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To explore the influences of different cultivated areas on the chemical profiles of Eucommia
ulmoides leaves (EUL) and rapidly authenticate its geographical origins, 187 samples from
13 provinces in China were systematically investigated using three data fusion strategies
(low, mid, and high level) combined with two discrimination model algorithms (partial least
squares discrimination analysis; random forest, RF). RF models constructed by high-level
data fusion with different modes of different spectral data (Fourier transform near-infrared
spectrum and attenuated total reflection Fourier transform mid-infrared spectrum) were
most suitable for identifying EULs from different geographical origins. The accuracy rates
of calibration and validation set were 92.86% and 93.44%, respectively. In addition,
climate parameters were systematically investigated the cluster difference in our study.
Some interesting and novel information could be found from the clustering tree diagram of
hierarchical cluster analysis. The Xinjiang Autonomous Region (Region 5) located in the
high latitude area was the only region in the middle temperate zone of all sample collection
areas in which the samples belonged to an individual class no matter their distance in the
tree diagram. The samples were from a relatively high elevation in the Shennongjia Forest
District in Hubei Province (>1200 m), which is the main difference from the samples from
Xiangyang City (78 m). Thus, the sample clusters from region 9 are different from the
sample clusters from other regions. The results would provide a reference for further
research to those samples from the special cluster.

Keywords: Eucommia ulmoides leaves, Fourier Transform Near-Infrared, Attenuated Total Reflection Fourier
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INTRODUCTION

Eucommia ulmoides Oliver is the single species of the genus
Eucommia, which in turn is the only genus in the family
Eucommiaceae. This plant has been applied as a tonic herb in
China since ancient times (Dai et al., 2013). According to
geographical and historical investigations, the plant is widely
distributed in Asia (mainly cultivated in China), Europe, and
North America (Hirata et al., 2014). It is also known as Du-
Zhong (in Chinese) and Tuchong (in Korean and Japanese) (Do
et al., 2018; Zhang et al., 2018). Various compounds were
extracted and identified from each part of E. ulmoides. These
include lignans, iridoids, flavonoids, phenols, steroids, and
terpenes and nutrients, i.e., amino acids, vitamins, and mineral
elements (Hussain et al., 2016; Wang et al., 2019). In modern
pharmacological studies, researchers have proved that chemical
profiles possess encouraging medical curing effects on
hypertension, hyperglycemia, hyperlipidemia, osteoporosis,
osteoarthritis, antioxidant, etc. (Luo et al., 2010; Xie et al.,
2015; Niu et al., 2016; Wang et al., 2019). The medicinal parts
of E. ulmoides are its barks (Eucommiae Cortex) and leaves
(Eucommiae Folium) as mentioned in the Chinese
Pharmacopoeia (Chinese Pharmacopoeia Commission, 2015).
Barks are not conducive to large-scale development and
utilization due to their resource constraints, but can be used in
small amounts for disease treatment. Up to now, scientific
research has allowed the identification of chemical
constituents, and the pharmaceutical functions in the leaves of
E. ulmoides have been found to be similar to those in the bark.

Compared with barks, EULs can be harvested every year. The
developed orchard cultivation mode greatly facilitated the
harvesting of EULs (Zhu et al., 2016). In China, EULs have
been included in the management of “Affinal Drug and Diet”.
EUL extract can be used in the production of functional foods
and various beverages. Moreover, it can be used to separate and
extract active ingredients for drug manufacturing. In addition to
the above applications, EUL extract are used as a feed additive for
antibiotic-free breeding. EULs are adopted as a folk remedy for
the treatment of diabetes in Korea (Hong et al., 1987). The
commercial product (Tochu-cha in Japanese) is a government-
approved food for specified healthcare for people with
hypertension (Hosoo et al., 2017). Moreover, EUL residues that
remain after extracting the effective active components are used
as a raw material for gutta-percha extraction. The glued residues
can be further used to manufacture a variety of products, such as
sheets, organic fertilizers, and fuel. Such method reduces the
production cost of gutta-percha and establishes an important
foundation for the large-scale production of gutta-percha. In
particular, the abundant chemical profiles of EUL are the basis
for industrial development and application. As a raw material for
comprehensive utilization, the quality evaluation of EUL is
particularly important.

Conventional ly , high (ultra) performance l iquid
chromatography coupled with diode array detector or mass
spectrometry is the common tool for analyzing of chemical
Frontiers in Plant Science | www.frontiersin.org 2
composition and for determination of EUL’s relative content
(Niu et al., 2016; Li et al., 2017; Yan et al., 2018). Essential oil and
their chemical constituent can be examined through gas
chromatography linked with flame ionization or mass
spectrometry (Farag et al., 2018; Kfoury et al., 2018). However,
these methods normally require deleterious and dangerous
reagents, such as methanol and acetonitrile. Moreover, the
sample solution preparation process for chromatographic
analysis is cumbersome, and the instrument operation
requirements are high. In order to obtain a more simple and
convenient method for quality evaluation of EULs, fast and non-
destructive spectroscopy technologies, including vibrational
spectroscopy, have become particularly attractive because of
their unique advantages in terms of cost, efficiency, sample
preparation, and instrumentation (Ma et al., 2018). In
addition, the spectra can reflect the entire chemical
information of a sample, rather than the determination and
characterization of a single component in the liquid
chromatograms . Howeve r , compared wi th l iqu id
chromatography, infrared technology is limited, because it
cannot be accurately quantified, and the chemical information
reflected is ambiguous. To date, vibrational spectroscopic
techniques, including Fourier transform (FT) mid-infrared
(MIR), near-infrared (NIR) spectroscopy, and Raman
spectroscopy, have been widely used in food production (Shi
and Yu, 2017; Qi et al., 2018) and in the pharmaceutical
(Jamrógiewicz, 2012; Li et al., 2018) and agriculture (Yang and
Ying, 2011; Horn et al., 2018) industries. These methods also
exhibit great potential for application to disease status
monitoring (Depciuch et al., 2017; Kaznowska et al., 2018).

