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Motivation: The biological function of N6-methyladenine DNA (6mA) in plants is largely
unknown. Rice is one of the most important crops worldwide and is a model species for
molecular and genetic studies. There are few methods for 6mA site recognition in the rice
genome, and an effective computational method is needed.

Results: In this paper, we propose a newcomputationalmethod called 6mA-Pred to identify
6mA sites in the rice genome. 6mA-Pred employs a feature fusion method to combine
advantageous features from other methods and thus obtain a new feature to identify 6mA
sites. This method achieved an accuracy of 87.27% in the identification of 6mA sites with
10-fold cross-validation and achieved an accuracy of 85.6% in independent test sets.

Keywords: rice, model, fusion, DNA, 6mA
INTRODUCTION

DNA methylation plays crucial roles in many biological functions, and methylated DNA carries
important epigenetic information. The modification of DNA methylation is a heavily researched
topic in epigenetic research (Liu et al., 2016). Previously, DNAmethylation was thought to comprise
cytosine (5-methylcytosine, 5mC) methylation and N4-methylcytosine (4mC) methylation (Chen
et al., 2017; He et al., 2019; Tang et al., 2019a). However, with the rapid development of sequencing
technology, a new type of DNA methylation modification, DNA-6mA methylation, has been
identified and has become a heavily researched subject in the field of epigenetics (Xiao et al., 2018).
N6-methyladenine DNA (6mA) modification is the most prevalent type of DNA modification in
prokaryotes. This modification plays important roles in DNA mismatch repair, chromosome
replication, cell defense, cell cycle regulation, and transcription (Xu et al., 2017; He et al., 2019).
6mA shows similar properties in eukaryotes and prokaryotes (Hao et al., 2019).

Machine learning methods have overcome many problems in identifying 4mC (Chen et al.,
2017) and 5mC modifications. The 6mA modification has become a heavily researched subject, and
an increasing number of researchers are using machine learning to identify 6mA sites in the rice
genome. The current machine learning algorithms perform notably well in recognizing 6mA sites in
the rice genome. Many excellent features and algorithms have been applied to the recognition of 6mA
sites. Regarding feature algorithms, nucleotide chemical property, nucleotide frequency (Panet al., 2017;
.org January 2020 | Volume 11 | Article 41
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Yin et al., 2019; Chen et al., 2019a), and mononucleotide binary
encoding are often used in the recognition of 6mA sites in the rice
genome. These methods all have some properties in common,
including the unique representations of nucleotides. This property
is also exhibited by our method. Regarding dimensionality
reduction algorithms, MRMD (Zou et al., 2016a) performs well
and is an excellent feature selection algorithm.Otherhighly efficient
feature selection algorithms have been proposed in bioinformatics
classification (Zou et al., 2015; Xu et al., 2017; Zhu et al., 2017; Pan
et al., 2018;Wang et al., 2018; Cheng et al., 2018a; Zhu et al., 2018a;
Chenget al., 2018b;Zhuet al., 2018b; Lai et al., 2019;Daoet al., 2019;
Yu et al., 2019; Yang et al., 2019; Ren Qi et al., 2019; Tang et al.,
2019b). Regarding classification algorithms, an increasing number
of classification methods are being used by researchers to identify
6mA sites, such as Random Forest, XGboost, support vector
machine (SVM), and gradient boosted decision tree (GBDT).
Research has proven that SVM and Random Forest perform
better than the other classifier algorithms. In the present study,
the performanceof SVMwas highly stable. AMarkovmodel is used
in MM-6mAPred (Pian et al., 2019) to identify 6ma sites and has
achieved good results.

There are few computational methods to identify 6mA sites in
the rice genome. Proposed methods include i6mA-Pred (Chen
et al., 2019a), iDNA6mA-PseKNC (Feng et al., 2019a), MM-
6mAPred (Pian et al., 2019), and iDNA6mA-Rice (Hao et al.,
2019). i6mA-Pred uses nucleotide chemical property, nucleotide
frequency, and SVM to identify 6ma sites. MM-6mAPred adopts
a Markov model to identify 6mA sites. iDNA6mA-Rice uses
mononucleotide binary encoding and Random Forest to identify
6mA sites. Feature fusion makes use of diverse features to build
prediction models and has been successfully and widely applied
in bioinformatics (Zhang et al., 2018a; Zhang et al., 2018b; Zhou
et al., 2019;Zhanget al., 2019a;Zhanget al., 2019b). In thispaper,we
propose a feature fusion-based method to identify 6mA sites in the
rice genome, in which nucleotide chemical properties, binary
encoding, KMER, and Markov features are used to formulate
DNA sequences. Our method combines these excellent features
byusing feature selection algorithms.Theproposedmodelobtained
an overall accuracy of 87.27% in identifying 6mA sites.
MATERIALS AND METHODS

