair of primers was designed according to the full-length coding
region of the CesA2 gene sequence of P. taeda (GenBank:
AY789651.1). The PCR products were cloned into the pEASY-
T1 (Transgen, Beijing, China) vector and transformed into E. coli
DH5a, and then sequenced. All of the primers used in these
assays are listed in Supplementary Table S2.

Sequence and Phylogenetic Analyses
A total of 60 putative CesA protein sequences from various plant
species were aligned using the ClustalW2 (http://www.ebi.ac.uk/
Tools/clustalw2/index.html). A phylogenetic tree of CesAs
protein family members of (Arabidopsis thaliana), (Zea mays),
(Oryza sativa), (Eucalyptus grandis), (Betula luminifera), (Populus
trichocarpa), (P. taeda), (Pinus radiata), (Cunninghamia
lanceolata), and (Picea glauca) was constructed by the neighbor-
joining method using MEGA7 with 1,000 replicates for the
bootstrap analysis, and a 50% cutoff value (Kumar et al., 2016).

Agrobacterium-Mediated Transformation
of (P. Deltoides × P. Euramericana
‘Nanlin895’)
The binary vector pBI121 plasmid harboring the desired
CesA2 gene, where PmCesA2 is under the control of the
CaMV 35S constitutive promoter, was introduced into
Agrobacterium tumefaciens strain EHA105 using the freeze–
thaw method (Holsters et al., 1978). The P. deltoides × P.
euramericana ‘Nanlin895’ leaf disks were inoculated with an
February 2020 | Volume 11 | Article 110
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infective suspension (OD600 = 0.7) of regenerated A.
tumefaciens, under gentle shaking of 200 rpm for 1 h. Then,
the leaf disks were dried using sterile paper towels and co-
cultivated on MS medium (Murashige and Skoog, 1962) with
0.5 mg/L N-6-benzyladenine (6-BA), 0.004 mg/L thidiazuron
(TDZ), 6 g/L agar, 25 g/L sucrose, 200 mM acetosyringone
(AS), pH 5, and incubated in the dark at 28°C for 2 days
(Mohammadi et al.,2018). This was followed by transferring
the leaf disks to MS medium supplemented with 0.5 mg/L 6-
BA, 0.004 mg/L TDZ, 6 g/L agar, 25 g/L sucrose, 400 mg/L
cefotaxime, and 50 mg/L kanamycin, pH 5.8, under 16/8 h
light/dark conditions at 23 ± 1°C in a phytotron to screen for
the putative transformant explants. Afterward, the selected
shoots were transferred to half-strength MS rooting medium;
then, transferred to soil and propagated for complementary
experiments. All the transgenic and wild type plants were
acclimated and grown in the greenhouse at 18–23°C, 60%
humidity, and with 18 h of light and 6 h of dark daily at
the NFU.

Plant Height and Biomass Measurements
Height from the basal stem to the peaks and stem diameter from
5 cm above the soil of 3-month‐old poplars were measured from
each transgenic and WT lines. Fresh weight was immediately
measured after sample collection. Then, the dry weight of the
same plant material was determined after drying at 80°C for 48 h.

Extraction of Chlorophyll Pigments
Total chlorophyll (TChl) content from the leaves of WT and
transgenic plants was measured spectrophotometrically, by using
0.1 g of tissue ground in a pre-chilled mortar and pestle and
extracted with 80% acetone (10 ml). After centrifugation at
10,000×g, the absorbance of a given extract was recorded at
663.8, 646.8, and 470.0 nm. The concentrations of chlorophyll a
and b, and of total chlorophyll, were calculated following
Lichtenthaler (1987).