The composition of secondary metabolites in plant tissues
varies depending on different factors, such as genes, climate,
altitude, and growth environment conditions in general (Ložienė
and Venskutonis, 2005; Shafie et al., 2009; Zheng et al., 2012;
Zheng et al., 2018). Li and Wang (2018a) investigated the
chemical information of the two medicinal parts (epidermis
and inner part) of Wolfiporia cocos; the inner parts had better
quality consistency, which was affected by the main factor, i.e.,
the epidermis’ poor resistance to the external environment.
Uleberg et al. (2016) suggested that the production and quality
of berries were affected by climate, particularly when berries lived
in a challenge northern climate with low winter temperatures
and long days through the growing season. Zheng et al. (2011)
reported the correlation between latitude and altitude and the
values of sugars, sugar alcohols, ascorbic acid, and fruit acids in
wild Hippophaë rhamnoides. The strong adaptive capability to a
changeable environment condition makes E. ulmoides a
widespread species in China, with large scope latitude (N24.5°–
N41.5°) and longitude (E76°–E126°) and high drop altitude (50–
2,500 m) (Du et al., 2013). Various climate types and soil types
exist in these suitable areas for growth. Maintaining the quality
consistency for EULs despite the fact that E. ulmoides plants
grow in complex and varied environments is a challenge.
Therefore, the geographic authentication and quality
assessment for EULs is of vital importance.
February 2020 | Volume 11 | Article 79
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We selected infrared spectroscopy (MIR and NIR) rather than
other expensive techniques to examine chemical profiles for the
geographical authentication of EUL samples from 13 provinces
in China. A multi-spectral information fusion study of EUL has
not been conducted thus far. Therefore, we intended to combine
both NIR and MIR spectral information to demonstrate the
feasibility of discriminate EUL geographic origins based on RF
and PLS-DA algorithms and data fusion strategy and to make a
preliminary evaluation of the influence of the growth
environment on the accumulation of EUL chemical
components. Our results can be useful for determining the
geographical traceability of EUL products in the market and
have potential broader applications to the management of the
safety tracking of food or health products.
MATERIALS AND METHODS

Samples Information
A total of 187 specimens of EULs were collected from 13 provinces
of China (23 different sites with varied growth environments)
from 25 May 2017 to 10 June in 2017 (Table 1). These leaves were
collected from the central part of the canopy of the plant,
including the sunny and shady slopes. This way, we avoid the
impact of individual differences in samples due to collection from
different parts (upper, middle and lower parts of the canopy). All
of the samples were authenticated by Professor Ke-Gang Li, and
voucher specimens (JIUDZ2017001-JIUDZ2017023) were
deposited to the specimen repository of the Herbarium of Jishou
University (JIU) in Hunan Province. EULs were dried in an oven
(Experimental Instrument Factory, Shanghai, China) at 40°C until
constant weight was achieved. Dried EULs were separately ground
into a fine powder and passed through an 80-mesh sieve. Finally,
the processed powders were stored at room temperature and kept
away from direct sunlight until the next measurement.

Fourier Transform Near-Infrared (FT-NIR)
Spectroscopy Analysis
Sample powders were scanned using an FT-NIR spectrometer
(PerkinElmer, USA) equipped with a diffused reflection
accessory. The detection wavenumber ranges were 10,000–
4,000 cm−1 with a resolution of 4 cm−1 and 32 scans per
spectra. Each collected spectrum was recorded as the logarithm
of reciprocal reflectance, log (1/Reflectance). To reduce human
operation error, each sample powder (1.0 ± 0.05 g) was weighed
by electronic balance (Sartorius, Germany) and placed inside a
uniform clean glass vessel for scanning. Prior to each scan,
laboratory air (H2O and CO2) spectrum was recorded as
background absorption and automatically deducted to
eliminate the interference of air information. Constant
conditions (25°C/30% RH) were controlled in order to
maintain the consistency of the experiment’s operation
environment. Each sample was measured in triplicate. The
obtained spectra were then analyzed by SIMCA-P+ 14.1
(Umetrics, Sweden), a data processing software, and averages
were obtained prior to further analysis.
Frontiers in Plant Science | www.frontiersin.org 3
Attenuated Total Reflection Fourier
Transform Mid-Infrared (ATR-FT-MIR)
Spectroscopy Analysis
Fourier transform mid-infrared spectrometer (PerkinElmer,
USA) with deuterated triglycine sulfate (DTGS) detector
equipped with an attenuated total reflectance (ATR) mode
(horizontal golden gate single reflection diamond) was used to
collect the sample spectra. Each spectrum was conducted in the
TABLE 1 | Information of the leaves (EUL) samples.

Region Number of
individuals

Collection site Latitude
(N)

Longitude
(E)

Elevation
(m)