Datasets
Two datasets were used in our study. One dataset comprised the
same experimental benchmark data used byChen et al. (Chen et al.,
2019a) and has been used to train MM-6mAPred (Cheng et al.,
2018b; Pian et al., 2019). This dataset contained 880 positive
samples and 880 negative samples. The positive samples were
obtained by setting the modification score and CD-HIT. Positive
samples can improve the quality of the sequence and reduce
redundancy. The second dataset comprised the same
experimental benchmark data used to train iDNA6mA-Rice, and
it contained 15,400 positive samples and 15,400 negative samples.
All of the sequences in these two datasetsmeasured 41 bp in length.
All of the negative samples had non-methylated adenosine in the
center, and all of the positive samples had a 6mA site in the center.
Frontiers in Plant Science | www.frontiersin.org 2
Table 1 shows the numbers of positive and negative samples
for both datasets. Dataset 1 was mainly used for cross-validation.
Dataset 2 was primarily used for independent testing. These two
benchmark datasets are available at https://github.com/
huangqianfei0916/6ma-rice.

Model Architecture
Feature extraction plays a crucial role in the construction of the
model (Wang et al., 2019). Four feature extraction algorithms
were adopted to formulate 6mA samples. Binary encoding,
nucleotide chemical property (Xu et al., 2019), KMER, and
Markov features were selected from among several feature
algorithms, and Table 1 shows the results of each algorithm. In
order to reduce computation and optimize feature vectors, feature
selection algorithms were used for each feature. The features after
fusion were normalized, and the final feature vectors were the
optimal representations of the sequence (Chen et al., 2019b).
Figure 1 illustrates the structure of the model.

Binary encoding and nucleotide chemical property are
excellent feature algorithms extracted from iDNA6mA-Rice
and i6mA-Pred. Kmer is a useful feature algorithm (Feng et al.,
2019b) that we selected based on a large number of experiments.
The Markov feature is a new feature extraction algorithm we
introduced based on MM-6mAPred. Combining the best features
does not necessarily produce the best results; for example, Kmer
does not performwellwhenused alone, but does sowhencombined
with other features. Feature selection solves this problem and
reduces the amount of computation. Finally, the best features
were obtained by normalization. Regarding the classifier, previous
studies have shown that SVM and Random Forest perform better
than other classifiers. In this study, the performance of SVM was
significantly better than that of Random Forest.

Binary Encoding
Binary encoding is a simple and effective feature algorithm. This
algorithm obtains sequence features by the binary representation
of nucleotides (Zou et al., 2019). The binary encoding algorithm
converts nucleotides into the following formats:

A ! ½ 1 , 0 , 0 , 0�
C ! ½ 0 , 1 , 0 , 0�
G ! ½ 0 , 0 , 1 , 0�
T ! ½ 0 , 0 , 0 , 1�

This algorithm can be understood as a unique representation of
nucleotides and can be considered a one hot encoding algorithm. A
random DNA sequence withm nucleotides can then be converted
into a vector of 4 ×m features (Hao et al., 2019; Chen et al., 2019c).
The representation of nucleotides is not unique, and the
representations of A, T, G, and C are interchangeable.
TABLE 1 | All datasets.