Determination of Cell Wall Composition
The 10th to 13th internodes of 3-month-old WT and transgenic
plants used for cell wall composition analysis. To determine the
cellulose content, 100-mg dried samples were degraded with a
mixture of nitric and acetic acid (1:8, v/v, 30 min, 100°C) and
centrifuged followed by dilution with 60% H2SO4. Cellulose
levels were measured using a cold anthrone reagent at 620 nm
(Jin et al., 2016) and the determination of lignin content carried
out as previously described (Wang et al., 2017). The percentages
of cellulose and lignin content were then averaged for three
biological and technical replicates experiments. To determine the
monosaccharide composition, 5 mg of the extract-free samples
were extracted with 50 ml of sulfuric acid (72% w/w) at 37°C for
60 min, diluted with 4% H2SO4, autoclaved for 60 min, then
allowed to cool to room temperature and an aliquot was
neutralized with CaCO3. Analysis of monosaccharide
composition was done using high performance liquid
chromatography (Sluiter et al., 2008).
Frontiers in Plant Science | www.frontiersin.org 3
PCR and Real-Time Quantitative PCR
Leaf tissues of all transgenic lines were collected for genomic
DNA extraction from 1-month-old transgenic plants, by using
the DNeasy Plant Mini Kit (Qiagen, Germany) following the
manufacturer's instructions. The ensuing genomic DNA from
each line was then used for PCR to confirm the integration
of PmCesA2.

RNAprep Pure Plant Kit (Polysaccharides & Polyphenolics-
rich) (Tiangen Biotech, Beijing, China) was used to extract RNA
from the stem segment of WT and transgenic plant lines. The
RNA was then used as a template in a reverse transcription
reaction to produce cDNA, following the instructions of the
PrimeScript RT Reagent Kit (Perfect Real Time) (TaKaRa
Biotechnology, Dalian, China). QRT-PCR was used to assess
the copy number and relative expression level of the PmCesA2
gene (2−DDCT) in the transgenic and WT lines using an ABI
quantitative real-time RT-PCR system (Applied Biosystems,
USA) and the SYBR Green PCR Master Mix according to the
manufacturer's instruction. The relative expression levels of
related PmCesA2 genes were determined by same method. For
the standard curve method cDNAwas diluted (1,000-, 500-, 250-,
125-, and 62.5-fold) and two PmCesA2 primers were used to
amplify a product of 130 bp, and expression of the housekeeping
gene b-actin primers was used for normalization expression to
verify the real-time quantitative PCR reaction. All of the primers
are listed in Supplementary Table S2.

Southern Blot Analysis
Genomic DNA was extracted using cetyltrimethylammonium
bromide method from WT plants and three transgenic poplar
lines (Porebski et al., 1997). Approximately 10 mg of total
genomic DNA was digested with EcoRI restriction enzyme,
separated on a 0.8% agarose gel at 25 V overnight, and
transferred onto Hybond N+ membrane. A 404-bp digoxin-
labeled CaMV 35S was used as a probe for hybridization
according to the instruction manual (DIG High Prime DNA
Labeling and Detection Starter Kit I, Roche). Primers used for
DIG labeling of CaMV 35S are listed in Supplementary
Table S2.

Scanning Electron Microscopy
The Populus stem (10th internode) of 3‐month‐old transgenic
plants and the wild type were used for scanning electron
microscopy (SEM), according to the previously described
protocol by Yu et al. (2011) and the image analysis software
IMAGEJ (https://imagej.nih.gov/ij/) was employed for
quantifying morphological parameters of xylem cells (mm) and
wall thickness.

Statistical Analysis
All data for measured height, stem diameter, number of leaves,
fresh weight, dry weight, chlorophyll content, carbohydrate
content, cellulose, and lignin content were analyzed using the
Student's t-test calculated in Microsoft Excel. Three biological
replications with three technical replicates were performed each
February 2020 | Volume 11 | Article 110
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experiment. A one-way analysis of variance was applied to
determine the significance of differences at p < 0.05.
RESULTS

Cloning and Phylogenetic Tree Analysis
A 3,147 bp cDNA fragment was obtained by RT-PCR using the
primers derived from the CesA2 gene of P. taeda, encoding a
protein of 1,057 amino acid residues, and having a molecular
weight of 119.767 kDa and an isoelectric point of 8.4. Sequence
analysis showed 98% similarity between the reported CesA2 gene
(AY789651.1) of P. taeda and P. massoniana.