1 11 Pingxiang City,
Jiangxi Province

27°41′
55.96″

114°05′
49.77″

150

2 31 Zunyi City, Guizhou
Province

27°24′
04.63″

106°57′
42.17″

857

Zunyi City, Guizhou
Province

27°43′
29.82″

106°52′
49.39″

946

Zunyi City, Guizhou
Province

27°38′
42.25″

106°53′
35.42″

925

3 10 Guangyuan city,
Sichuan Province

32°13′
38.78″

106°18′
06.24″

524

4 21 Ankang City,
Shaanxi Province

32°54′
11.78″

108°30′
36.21″

443

Hanzhong City,
Shaanxi Province

33°20′
02.71″

106°00′
18.25″

727

5 7 Ürümqi City,
Xinjiang
Autonomous
Region

44°02′
35.60″

87°27′
45.06″

205

Fukang City,
Xinjiang
Autonomous
Region

44°18′
32.65″

88°35′
38.32″

513

6 20 Zhangjiajie City,
Hunan Province

29°31′
22.69″

110°46′
02.50″

334

Jishou City, Hunan
Province

28°18′
17.38″

109°38′
13.42″

285.1

7 16 Shennongjia
Forestry District,
Hubei Province

31°28′
44.43″

110°22′
43.08″

1343

Xiangyang city,
Hubei province

32°00′
56.49″

112°09′
59.91″

78

Shennongjia
Forestry District,
Hubei Province

31°26′
55.95″

110°23′
89.11″

1,247

8 30 Pingdingshan City,
Henan Province

34°04′
21.02″

113°12′
52.28″

252

Lingbao City,
Henan Province

34°16′
56.56″

110°39′
13.91″

984

Xingyang City,
Henan Province

34°43′
10.21″

113°17′
18.14″

420

9 5 Longnan City,
Gansu Province

32°52′
53.59″

104°24′
12.91″

166

Longnan City,
Gansu Province

32°53′
46.02″

104°22′
57.99″

1,763

10 10 Nanjing City,
Jiangsu Province

32°04′
77.28″

118°45′
73.63″

347

11 6 Dingzhou City,
Hebei Province

38°53′
00.38″

115°22′
03.12″

68

12 10 Lu’an City, Anhui
Province

31°28′
30.79″

115°50′
50.84″

266

13 10 Linzi City,
Shandong Province

36°77′
40.87″

118°30′
63.12″

31
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4,000–650 cm−1 range with a resolution of 4 cm−1 and a total of
32 scans. A stainless-steel circular ring was placed on the
reflection diamond to obtain a constant layer thickness for
each determination. A pressure tower is placed on the top of
the circular ring (PerkinElmer Inc. micrometric pressure device).
When the sample spectrum was obtained, each sample powder
was placed into the circular ring hole, after which the pressure
tower was rotated to press the powder tightly until a consistent
pressure (131 ± 1 bar) was obtained to achieve reproducible
results. After each measurement, the surface of ATR crystal,
circular ring and apex of pressure tower were individually wiped
with a lint-free tissue containing a combination of alcohol and
deionized water. The next sample was detected when the
equipment was dry to avoiding mutual interference between
the samples. The temperature and humidity of the laboratory
remained the same as in the FT-NIR spectroscopy analysis. Each
sample was measured in triplicate, these obtained spectra were
then analyzed by SIMCA-P+ 14.1.

Spectra Data Pretreatment
The collected ATR-FT-MIR spectra had to undergo advanced
ATR correction and transformed transmittance into absorbance
by OMNIC 9.2 (Thermo Fisher Scientific, USA). Raw spectra data
contained vast noise and interference information. Different
preprocessing methods were applied to optimize the dataset for
systematic noise reduction and baseline correction (Zhuang et al.,
2015; Wu et al., 2019). Multiplicative scatter correction (MSC) and
second derivative (SD) were selected to reduce the effects of low
levels of scattering and to correct the baseline drift effect of FT-
NIR and ATR-FT-MIR spectra (Li et al., 2013; Wu et al., 2019).
The “MSC+SD” combination was adopted to pretreat the spectra
dataset. All preprocessing steps were conducted by SIMCA-P+

14.1. Some spectral regions were removed prior to chemometric
analysis because of the interference information (e.g., 4,000–3,700
cm−1, 2,799–1,800 cm−1 and 682–653 cm−1; they represented the
baseline area and the absorbance of diamond crystal and CO2).
Thus, each sample finally consisted of ~4,145 preprocessed data
points (FT-NIR, ~3,098 variable numbers; ATR-FT-MIR, ~1,047
variable numbers), and data matrices were used for further
chemometric analysis.

Environmental Information Acquisition
For the exploratory analysis, geographical and climate information
were used to assess possible relations of chemical accumulation.
Meteorological background data set and soil types for the sampling
sites of EULs were downloaded from the Resource and
Environment Data Cloud Platform, Institute of Geographic
Sciences and Natural Resources Research, Chinese Academy of
Sciences (http://www.resdc.cn/DOI/doi.aspx?DOIid=39).
Meteorological background data set was based on the
meteorological data of 1,915 stations in China. After sorting and
inspection, the original database was formed. It included the
monthly precipitation and monthly average temperature of each
site. Then, the annual average temperature, annual average
precipitation, and ≥10°C accumulated temperature were
calculated based on the site data. The annual average temperature,
Frontiers in Plant Science | www.frontiersin.org 4
annual average precipitation, ≥10°C accumulated temperature, and
moisture index (Thornthwaite method) spatial distribution data set
with a spatial resolution of 500 m × 500 m are interpolated by the
inverse distance weighted average method. More than 60% of
China’s regions are mountainous. Thus, the meteorological
indicators in mountainous areas are largely affected by the
topography. The data set was corrected by a 1:100 million digital
elevation model (DEM). The DEM correction was carried out for
annual average precipitation and ≥10°C accumulated temperature
based on the temperature decrease rate of 0.6°C for each 100 m rise
in altitude. The locations of the sampling points in the
meteorological background dataset and the soil type map were all
drawn by using ArcGIS 10.0 (ESRI Inc., USA), and the data of the
sampling points were extracted by the extraction analysis tool under
the arc toolbox of ArcGIS.

Chemometrics Analysis
Exploratory Analysis
Principal component analysis (PCA) transforms raw data into a
set of linearly independent representations of each dimension
through linear transformation, which can be used to extract the
main feature components of the data and turn the high-
dimension data into low dimension data. Through the
extracted principal components, the data were transformed
into a new coordinate system, and the correlation between the
samples and the variables can be seen, thereby allowing the visual
analysis of the samples’ classification trend (Pei et al., 2019).