Datasets Positive Negative Total Species

Dataset 1 880 880 1,760 Rice
Dataset 2 154,000 154,000 308,000 Rice
January 202
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Nucleotide Chemical Property
DNA is composed of four types of nucleotides: adenine (A),
cytosine (C), guanine (G), and cytosine (C). DNA has multiple
properties, such as ring structures, functional groups, and
hydrogen bonds (Fu et al., 2018; Wei et al., 2018; Xue et al.,
2018; Tan et al., 2019a) (He et al., 2019). A and G each contain
two rings, whereas C and T contain only one. Regarding
secondary structures, A and T form weak hydrogen bonds,
whereas C and G form strong hydrogen bonds. Regarding
functional groups, A and C compose the amino group,
whereas G and T compose the keto group. The feature
extraction algorithm can be formulated as follows:

a =
1 n∈ A ,Gf g
0 others

(

b =
1 n∈ A , Tf g
0 others

(

c =
1 n∈ A , Cf g
0 others

(

where n represents a nucleotide, which can be converted into the
following format:

A ! ½ 1 , 1 , 1� C ! ½ 0 , 0 , 1�
G ! ½ 1 , 0 , 0� T ! ½ 0 , 1 , 0�
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For instance, a DNA sequence “AATCGTA” can be
transformed into a vector such as (1,1 ,1 ,1 ,1 ,1 ,0 ,1 ,
0,0,0,1,1,0,0,0,1,0,1,1,1). Nucleotide chemical property has
similar properties to binary encoding, both of which can be
considered to yield unique representations of nucleotides.

KMER
Kmer is a highly common feature extraction algorithm and is
easy to understand (Liu et al., 2015; He et al., 2018; Su et al., 2018;
Zhu et al., 2019). When k = 1, Kmer denotes the frequency of the
four nucleotides. When k = 2, the sequence can be represented by
16 features, i.e., AA, AT, AG, AC, TA, TT, TG, TC, …,CC (Cao
et al., 2018). As the value of k increases, the dimension of the
feature increases; thus, the difficulty of calculation increases. In
this study, the k value that was employed was 3. Thus, a sequence
could be represented as 64 features. We tested the results of k
from 1 to 4 and chose 3. A k equal to 3 will not cause poor results
because the features are too sparse. The Kmer (k = 3) descriptor
can be calculated as follows:

p =
t

L − 2
t ∈ AAA,AAT ,……,CCCf g

where L denotes the length of the sequence and t denotes the
number of nucleotide occurrences. As the value of k increases,
the results may improve, but the dimension will increase, causing
the amount of calculation to increase. In this study, although
Kmer yielded poor results when used alone, the information
contained in Kmer was crucial in feature fusion.
FIGURE 1 | Flowchart showing the construction of this model. The feature selection is selectfrommodel.
January 2020 | Volume 11 | Article 4
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Markov Feature
From MM-6mAPred, we can determine that the Markov chain
achieves good performance in recognizing 6ma sites. Therefore,
we introduced the Markov chain into DNA sequence analysis to
improve the sequence representation. The algorithm constructed
the first-order Markov chain (Kemeny and Snell, 1976) for each
dataset. Before obtaining the sequence features, the algorithm
must calculate the transition probability of the dataset. Figure 2
shows a schematic of feature extraction from a DNA sequence
with the first-order Markov chain. A, T, G, C are equivalent to
four states, and PiNN is the transition probabilities between the
ith nucleotide and the (i + 1)th nucleotide (Nigatu et al., 2017;
Pian et al., 2019). Thus, a transition probability matrix is
generated between every two nucleotides. A sequence of 41 bp
can generate 40 transition probability matrices.

A sequence of 41 bp can be represented as a 40-dimensional
vector. We did not use the initial probability because it did not
improve the experimental results. The transition probability
between two nucleotides is used to represent sequence
information. Sequence information between the ith nucleotide
and the (i + 1)th nucleotide is obtained from the ith transition
probability matrix. Moreover, the features result can be
optimized by adjusting the length of the sequence. The
sequence contains the transition probability information, and a
sequence can be represented by the transition probabilities.