We used the 60 CESA protein sequences from plant species,
A. thaliana, P. trichocarpa, P. taeda, and Z. mays to generate a
phylogenetic tree (Figure 1). Protein sequence information was
collected from NCBI database. To identify the species of origin
for each CESA, the corresponding species name was included
before each sequence name: At, A. thaliana; Zm, Z. mays, Pt, P.
trichocarpa; Pta, P. taeda; Pr, P. radiata; Cl, C. lanceolata; Pg, P.
glauca; Eug, E. grandis; Os, O. sativa; Pm, P. massoniana; and Bl,
Frontiers in Plant Science | www.frontiersin.org 4
B. luminifera. Phylogenetic tree shows that PmCesA2 in pine is
ortholog of PtCesA2 in poplar related secondary wall and the
results confirmed the same function of these genes. All
information about plant species and gene accession number
are placed in Supplementary Table S1.

Tissue-Specific Expression Analysis of
PmCesA2
The quantitative real-time expression analyses of RNAs were
performed to investigate the PmCesA2 gene expression patterns
in various tissues of P. massoniana. These RT-PCR results
demonstrated that PmCesA2 gene was expressed in all
examined plant tissues (Figure 2A). In addition, the
quantitative PCR (Figure 2B) analysis showed a high level of
expression of PmCesA2 in the stem and root than in the needle.

Analysis of Expression and Integration of
PmCesA2 in Nanlin895 Poplars
Ten transgenic poplar lines were verified by PCR analysis using
the PmCesA2-specific primers. This indicated that the PmCesA2
gene had been integrated into the genomes of 10 independent
FIGURE 1 | Phylogenetic tree showing relationships between the PmCesA2 amino acid sequence and other identified CesA amino acid sequences in different plant
species. The unrooted tree was created with an alignment of 60 CesA protein sequences. The Pinus massoniana CesA2 gene is shown with yellow triangle.
February 2020 | Volume 11 | Article 110
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transgenic plant lines (Figure 3A). Relative expression levels of
the PmCesA2 gene were analyzed in 2-month-old stems of these
verified transgenic lines, for which the quantitative real-time
PCR analysis showed notable variation (Figure 3B). Specifically,
PmCesA2 expression levels in the L15 and L7 were relatively
higher than in the other transgenic line and the wild type. The
transgene copy numbers of PmCesA2 were determined via Real
time PCR based on formula X = Y – intercept/slope degrees (X =
copy number, Y = Ct) (Movahedi et al., 2015). The results
Frontiers in Plant Science | www.frontiersin.org 5
revealed that the average gene copy number of PmCesA2 in
transgenic plants is 7.45 with a slope of −3.36 and efficiency
0.994. Southern blot hybridization confirmed the stable
integration of the PmCesA2 into the genome of transgenic
lines. Southern blotting analysis (Supplementary Figure S1)
revealed that the transgene had integrated into the genome
stably at two to three copies per genome. No bands were
detected in the WT lanes.

Growth and Morphological Characteristics
in PmCesA2 Transgenic Poplars
To investigate whether overexpression of PmCesA2 could
improve plant growth, we monitored the individual growth
of three transgenic plants from each line and untransformed
controls. Three months after planting into the soil, significant
growth phenotype differences were observed between plants
overexpressing PmCesA2 and the wild type (WT). The former
showed a fast‐growing phenotype with increased plant height,
stem diameter, and leaf number (Figure 4A). Height
measurements of the 10 lines clearly indicated that both L15
and L3 were significantly taller than WT (Figure 4B). With
the exception of L2, which had a smaller stem diameter than
WT, transgenic lines had a significantly greater stem diameter
(31.83%) than did WT (Figure 4C). Similarly, concerning the
number of leaves of the poplars, overexpression lines
produced more leaves (48%) than did WT (Figure 4D).
Generally, lines overexpressing the CesA2 gene showed
altered growth characteristics, demonstrating significantly
increased height, stem diameter, and number of leaves.