In addition to the linear dimensionality reduction algorithm
of PCA, a nonparametric and nonlinear algorithm of t-
distributed stochastic neighbor embedding (t-SNE) also exists.
t-SNE finds the law in the data by identifying the observed
patterns based on the similarity of data points with multiple
features. By reducing the tendency of gathering the points in the
center of the map, this algorithm can lead to obvious and better
visualizations (Maaten and Hinton, 2008).

Different from the above 2D reduction algorithms, hierarchical
cluster analysis (HCA) determines the similarity between data
points of each category and all data points by determining the
distance between them. A small distance results in high similarity.
The two closest data points or categories were combined to
generate a clustering tree. Samples with similar chemical profiles
were clustered into one group, whereas the samples with larger
differences were divided into different groups according to the
theory of hierarchical clustering algorithm (Pei et al., 2019).

By comparing the visualization results of the above
mentioned three algorithms, we initially explored the
differences between the effects of weather conditions and
altitudes of different geographical ranges on the chemical
composition of EUL. PCA and t-SNE were completed by
MATLAB R2017a (Math Works, USA). HCA was performed
by IBM SPSS Statistics 20.0 (IBM Corp., USA).

Partial Least Squares Discrimination Analysis
(PLS-DA)
PLS-DA is a variant classifier of partial least squares regression
algorithm. PLS-DA model shows the relationship among the
February 2020 | Volume 11 | Article 79
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variable matrices (X), which are used to predict which class the
unknown sample belongs to. In the calculation, the observed X
matrix was transformed into a set of several intermediate linear
latent variables (LVs). The first n LVs were selected according
to the maximum eigenvalue >1. For the establishment of PLS-
DA classification models, the dataset was split into two subsets,
i.e., the ratio of the calibration set and validation set was 2:1, by
Kennard-Stone algorithm. At the same time, the model was
constructed using a calibration set with 7-fold cross validation.
The veracity of a prediction model was evaluated in terms of
some statistical parameters including R2(X), Q2(Y), root mean
square error of estimation (RMSEE) and root mean square
error of cross validation (RMSECV). R2(X) indicates the
cumulative interpretation ability and Q2(Y) indicates the
prediction ability of the well-established model. Furthermore,
the permutation test was calculated to validate the fitting
degree of the PLS-DA model based on the results of R2-
intercept and Q2-intercept. The permutation test of each
category model was conducted with 20 iterations. Except for
the steps of the Kennard-Stone algorithm that were calculated
by MATLAB R2017a, the rest of the operation was performed
on the SIMCA-P+ 14.1 software.

Random Forest (RF)
Compared with PLS-DA, RF exhibited a stronger processing
ability for nonlinear high-order interaction data sets. This is also
a non-parametric algorithm that is based on learning strategy
(Wu et al., 2019). The RF algorithm has been successfully applied
to the classification problems in food research (Amjad et al.,
2018; Qi et al., 2018). However, there are no reports on the
application of the RF model to E. ulmoides research. For this
algorithm, thousands of trees are involved, and each tree was
grown based on bootstrap sampling. Generally, the number of
the tree and the branch need to be adjusted according to out-of-
bag (OOB) error. Based on OOB error, the parameters (number
of tree size-ntree, number of variables-mtry) of the model needed
to be optimized to enhance the performance. The values of best
ntree are used for selection of mtry on the basis of the lowest OOB
error. Finally, we exported the confusion matrix, and calibrated
and verified votes for each sample. For high-level data fusion, a
single spectra matrix requires the creation of a new spectral
matrix by the selected importance variables. The permutation
accuracy importance shows a strong preference for the
discontinuous variable (Li et al., 2018). Therefore, this method
was applied for the variable selection. The RF models were
performed by RStudio (Version 1.1.463), and the calculation
process was carried out by using the random Forest package in R
(Version 3.5.2).

Evaluation of Model Performance
The PLS-DA and RF models were optimized through related
parameter adjustment, and the classification performance of
each class in the model was evaluated based on the sensitivity
(SEN), specificity (SPE), precious (PRE), and efficiency (EFF) of
the calibration set and the validation set. The values of these four
conceptions were further calculated by true positive (TP), false
Frontiers in Plant Science | www.frontiersin.org 5
positive (FP), true negative (TN), and false negative (FN). TP and
TN represent the correctly identified samples of positive and
negative classes, respectively. On the contrary, FP and FN
represent the incorrectly identified samples of positive and
negative classes, respectively.

SEN = TP= TP + FNð Þ

SPE = TN= TN + FPð Þ

PRE = TP= TP + FPð Þ

EFF =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SEN� SPE
p

Four parameters were calculated synergistically to evaluate of
model performance. Amongst these parameters, sensitivity (true
positive rate) displays the fraction of samples belonging to the
defined class, which is correctly accepted by the category.
Specificity indicates the true negative rate and samples not
belonging to the specified class that is rejected by the modelled
class. Efficiency is a summarizing parameter that concerns both
sensitivity and specificity. Precision is the ratio between accepted
samples in specified samples and totally accepted samples of the
model in the calibration or validation set.

Data Fusion
To avoid the influence of different magnitudes, the dataset was
normalized in the range of [−1, 1]. Data fusion techniques were
used for coalescing information from different instruments to
obtain a more accurate and holistic description. It could offset the
deficiency among different analytical instruments (Li et al.,
2017). In other words, the merging technique could improve
the quality of sample chemical profi les and provide
complementary information. The fusion strategy was divided
into three levels, namely, low-, mid-, and high- levels, according
to the form of data pre-processing (Wang et al., 2018; Wu
et al., 2018).