Performance Evaluation of Different
Algorithms
The type of feature algorithm has strong effects on experimental
results (Liu et al., 2017; Cheng et al., 2018c; Zheng et al., 2019;
Cheng et al., 2019a; Zhang et al., 2019c). After testing many
features and classifications, three best-performing classifiers were
selected to test the feature descriptors. Table 2 reports the 10-
fold cross-validation results for the classifiers identifying the
6mA sites in dataset 1. Binary encoding, NCP (Chen et al., 2019c),
Markov features, and ENAC were selected for feature selection.
Experimentation revealed that Kmer is a better choice than ENAC.
Table 2 shows that the results of ENACare considerably better than
Frontiers in Plant Science | www.frontiersin.org 4
those of Kmer, whereas the results from using Kmer fusion are
better than those fromusing ENAC fusion. This finding shows that
merging the best-performing features may not be the optimal
option. The binary encoding feature algorithm was used in
iDNA6mA-Rice, and the NCP feature algorithm was used in
i6mA-Pred. Our experimental results were consistent with the
results of previous studies. The Markov feature algorithm is a new
feature algorithm that we created based on MM-6mAPred. To
improve the experimental results and reduce the amount of
calculation, the feature selection algorithm is applied for each
feature. Feature selection after fusion can also reduce the amount
of calculation, but doesnot achieve as good results.As analternative
approach to feature selection, feature selection can be performed
before fusion and again after fusion; however, this approach will
result in a few dimensions. Thus, feature selection before fusion is
the best approach.

Support Vector Machine
SVM is a widely used machine learning algorithm (Ding and Li,
2015; Li et al., 2015; Zeng et al., 2017; Ding et al., 2017a; Zhang
et al., 2019; Tan et al., 2019a) and was used in this study to
identify 6mA sites in the rice genome. SVM is also widely used in
bioinformatics fields (Zou et al., 2016b; Wang et al., 2018; Wei
et al., 2018; Xiong et al., 2018; Zeng et al., 2018a; Xu et al., 2018a;
Xu et al., 2018b; Xu et al., 2018c; Li et al., 2019). Our experiments
showed that SVM was more suitable for the purposes of the
present study than were the other algorithms. We used the
libsvm package available at http://www.csie.ntu.edu.tw/~cjlin/
libsvm/. The radial basis kernel function (RBF) was used to
obtain the classification hyperplane. The two main parameters of
SVM, C and gamma, were optimized by grid search. The
optimization ranges about C and gamma were (2−5,25) and
(2−5,25), respectively, and the values of C and gamma were 1.0
and 0.125, respectively. In this study, SVM performed better than
the other classifiers.

Feature Selection
Feature selection algorithms are widely used in machine learning
(Liu X. et al., 2019; Zeng et al., 2019a; Zeng et al., 2019b), and
FIGURE 2 | Schematic showing the process of extracting features from the transition probability matrix of the DNA sequence. The sequence
“AATACATGGGGTTATGTGCCACCGGTCATAATATCTAGGGT” is used as an example to explain the process.
January 2020 | Volume 11 | Article 4
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feature selection is necessary with our method. Feature selection
removes redundant and uncorrelated information from the
sequence and increases computational speed. In this study, we
chose the selectfrommodel module of sklearn and the classifier
XGboost (Chen and Guestrin, 2016; Zhou et al., 2019). Feature
selection can optimize features and reduce the number of
calculations. The results of our experiments proved that feature
selection can improve results and reduce computation. Feature
selection was able to identify the better features, and XGboost
was the best-performing classifier. We investigated other feature
selection methods, but did not obtain high-quality results. Feature
selection can beperformed in threeways: before fusion, after fusion,
and both before and after fusion. The experimental results showed
that before fusion is the best approach.

Performance Evaluation
It is important to evaluate the results of a new model, and
several evaluation metrics are available. Sensitivity (Sn),
specificity (Sp), accuracy (Acc), and Mathew’s correlation
coefficient (MCC) are often used to evaluate the quality of a
model in machine learning (Liu B. et al., 2019; Cheng et al.,
2012; Cheng et al., 2016; Ding et al., 2016b; Mariani et al., 2017;
Ding et al., 2017; Xu et al., 2017; Wei et al., 2017a; Wei et al.,
2017b; Hu et al., 2018; Zhang et al., 2018c; Ding et al., 2019;
Shan et al., 2019; Xu et al., 2019; Tan et al., 2019b; Cheng et al.,
2019b). These metrics are formulated as follows:

Sn =
TP

TP + FN

Sp =
TN

TN + FP

Acc =
TP + TN

TP + TN + FP + FN

MCC =
TP*TN − FP*FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TP + FPð Þ* TP + FNð Þ* TN + FPð Þ* TN + FNð Þp
These metrics are commonly used in machine learning. TP,

TN, FP, and FN denote true positive, true negative, false positive,
and false negative, respectively. The above mathematical
Frontiers in Plant Science | www.frontiersin.org 5
expressions clearly describe the meanings of the four metrics.
In model evaluation methods, independent dataset testing and
cross-validation are often used to evaluate the prediction ability
of the model. In this study, dataset 1 was mainly used for cross-
validation and training, and dataset 2 was mainly used for
independent testing. In the independent test experiment,
dataset 1 was used for training and dataset 2 was used for testing.