As Figure 5A clearly shows, compared with WT, the
transgenic lines 15 and 12 both displayed high levels of fresh
FIGURE 2 | Tissue-specific expression of the CesA2 gene in Pinus
massoniana. (A) Tissue-specific expression pattern characterized by reverse
transcription polymerase chain reaction (RT-PCR). (B) Tissue-specific
expression pattern characterized by real-time quantitative PCR, for which
expression levels were averaged from three replicates.
FIGURE 3 | Verification of transgene integration and expression of PmCesA2 into the poplar genome. (A) Integration of PmCesA2 poplar transgenic lines using PCR
amplification. Genomic DNA was extracted from the leaves of 1-month-old transgenic poplars. The PCR products were assessed through electrophoresis on 1.0%
agarose gel. (B) Relative expression of PmCesA2 in transgenic poplars by real-time PCR. Expressed levels were averaged ( ± SE) from three different samples per
line. Actin served as the internal reference. * denotes significance at p < 0.05.
February 2020 | Volume 11 | Article 110
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weight while lines 12 and 19 had the largest dry weight increase
(Figure 5B). Both the fresh and dry weights of the transgenic
plants exceeded those of WT plants which were 45% and 36%
higher than WT, respectively. Apart from L21, which had
lower chlorophyll content than the WT, the transgenic plants
maintained higher chlorophyll contents (34.3%) than did WT
(Figure 5C). The changes in the chlorophyll contents could
increase photosynthesis and hence increase plant growth.

Changes in Secondary Cell Wall
Composition
SEM observations clearly showed a thickened secondary cell wall in
transgenic line when compared with the WT. To investigate how the
cell wall changed due to PmCesA2 overexpression, the content of the
cell wall's monosaccharide composition was analyzed in transgenic
and wild-type plants. As Table 1 shows, all transgenic lines showed
significantly higher (up to 48%) xylose content with variations of
other monosaccharides, compared to WT.

Cellulose production is correlated with the level of cellulose
synthesis activity of CesA (Bringmann et al., 2012; Sánchez-
Rodríguez et al., 2017). To assess which cell wall components
drove the increased thickness of the secondary cell wall, cellulose
and lignin content of transgenic stems were measured. The
overexpressing lines contained more cellulose (Figure 6A) and
lignin levels (Figure 6B) compared with the control plants. These
Frontiers in Plant Science | www.frontiersin.org 6
results showed PmCesA2 could enhance biomass yields in the
transgenic plants due to high cellulose and lignin content.

Changes in the Thickness of the
Secondary Cell Walls in Transgenic
Populus
Cell wall thickness arises from increased deposition levels of xylose
and cellulose (Sun et al., 2014). To better understand the
contribution of PmCesA2 overexpression to secondary cell wall
biosynthesis, microscopic analyses were conducted to measure the
thicknesses with the stems of WT and transgenic plants. Notably,
SEM images showed the entire cell wall had increased, including the
secondary cell wall (at least twofold more), in the overexpressing
lines when compared with that of WT (Figure 7). The xylem width
of poplar transgenic lines had significantly increased compared to
the wild-type plants (Supplementary Table S3). These results
showed that overexpression of PmCesA2 positively regulated the
secondary cell wall formation in transgenic poplars.

Alternation of Gene Expression in
PmCesA2 Transgenic Poplars
To determine whether PmCesA2 impacts the expression of other
genes involved in cellulose or lignin biosynthesis, we performed
quantification analysis of the expression of cellulose and lignin
FIGURE 4 | Phenotypic changes in PmCesA2 transgenic lines. (A) Phenotypic comparison of 3-month-old poplar transgenic lines 9, 8, and 3 and the wild type (WT)
(from right). Transgenic lines and WT plants compared for three growth traits: (B) heights, (C) stem diameters, and (D) number of leaves, averaged ( ± SE) from three
different samples per line; * denotes significance at p < 0.05. The WT represents wild-type poplar while the others lines labeled with line numbers are of different
PmCesA2 poplar transgenic lines.
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biosynthetic genes in the stems of transgenic lines. Transcript
abundance of CesA5, CesA6 (two primary CesA genes), Susy2
(key enzyme for secondary growth), and PAL1, 4CL1 (lignin
biosynthesis genes) were up‐regulated in overexpressing lines
compared to those in WT. Overexpression of PmCesA2 gene
could increase the expression levels of other primary wall CesAs,
Susy2 and lignin biosynthetic genes (Supplementary Figure S2).
DISCUSSION