Low-level data fusion, raw data from different instruments are
directly spliced according to the sample number, and each
sample achieves a new fingerprint for further analysis
(Simonetti et al., 2016). However, for the mid-level data fusion
strategy, the information characteristics of each instrument’s raw
data are extracted by multiple feature extraction algorithms and
then aligned by sample number and spliced into a single matrix
for multivariate analysis (Spiteri et al., 2016; Li and Wang,
2018b). High-level data fusion was used to compare the
classification results of data sets (calibration and validation
sets) from different sources. The same classification categories
are divided into this category, and different classification
categories are based on the results of the fuzzy set theory
(Márquez et al., 2016; Li et al., 2018). The result of the
majority voting is the classification category. The four fuzzy
connection operators through the minimum, maximum, average,
and product are used to identify the inconsistent samples of the
independent model and reclassify the sample. All samples are
ultimately assigned to the majority vote (Márquez et al., 2016).
February 2020 | Volume 11 | Article 79
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RESULTS AND DISCUSSION

Interpretation of FT-NIR and ATR-FT-MIR
Spectra
For a better interpretation of the peak alignment, the averaged
FT-NIR spectra of 13 collection sites were stacked in Figure 1, in
which the amplifying band between 5,000 and 4,000 cm-1 was
shown on the upper left corner. The wideband at 8,295 cm-1 is
the second overtone of C–H stretching vibrations of the CH3 and
CH2 groups. An obvious peak at 6,881 cm

-1 was the first overtone
with O–H stretching, whereas the weak absorbance at 5775 cm-1

was C–H stretching of R–OHCH3. The sharpest peat at 5,172
cm-1 is O–H stretching and OH deformation of H2O. The bands
at 5,000–4,000 cm-1 were the C–H stretching and C–O group
frequencies of carbohydrates and C–H stretching and
deformation group frequencies of polysaccharide. Intuitively,
an absorbance difference was observed among different
geographical origins except for the band at 4,584 cm-1, which
indicated the sample spectra from Guizhou and Anhui
provinces. The whole peak explanation of NIR spectra is
summarized in Table 2.

As for the qualitative analysis of ATR-FT-MIR spectra, the
averaged spectra of 13 geographical origins were also displayed
in Figure 2. After excluding the non-related spectra variables
with chemical information of the herb in the baseline area and
the absorbance of diamond crystal and CO2, the spectra variables
could reflect most of the chemical structure information
including polysaccharide, amide, lipids and flavones. The
detailed peak alignments are summarized in Table 2. For
Frontiers in Plant Science | www.frontiersin.org 6
instance, the absorbance peak at 1,607 cm-1 is incorporated
with the C═O stretching of flavones. A total of 36 flavonoids
have been reported in E. ulmoides (Wang et al., 2019), including
quercetin, astragalin, rutin, and hyperin, etc. At visual, there is no
FIGURE 1 | Stacked Fourier transform near-infrared (FT-NIR) spectra of Eucommia ulmoides leaves (EUL) from thirteen geographical regions.
TABLE 2 | Peak assignments on the FT-NIR and ATR-FT-MIR spectra of EUL.

Spectral
type

Wavenumber
(cm-1)

Assignments

NIR 8,295 Second overtone of C–H stretching
vibrations of CH3 and CH2 groups

6,881 First overtone with O-H stretching
5,775 C–H stretching of R–OHCH3

5,172 O–H stretching and OH deformation of H2O
5,000–4,000 C–H stretching and C═O group frequencies of

carbohydrates and C–H stretching and deformation
group frequencies of polysaccharide

MIR 3,317 O–H stretching of polysaccharide
and amide A of proteins

2,919, 2,851 Asymmetric and symmetric C–H stretching of CH2

1,734 C═O stretching of lipids, etc.
1,629 Amide I band
1,607 C═O stretching of flavones
1,553 Amide II band
1,439 C–H scissoring and in-plane deforming
1,375 CH3 scissoring
1,317 a-Helix of amide III band
1,243 Amide III and C–O stretching
1,145 C–O–C stretching

1,101, 1,068,
1,054

Polysaccharide rings

920 Sugar skeleton vibration
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obvious difference among these averaged spectra from different
geographical origins.

Exploratory Analysis
In general, exploratory analysis is the initial step to investigate
the original cluster results with part of variables or the whole
dataset. In our present research, PCA was used as one of the
methods used for the first two PCs to explain part of spectra
information. t-SNE and HCA were utilized for an initial cluster
with integrated variables including ATR-FT-MIR and FT-NIR
Frontiers in Plant Science | www.frontiersin.org 7
spectra. The combination graphs comprised of score plots from
two kinds of exploratory methods due to the fact that both of
PCA and t-SNE displayed the cluster results in the form of a 2D
score plot. The climatic zoning maps are shown below.

Accumulated temperature (≥10C°) distribution in China and
samples cluster results based on the climatic conditions are
shown in Figure 3, which displays that there was no clear
cluster performance with the variation of the climatic
conditions. Similar to the classification tendency above, the
exploratory results of annual average temperature (Figure 4)
FIGURE 2 | Stacked attenuated total reflection Fourier transform mid-infrared (ATR-FT-MIR) spectra of Eucommia ulmoides leaves (EUL) from 13 geographical
regions.
FIGURE 3 | The exploratory analysis results of Eucommia ulmoides leaves (EUL) samples in ≥10°C accumulated temperature (A): The distribution of each collection
site; (B): PCA; (C): t-SNE.
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also did not show a clear cluster according to the climatic
regionalization of temperature by either using PCA or t-SNE.
Score plots of t-SNE were mentioned below because of the
excellent visualization performance of t-SNE. Besides, three
climatic factors (dryness, annual average precipitation, and
moisture index) were used to investigate further cluster
tendency. Their cluster results were shown in Figures 5–7,
Frontiers in Plant Science | www.frontiersin.org 8
which reflect an interesting focus that five samples from
Xinjiang Autonomous Region were distributed in an individual
group, whereas two samples from the same location could not be
distributed in the same cluster. Comparing two locations in the
province, we found that the humidity index differed (Table S1)
between two cities (Ürümqi city=-39.84, Fukang City=-19.79).
As for the soil type that caused the cluster difference, there were
FIGURE 4 | The exploratory analysis results of Eucommia ulmoides leaves (EUL) samples in annual average temperature (A): The distribution of each collection site;
(B): PCA; (C): t-SNE.
FIGURE 5 | The exploratory analysis results of Eucommia ulmoides leaves (EUL) samples in dryness (A): The distribution of each collection site; (B): PCA;
(C): t-SNE.
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samples from Nanjing, Jiangsu Province that showed individual
classification in Figure 8, which indicated that these samples
were grown in urban soil, which was different from other soil
types. Generally, the cluster results of all of samples were
sophisticated in terms of various climatic conditions. The
reason why these samples could not be classified according to
the individual classification of the same climatic condition is that
Frontiers in Plant Science | www.frontiersin.org 9
the chemical information reflected by two of spectra is influenced
by these climatic parameters simultaneously.