In addition to the above metrics, area under the ROC curve
(AUC) and receiver operating characteristic (ROC) were also
used to evaluate model quality.
RESULTS AND DISCUSSION

Analysis of the Algorithms
After the feature fusion, we tested the feature using voting
techniques and three different classifiers with 10-fold cross-
validation and independent test experiments. The 10-fold
cross-validation results of the different methods in identifying
6mA sites by using the benchmark dataset 1 are reported in
Figure 3A. The independent test results of the different methods
in identifying 6mA sites by using the benchmark dataset 2 are
reported in Figure 3B. Figure 3A shows that the test results of
the three classifiers were highly similar. However, Figure 3B
shows that SVM performed significantly better than the other
classifiers. Based on the experimental results, we chose the SVM
classifier in this study.

Before feature extraction, we conducted a simple optimization
of the sequence length. In addition, we tested the original
sequence and the optimal sequence using our method. The
experimental results are reported in Table 3. As depicted in
the table, feature selection is an excellent choice; the results of the
best sequence were considerably better than those of the original
sequence. The results revealed no significant improvement;
however, reducing the length of the sequence reduces the
amount of calculation.

Many experiments have been conducted regarding the
selection of feature algorithms and classifiers. Our experiments
revealed that binary encoding, NCP, and the Markov feature
were effective, and previous studies have shown that they yield
good results when used alone. We visualize the features by
reducing the dimensionality, and Figure 4 reports the
distribution of each feature method. Therefore, we combined
these excellent features to improve representation. In the
selection of feature selection methods, we tested several widely
used methods, and the experimental results are shown in
Figure 5. To further optimize the features, we applied
MinMaxScaler to the features after fusion. The differences
between Figures 3A, B indicate that the SVM was highly
robust. Similarly, the model obtained by learning the
optimized features with SVM was highly powerful. The
method can be applied to computational intelligence
techniques, such as neural networks (Chen et al., 2016; Song
et al., 2018; Cabarle et al., 2019; Hong et al., 2019; Zhong et al.,
2019; Zhou et al., 2019b; Wang et al., 2019b), evolutionary
algorithms (Xu et al., 2019; Xu et al., 2019; Zeng et al., 2019b),
January 2020 | Volume 11 | Article 4
TABLE 2 | Performance of different feature descriptors and classifiers.

Feature
descriptors

SVM
(Acc%)

XGboost (Acc%) GBDT (Acc %) Vote (Acc %)

EIIP 63.9 83.9 84.0 83.9
ANF 54.2 60.7 61.1 61.7
BINARY 82.8 84.4 83.6 84.7
DNC 58.4 61.0 59.7 61.2
NCP 82.8 83.3 83.9 84.3
PseEIIP 53.9 66.5 65.3 65.9
TNC 56.8 66.5 65.3 66.0
KMER 53.0 64.2 64.8 65.1
ENAC 73.5 79.4 78.8 79.0
NAC 56.3 55.5 54.6 55.5
CKSNAP 57.2 65.3 65.3 65.8
RCKMER 55.0 62.9 62.3 62.3
MAKOV 83.75 85.17 84.7 85.0
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and unsupervised learning (Zeng et al., 2018b; Zou et al., 2019),
in future research.

Comparisons With Other Methods
To prove that our method is superior to other methods, we
compared it with MM-6mAPred and i6mA-Pred, which are two
excellent methods. i6mA-Pred uses nucleotide chemical property
and nucleotide frequency as the features and reduces the
dimensions by MRMD (Zou et al., 2016a). This approach then
uses SVM to identify the 6mA sites in the rice genome. MM-
6mAPred identifies 6mA sites based on the Markov model. The
i6mA-Pred method is easy to understand, and its performance is
good. The MM-6mA-Pred method is novel and has achieved
good results. MM-6mA-Pred constructs multiple transition
probability matrices for positive and negative samples. The
new sample calculates the product of the transition
probabilities in the two sets of transition probability matrices.
The sample makes predictions based on the ratio of the two
products. In addition, MM-6mA-Pred optimizes the length of
the sequence to achieve optimal results, and similar operations
Frontiers in Plant Science | www.frontiersin.org 6
are performed in our method. In general, the two methods yield
effective models from different perspectives.