The cell wall in plant cells provides structural support,
underpinning plant growth and development (Leng et al.,
2017). Cellulose, a major load-bearing structure of growing cell
Frontiers in Plant Science | www.frontiersin.org 7
walls, has drawnmuch research attention for its various industrial
applications. Therefore, researchers have tried to alter the process
of cellulose biosynthesis to improve the growth, biomass
production, and wood quality of plants. Here, we reported on
the molecular and physiological behavior of transgenic poplar
overexpressing PmCesA2 under natural conditions. Over-
expression of PmCesA2 resulted in improved cellulose
synthesis, plant growth, and biomass production in transgenic
poplar lines compared to WT control plants, together with
increased secondary wall thickening and width of the xylem.
Although in plants, cellulose synthesis (CesA) genes have been
shown to be fundamental for growth and development (Persson
et al., 2007), in the last three decades, much effort has been met
with limited success for improving cellulose synthesis through the
ABLE 1 | Cell wall monosaccharide composition (mg g -1) from stem of the control and PmCesA2 transgenic plants.

lant Glucose Xylose Mannose Galactose Rhamnose Arabinose

T 35.16 ± 1.10 15.45 ± 0.36 2.83 ± 1.40 1.48 ± 0.19 0.67 ± 0.07 0.76 ± 0.18
-2 36.05 ± 0.9 21.49 ± 0.78 2.19 ± 0.46 1.18 ± 0.09 0.66 ± 0.05 0.6 ± 0.03
-3 35.59 ± 1.39 23.43 ± 0.60* 2.49 ± 0.53 1.33 ± 0.28 0.53 ± 0.11 0.61 ± 0.21
-7 38.24 ± 1.22 22.56 ± 0.55 2.44 ± 0.29 1.16 ± 0.07 0.53 ± 0.13 0.71 ± 0.09
-8 39.79 ± 2.16* 24.72 ± 2.63* 2.23 ± 0.78 1.19 ± 0.11 0.5 ± 0.05 0.58 ± 0.04
-9 38.06 ± 1.20 24.4 ± 1.51* 2.53 ± 0.55 1.25 ± 0.17 0.6 ± 0.14 0.63 ± 0.06
-12 39.71 ± 1.35* 25.61 ± 0.39* 2.83 ± 1.18 1.34 ± 0.10 0.65 ± 0.09 0.68 ± 0.23
-15 37.19 ± 1.0 25.03 ± 1.01* 2.63 ± 0.74 1.35 ± 0.13 0.64 ± 0.11 0.81 ± 0.03
-19 36.81 ± 1.25 22.64 ± 1.62 2.32 ± 0.51 1.17 ± 0.14 0.54 ± 0.08 0.6 ± 0.09
-21 38.04 ± 1.20 22.63 ± 0.60 2.27 ± 0.43 1.2 ± 0.11 0.48 ± 0.12 0.57 ± 0.19
-23 36.23 ± 1.40 22.79 ± 0.69 2.03 ± 0.15 1.09 ± 0.08 0.57 ± 0.07 0.6 ± 0.11
Fe
bruary 2020 | Volume 11
ata are the mean value ± SD of three biological replicates. *Denotes significance at p < 0.05.
FIGURE 5 | Changes in the biomass and chlorophyll contents of PmCesA2 poplar transgenic lines. (A) Fresh weights and (B) dry weights of transgenic lines. (C) Chlorophyll
contents of the leaves of different PmCesA2 transgenic lines. All values are expressed as means ± SD (n = 3 biological replicates), * denotes significance at p < 0.05.
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overexpression of various the secondary CesAS (Burton and
Fincher, 2014). Attempts to overexpress a secondary wall-
associated CesA gene (CesA7) in Arabidopsis, (CesA8) in
Populus, and (CesA4) in barley did not show any improvement
in plant growth and plant biomass production (Zhong et al., 2003;
Joshi et al., 2011; Tan et al., 2015). A recent study of Panicum
virgatum highlighted that both CesA4 and CesA6 overexpression
and knock-down to extreme levels in the transgenic lines resulted
Frontiers in Plant Science | www.frontiersin.org 8
in decreased biomass production (Mazarei et al., 2018). In the
present study, hybrid poplars overexpressing the structural
PmCesA2 gene from the source pine tree displayed considerable
improvements in biomass production. In terms of cell wall
composition, the overexpressing transgenic plants also showed
higher cellulose and lignin levels. The present work therefore
suggests that increases in cellulose and lignin led to enhanced
biomass yields in these plants. In order to verify whether
FIGURE 7 | Scanning electron micrographs of the 10th internode of control and transgenic line plants. (A, C) are from wild-type poplar plants; (B, D) are from the
transgenic line. Short yellow lines in (C, D) depict the difference between the cell wall thicknesses in the transgenic line and the wild-type plants. (B) Overexpression
of CesA2 displayed increased the number of secondary xylem cells compare with WT (A).
FIGURE 6 | Cellulose and lignin content in PmCesA2 transgenic lines. (A) Cellulose contents. (B) Lignin contents. All values are expressed as means ± SD (n = 3
biological replicates), * denotes significance at p < 0.05.
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overexpression of CesA2 could influence the transcription of
carbohydrate metabolism and cellulose production,
monosaccharide composition in the stem was studied. This
observation showed that glucose and xylose were the most
abundant sugars in all samples as expected and suggested that
increased glucose content in the cell walls of transgenic lines
compared with the corresponding wild-type could be ascribed to
increases in the cellulose content. Compared with WT, we
observed that the chlorophyll contents of all transgenic mature
lines except one were significantly increased. The greatly
increased chlorophyll contents would be expected to augment
the photosynthetic capacity of plants which could potentially
increase the biomass of the transgenic plants.