To display more detailed visualization results, these samples
from 23 collection sites were analyzed with HCA method,
because each sample has precise classification with a direct
measurement distance (Figure 9). When the distance was
equal to 10, these samples were divided into two categories, in
FIGURE 6 | The exploratory analysis results of Eucommia ulmoides leaves (EUL) samples in annual average precipitation (A): The distribution of each collection site;
(B): PCA; (C): t-SNE.
FIGURE 7 | The exploratory analysis results of Eucommia ulmoides leaves (EUL) samples in moisture index (A): The distribution of each collection site; (B): PCA;
(C): t-SNE.
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FIGURE 8 | The exploratory analysis results of Eucommia ulmoides leaves (EUL) samples in soil type (A): The distribution of each collection site; (B): PCA;
(C): t-SNE.
FIGURE 9 | Hierarchical cluster analysis (HCA) dendrograms of the Eucommia ulmoides leaves (EUL) samples from different regions (The hyphen is preceded by the
region of EUL samples, the hyphen followed by each sample collection site elevation).
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which samples from Xinjiang Autonomous Region were placed
in a sole class, whereas other samples from other collection
regions were clustered as one class. The interesting cluster could
be interpreted that these leaves from Xinjiang have special
cultivation mode. In the cultivation area, the aerial parts of
these trees were cut in winter because of the extremely low
temperature. Then, the young leaves from the young branch were
collected. However, leaves from other locations were collected
from plants whose main branch remained even in winter. In
addition, these samples from Xinjiang were located at high-
latitude regions in China, which might be the reason for the
individual cluster. When the distance was equal to 9, these
samples were divided into three classes. Those samples from
Xinjiang still belonged to an individual category, whereas
samples from Hubei (Shennongjia), Jiangxi, Anhui, and Hunan
(Jishou city) were regarded as the second class. The remaining
samples were divided as the third class. Samples from Xiangyang
city in Hubei Province were different from samples obtained
from two collection sites in the same province, which indicated
that the altitude was the main influencing factor to the formation
of two clusters. Moreover, chemical variation caused by altitude
has been reported in published literatures. Li et al. (2016) have
found that elevations of collection locations affect the chemical
components of wild Wolfporia extensa sclerotia analyzed using
mid-infrared spectra combined with the same HCA method. In
addition, Sun et al. (2016) also indicated that 3,000 m was the
boundary where the contents of nine constituents in the >3,000-
meter group of medicinal rhubarb were significantly higher
(P<0.05) compared with the <3,000-meter group.

Results of PLS-DA
It has been mentioned in the chapter of theory explanation that three
fusion strategies were used for discrimination of geographical origins
of the herb. The calculation results in the form of a confusion matrix
of low-level fusion in the calibration set are displayed in Table S2,
and the discrimination of validation set is shown in Table S3. The
results of low-level fusion indicated that all samples in the calibration
set were accurately classified into their respective categories, whereas
83.61% samples in the validation set were discriminated accurately.
Furthermore, mid-level fusion with combined principal components
from two kinds of spectra was utilized to investigate the
discrimination performance. The results (shown in Tables S4 and
S5) indicated that both of accuracy rates were lower than those of
low-level fusion strategy (Accuracy of calibration set=87.30%,
Accuracy of validation set=77.05%). The poor discrimination
performance of the latter fusion method could be interpreted that
fused principal components from two kinds of spectra failed to reflect
difference among 13 geographical origins although there was little
variable for short calculation time. Therefore, high-level fusion
strategy was further applied to investigate model discrimination
performance. Based on the fuzzy set theory, individual
discrimination results from two spectroscopies that were
recalculated for more precise classification. According to the
confusion matrix of calibration (Table S6) and validation set
(Table S7), 100% of samples in the calibration set were accurately
Frontiers in Plant Science | www.frontiersin.org 11
discriminated with excellent model parameters (SEN, SPE, PRE, and
EFFwere equal to 100%), and this result was the same as the results of
low-level fusion. However, 86.89% samples of the validation set in
high-level fusion strategy were classified into their correct classes, and
this percentage was higher than obtained by the low-level fusion
method. Particularly, samples from Jiangxi, Xinjiang, Jiangsu, Anhui,
and Shandong Provinces had four model parameters equal to 100%,
and this result indicated that these sample show a more obvious
difference in terms of chemical information reflecting by FT-NIR and
ATR-FT-MIR spectra. The advantage of high-level fusion strategy
has also been reported for the geographical traceability of Paris
polyphylla var. yunnanensis (Wu et al., 2018) and Panax notoginseng
(Li et al., 2018).