To improve experimental results, the main features of both
methods are included in our method. In this study, we used
feature selection and sequence length optimization, and we used
10-fold cross-validation and independent testing to evaluate the
method. To conduct comparative tests, we reproduced the MM-
6mAPred model with python3 and used the metrics we used
previously for evaluation. In the cross-validation experiment, we
performed 10-fold cross-validation based on dataset 1. The MM-
6mAPred model that we reproduced obtained an accuracy of
84.7%, which is lower than the 89.7% reported in the paper in
which the model is proposed. In the independent test
experiment, dataset 1 was used for training and dataset 2 was
used for testing. The model that we reproduced with python3
and the model implemented with MATLAB by the authors of the
source paper yielded consistent results. The independent testing
experiments revealed that the accuracy of MM-6mAPred was
only 83.06%, whereas our method achieved 85.65% accuracy.
Similar tests were performed with i6mA-Pred, and the results are
reported in Tables 4 and 5. The experimental results show that
our method is superior to other methods. In addition, the results
obtained with MM-6mAPred were better than the results
obtained with i6mA-Pred. Our reproduced MM-6mAPred
code has been deposited on GitHub at https://github.com/
huangqianfei0916/Markov.

Allowing further comparisons of these methods, ROC and
AUC are shown in Figure 6. The area under the curve values
(AUCs) of 6mA-ricePred, MM-6mAPred, and i6mA-Pred were
FIGURE 3 | (A) Tenfold cross-validation performance of different classifiers based on dataset 1. (B) Independent test performance of different classifiers based on
dataset 1 and dataset 2.
TABLE 3 | Cross-validation performance of different methods based on
dataset 1.

Method Sn Sp Acc Mcc

Best sequence—no fs 81.81 88.30 85.1 0.702
Original sequence—no fs 84.20 84.77 84.49 0.690
Best sequence—fs 84.89 89.66 87.27 0.746
Oraigin sequence—fs 85.0 89.20 87.10 0.742
January 2020 | Volume 11 | Article 4
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0.945, 0.928, and 0.904, respectively. Figure 6 shows that our
method performed better than the other two methods.
CONCLUSION

Accuracy in identifying DNA N6-methyladenine sites is highly
important. The chemical properties of the nucleotides and the
Markov model were used in i6mA-Pred and MM-6mAPred,
respectively, and achieved good results. Our method, which is
based on feature fusion, achieved better results than these
previous methods in identifying 6mA sites in the rice genome.
Our method obtains a more powerful model by combining
multiple effective methods. These experiments proved that the
proposed method is superior to other methods, and it integrates
the main features of previous methods.
FIGURE 5 | Independent test performance of different feature selection
methods based on dataset 1 and dataset 2.
FIGURE 4 | Feature distribution of different feature methods based on dataset 1.
Frontiers in Plant Science | www.frontiersin.org 7
TABLE 5 | Independent test performance of different methods based on dataset
1 and dataset 2.

Method Sn Sp Acc Mcc

Our method 95.97 75.33 85.65 0.73
MM-6mAPred 95.81 70.30 83.06 0.68
I6mA-Pred 94.24 66.59 80.42 0.63
January 2020 |
 Volume 11 | Art
FIGURE 6 | Receiver operating characteristic (ROC) curves of 6ma-ricePred,
MM-6mAPred, and i6mA-Pred.
TABLE 4 | Cross-validation performance of different methods based on
dataset 1.

Method Sn Sp Acc Mcc

Our method 84.89 89.66 87.27 0.746
MM-6mAPred 84.31 85.22 84.77 0.695
i6mA-Pred 82.95 83.30 83.13 0.662
icle 4
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We found that in addition to machine learning, the attention
mechanism of deep learning can be applied to the recognition of
6mA sites in the rice genome. Amplifying the information of the
6mA sites by assigning attention can improve the recognition
rate. The deep learning attention mechanism can be introduced
into machine learning by, for example, multiplying different
features by different weights and dynamically adjusting the
weights according to the importance of the features.
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