EgCesA1,2,3 which are orthologous to PtrCesAl, PtrCesA3, and
PtrCesA2, respectively, and ZmCesA10, 11, 12 which are
orthologous to AtCesA4, AtCesA8, and AtCesA7, respectively, all
presented high expression in stem or stalk, tissues that undergo
secondary cell wall biosynthesis in xylems (Appenzeller et al., 2004;
Ranik and Myburg, 2006). Expression patterns of PtaCesA1,
PtaCesA2, and PtaCesA3 in loblolly pine are consistent with
functional roles to their orthologous of secondary cell wall CesA
genes in angiosperms which are highly expressed in developing
xylem. PtrCesA2 was isolated from a xylem cDNA library that
exhibited a high degree of identity 82% with AtCesA7 cDNA that
has been associated with xylem development in Arabidopsis (Taylor
et al., 1999), concluded that PtrCesA2 from aspen is orthologous to
Arabidopsis AtCesA7. Multiple alignments of full-length CesA
protein sequences showed that secondary CesAs in pine are
orthologs of Arabidopsis and poplar secondary wall CesAs (Nairn
and Haselkorn, 2005). PmCesA2 cDNA shows a high degree of
similarity 98% with PtaCesA2 cDNA that has been associated with
secondary cell wall development in P. taeda. This indicates
PmCesA2 could be involved in secondary cell wall synthesis.

In this respect, it seems that growth improvement and biomass
production were achieved via genetic manipulation, at least for
poplar trees. Cellulose biosynthesis and secondary wall thickness
of Arabidopsis are affected by mutations in each of the secondary
CesAs (CESA4/IRX5, CESA7/IRX3, and CESA8/IRX1), leading to
collapsed xylem phenotype (Turner and Somerville, 1997; Taylor
et al., 1999; Taylor et al., 2000; Taylor et al., 2003). Mutations in
each of the primary CesAs can lead to reduced organ growth,
which has been interpreted as the consequence of growth
anisotropy being lost (Pagant et al., 2002; Fujita et al., 2013;
Chen et al., 2016). CesA5 and CesA2 are responsible for
secondary wall cellulose biosynthesis in Arabidopsis seed coat
epidermis (Mendu et al., 2011). Using various methods, both in
vitro and in planta, it was shown that the primary wall CesAs
Frontiers in Plant Science | www.frontiersin.org 9
interacts with other secondary wall CesAs, thus raising the
possibility that mixed complexes of primary and secondary wall
structure CesAs could occur at particular times (Carroll et al.,
2012). Overexpression PmCesA2 gene enhances the expression of
other primary wall CesAs as well as changes in expression of gene
related to cell growth, cellulose (Susy2) or lignin (PAL1 and
4CL1) production.

In conclusion, our results demonstrate the overexpressing
of the PmCesA2 gene is directly relevant to plant growth and
development in poplar due to enhanced cellulose synthesis
which led to a thickened secondary cell wall. Based on our
results, we propose that the CesA2 genes' overexpression may
cause to enhance the expression of other genes linked to cell
growth and cellulose production in transgenic plants. Our
approach could serve as an efficient biotechnological
modification tool for producing enhanced plant biomass.
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