To validate the model robustness and fitting of PLS-DA, a
permutation test was used with values of six parameters, namely,
R2 minimum, R2 maximum, Q2 minimum, Q2 maximum, R2-
intercept, and Q2-intercept. Evaluation results of low-level fusion
in Table 3 show that the calibration set had an excellent model
performance with 100% model evaluation parameters and low
error (RMSEE=0.05-0.13; RMSECV=0.14-0.30). As for the
model parameters of the validation set, validation samples
from Jiangsu, Shaanxi, Xinjiang, Jiangsu, and Anhui have
100% model evaluation parameters with RMSEP from 0.10 to
0.20. Permutation test of low-level fusion indicated that the
model was robust and fitting in which R2 and Q2 were lower
than the original R2 and Q2 whereas the Q2-intercept was lower
than 0. Results of model evaluation parameters and permutation
test in mid-level fusion approach are shown in Table 4.
Compared with the model parameters of low-level fusion, mid-
level fusion strategy had poorer model evaluation parameters
had the lowest SEN, SPE, PRE, and EFF. Moreover, RMSEE and
RMSECV in the calibration set were higher than those of low-
level fusion, whereas the averaged RMSEP was also more than
0.02 of that of low-level fusion. Permutation test of mid-fusion
strategy also indicated that there was an over-fitting risk in terms
of the comparison between R2 and original R2 and between Q2

and original Q2.

Results of RF
Similar to the analysis of PLS-DA with three fusion methods, RF
was also utilized for the discrimination analysis of the
geographical origins of EULs. After selecting the best number
of trees (ntree=1,207 in Figure 10A) and branch nodes (mtry=55
in Figure 10B) with the lowest OOB error, results of low-level
fusion in calibration set are displayed in Table S8. This table
showed that the model distinguished samples from Jiangxi,
Guizhou and Jiangsu effectively with 85.71% accuracy rate and
100% SEN, SPE, PRE, and EFF values. By contrast, the model
could not classify these samples from other provinces in China
because of the poor SEN and SPE values, and two parameters
were used for interpretation of true positive and true negative
rates, respectively. Results of low-level fusion in the validation set
are displayed in Table S9, in which samples from Jiangxi,
Shaanxi, Gansu, Jiangsu, and Anhui Provinces were accurately
predicted as the respective geographical origins. As for other
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TABLE 3 | Classification parameters obtained for PLS-DA model using low-level fusion of EUL with different collection regions.

4 10 11 12 13 Average

0.00 0.00 100.00 100.00 100.00 100.00
0.00 0.00 100.00 100.00 100.00 100.00
0.00 0.00 100.00 100.00 100.00 100.00
0.00 0.00 100.00 100.00 100.00 100.00
.10 .07 0.07 0.09 0.08 0.09
.24 .14 0.17 0.18 0.18 0.20

0.00 0.00 0 100.00 66.67 73.63
0.00 0.00 100.00 100.00 100.00 98.52
0.00 0.00 – 100.00 100.00 92.48
0.00 0.00 0 100.00 81.65 77.32
.20 .13 0.15 0.15 0.17 0.18

–0.85 0 2–0.83 0.65–0.86 0.59–0.83 0.65–0.85 –

–-0.15 -0 4–-0.21 -0.91–-0.18 -1.28–-0.26 -1.17–-0.27 –

.92 .91 0.88 0.86 0.89 0.89

.48 .70 0.21 0.48 0.47 0.40
.60 0.70 -0.62 -0.78 -0.67 -0.68

sing mid-le

4 10 11 12 13 Average

.71 0.00 75.00 71.43 100.00 78.80
0.00 0.00 100.00 100.00 100.00 98.86
0.00 0.00 100.00 100.00 100.00 92.62
.58 0.00 86.60 84.52 100.00 80.94
.24 .10 0.14 0.17 0.17 0.18
.29 .16 0.18 0.22 0.20 0.23

0.00 0.00 0.00 33.33 66.67 64.01
0.00 8.28 100.00 100.00 100.00 97.96
0.00 5.00 – 100.00 100.00 86.87
0.00 9.13 0.00 57.74 81.65 68.31
.23 .13 0.15 0.17 0.18 0.20

–0.57 0 1–0.57 0.09–0.65 0.13–0.49 0.08–0.51 –

–-0.19 -0 7–-0.09 -0.72–-0.05 -0.64–-0.14 -0.64–-0.03 –

.48 .83 0.42 0.49 0.48 0.53

.12 .58 -0.05 0.13 0.25 0.23
.44 0.45 -0.31 -0.39 -0.38 -0.43
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Parameters 1 2 3

Calibration set
SEN (%) 100.00 100.00 100.00 10
SPE (%) 100.00 100.00 100.00 10
PRE (%) 100.00 100.00 100.00 10
EFF (%) 100.00 100.00 100.00 10
RMSEE 0.08 0.13 0.09 0
RMSECV 0.15 0.28 0.20 0
Validation set
SEN (%) 100.00 100.00 33.33 10
SPE (%) 100.00 96.08 100.00 10
PRE (%) 100.00 83.33 100.00 10
EFF (%) 100.00 98.02 57.74 10
RMSEP 0.15 0.26 0.17 0
Permutation test
R2 (min–max) 0.66–0.84 0.66–0.87 0.55–0.85 0.73
Q2 (min–max) -1.08–-0.08 -1.38–-0.33 -0.98–-0.13 -0.97
Original R2 0.91 0.89 0.88 0
Original Q2 0.64 0.44 0.30 0
Q2-intercept -0.69 -0.80 -0.64 -0

TABLE 4 | Classification parameters obtained for PLS-DA model u

Parameters 1 2 3

Calibration set
SEN (%) 100.00 100.00 0 85
SPE (%) 100.00 91.43 100.00 10
PRE (%) 100.00 70.00 – 10
EFF (%) 100.00 95.62 0 92
RMSEE 0.15 0.27 0.21 0
RMSECV 0.21 0.33 0.21 0
Validation set
SEN (%) 75.00 100.00 0 10
SPE (%) 100.00 92.16 100.00 10
PRE (%) 100.00 71.43 – 10
EFF (%) 86.60 96.00 0 10
RMSEP 0.18 0.28 0.21 0
Permutation test
R2 (min–max) 0.06–0.50 0.12–0.46 0.10–0.63 0.10
Q2 (min–max) -0.69–-0.15 -0.79–-0.15 -0.78–-0.03 -0.81
Original R2 0.59 0.50 0.23 0
Original Q2 0.21 0.25 0.11 0
Q2-intercept -0.41 -0.50 -0.46 -0
5 6 7 8 9

00.00 100.00 100.00 100.00 100.00 10
00.00 100.00 100.00 100.00 100.00 10
00.00 100.00 100.00 100.00 100.00 10
00.00 100.00 100.00 100.00 100.00 10
0.05 0.11 0.10 0.12 0.06 0
0.19 0.23 0.23 0.30 0.17 0

00.00 57.14 100.00 100.00 0 10
00.00 100.00 96.43 88.24 100.00 10
00.00 100.00 71.43 62.50 – 10
00.00 75.59 98.20 93.93 0 10
0.10 0.27 0.18 0.28 0.15 0

26–0.88 0.66–0.83 0.67–0.85 0.69–0.86 0.47–0.84 0.7
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0.94 0.88 0.88 0.90 0.86 0
0.36 0.58 0.38 0.42 -0.22 0
-0.57 -0.85 -0.68 -0.71 -0.55 -

el fusion of EUL with different collection regions.
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00.00 92.31 100.00 100.00 0 10
99.17 100.00 97.39 97.17 100.00 10
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classes, model performance was the same as that of the
calibration set. The model calibration of RF (85.71% accuracy
rate) was poorer than that of PLS-DA (100% accuracy rate) with
the same fusion strategy.

After the combination of principal components from two
kinds of spectra, the establishment of the RF model was still
needed to select the model parameters, including the best ntree and
the optimal branch nodes. Considering the OOB error in Figures
10C, D, the best number of trees is 454, and the mtry is 11, forming
the RF model for the discrimination analysis of geographical
origins. The detailed classification results of the calibration set
with 81.75% accuracy rate are displayed in Table S10, which
shows that Jiangsu and Jiangxi Provinces were highly and
effectively discriminated as the correct origins of the
corresponding samples. The detailed discrimination results of
the validation set with 88.52% correct rate are shown in Table
S11. The prediction results of the validation set indicated that the
origin of samples from Jiangxi, Xinjiang, Jiangsu, Hebei, Anhui,
and Shandong Provinces was predicted effectively and accurately.

Before the calculation of high-level fusion, individual spectra
type was used for the model establishment to obtain vote value.
Figure S1 shows the initial selection results of two vital
parameters, in which ntree is 320 (Figure S1A) and mtry is 55
(Figure S1C) of FT-NIR spectra, whereas ntree is 304
(Figure S1B) and mtry is 32 (Figure S1D) of ATR-FT-MIR.
Frontiers in Plant Science | www.frontiersin.org 13
Based on the initial parameter results, 10-fold cross validation
was used for selection of important variable in two kinds
of spectra because these variables’ importance differed among
different spectra bands. Figure 11A shows the feature
importance of FT-NIR spectra, whereas Figure 11B shows the
feature importance of ATR-FT-MIR. Figure S2A shows that
183 important variables in NIR spectra, and Figure S2B
indicates 87 important variables in ATR-FT-MIR that should
be used for further parameter selection. Finally, 1,311 trees
(Figure S2C) and 61 branches (Figure S2E) were used as the
model parameters in an FT-NIR model, whereas 365 trees
(Figure S2D) and 9 branches (Figure S2F) were used as
ATR-FT-MIR model parameters. After obtaining the vote
results of RF from individual spectra, two votes of one sample
from two spectra were weighted again, thereby forming the final
results of the high-level fusion method. The detailed results of
the calibration set were displayed in Table S12 with 92.86%
accuracy rate, whereas the confusion matrix of validation set
was shown in Table S13 with 93.44% correct rate. Four model
evaluation parameters indicated that in calibration and
validation sets, the model had high SEN and SPE, and RF
with high-level fusion is precious and efficient.

In general, high-level fusion strategy combined with RF model
with a high accuracy rate in the validation set was regarded as
the best discrimination model for the determination of
FIGURE 10 | The parameter optimization of random forest models (A): ntree of the low-level data fusion dataset; (B): mtry of the low-level data fusion dataset;
(C): ntree of the mid-level data fusion dataset; (D): mtry of the mid-level data fusion dataset).
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traceability of geographical origins in EUL quality control.
However, the correct rate of calibration set was lower than that
of PLS-DA with the same fusion method because of the over-
fitting risk.
CONCLUSION

Based on the non-destructive, fast and efficient advantages of FT-
NIR and ATR-FT-MIR technologies, this work utilized
chemometrics to identify EUL from different regions. RF is
supplemented with high-level data fusion strategies compared
with the traditional PLS-DA model. Geographical origins of EUL
can be effectively distinguished from each production region.
This may be due to the fact that high-level fusion occurs at the
decision level and is less affected by irrelevant or interference
information. The same as the PLS-DA model, the accuracy of
low-level and mid-level fusion is relatively lower than that of
high-level fusion.

The influence investigation of climate and soil type influences
indicated that the cluster tendencies of all of the samples were
sophisticated. These samples could not be classified according to
the individual classification under the same climatic conditions,
because the chemical information reflected by two of spectra was
influenced by these climatic parameters simultaneously.

In general, our results were by no means exhaustive, but these
findings can provide scientific support for EULs’ geographic
authentication and can reveal chemical composition
accumulation and changes in different environments.
Moreover, different environmental factors that affect the
cumulative changes of EUL chemical composition in different
regions were revealed.
Frontiers in Plant Science | www.frontiersin.org 14
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