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Cold stress poses a serious threat to the survival and bloom of Verbena bonariensis. The
enhancement of the cold tolerance of V. bonariensis is the central concern of our research.
The WRKY transcription factor (TF) family was paid great attention to in the field of abiotic
stress. The VbWRKY32 gene was obtained from V. bonariensis. The VbWRKY32
predicted protein contained two typical WRKY domains and two C2H2 zinc-finger
motifs. Under cold stress, VbWRKY32 in leaves was more greatly induced than that in
stems and roots. The overexpression (OE) in V. bonariensis increased cold tolerance
compared with wild-type (WT). Under cold stress, the OE lines possessed showed greater
recovery after cold-treatment restoration ratios, proline content, soluble sugar content,
and activities of antioxidant enzymes than WT; the relative electrolyte conductivity (EL), the
accumulation of malondialdehyde (MDA), hydrogen peroxide (H2O2), and superoxide
anion (O2

−) are lower in OE lines than that in WT. In addition, a series of cold-response
genes of OE lines were compared with WT. The results revealed that VbWRKY32 worked
as a positive regulator by up-regulating transcription levels of cold-responsive genes. The
genes above can contribute to the elevation of antioxidant activities, maintain the
membrane stability, and raise osmotic regulation ability, leading to the enhancement of
the survival capacity under cold stress. According to this work, VbWRKY32 could serve as
an essential gene to confer enhanced cold tolerance in plants.

Keywords: Verbena bonariensis, cold stress, VbWRKY32, antioxidant enzymes, osmotic adjustment,
down-stream genes
INTRODUCTION

Plants are often subjected to various stresses which affects their growth and development. Some
genes, including WRKY transcription factors (TFs), are induced to help plants adapt to stresses by
changing physiology and morphology. WRKY TFs were a valuable family which resisted abiotic
stress, such as cold, NaCl, drought, salicylic acid, ethylene, abscisic acid, methyl jasmonate, and
hydrogen peroxide (H2O2) (Wang et al., 2013; Zhou et al., 2015; Xiu et al., 2016). The WRKY family
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comprised one or two DNA-binding domains consisted of 60
amino acid regions and the highly conservative sequence
WRKYGQK at its N-terminus and a zinc-finger motif (Cx4−5
Cx22−23HxH or Cx7Cx23HxC) at C-terminus (Eulgem et al., 2000;
Rushton et al., 2010). In terms of the structure of WRKY protein, it
could be divided into three groups: WRKY group I (contained two
WRKY domains with Cx4−5Cx22−23HxH zinc-finger motifs), group
II (one WRKY domain with a Cx4−5Cx22−23HxH motif), and group
III (one WRKY domain with a C-X7-C-X23-H-X-C motif).

SeveralWRKY-overexpressed plants had successfully enhanced
the resistance to various abiotic stresses. For example,
overexpression of IIWRKY2 (WRKY group II) gene elevated salt
tolerance in overexpression (OE) lines of Iris lactea var. chinensis
(Tang et al., 2018). OsWRKY11 (WRKY group II) functioned as a
positive regulator in tolerance to heat and salt stress of the
transgenic rice seedlings (Wu et al., 2009). OsWRKY45 promoted
the resistance to disease and drought in Arabidopsis (Qiu and Yu,
2009). Compared with wild type (WT), the CsWRKY46 (WRKY
group II)-overexpressed cucumber via regulating a series of
regulated cold-responsive genes raised cold tolerance (Ying et al.,
2016).OsWRKY71 (WRKYgroup II) has a positive function in cold
tolerance by regulating downstream target genes in rice (Kim et al.,
2016). Overexpressed FcWRKY70 (WRKY group III) in tobacco
and lemon conferred enhanced tolerance to drought stresses (Gong
et al., 2015). Overexpression of GhWRKY25 (WRKY group I) in
Nicotiana benthamiana enhanced plant tolerance to salt stress (Liu
et al., 2016). TFs are significant for cold signaling and tolerance by
modulating the expression of related functional genes (Nair et al.,
2009).WRKYare vital regulators in certain development processes.
Overexpressed OsWRKY30 (WRKY group I) enhanced rice
resistance to disease by the salicylic acid (SA) signaling pathway
(Ryu et al., 2006). The WRKY34 (WRKY group I) TF negatively
regulated cold sensitivity ofmatureArabidopsispollenandmight be
involved in the C-repeat binding factor (CBF) signal cascade in
mature pollen (Zou et al., 2010). However, WRKY group I and III
members have been rarely reported compared with group II
members, in particular in response to stress. Therefore, combined
with the analysis of transcriptomic data, WRKY group I will be the
focus of our attention.

Verbena bonariensis is a perennial herb native to South
America (Brazil, Argentina, etc.). With its high ornamental
value and supreme drought resistance, V. bonariensis is widely
used in flower border and sightseeing farms. However, V.
bonariensis owns inferior resistance of low temperature, which
causes damage during flowering and impacts yield. When below
0°C or worse, chilling injury would result in destruction or death
in production. In China, the studies on V. bonariensis are now
mainly focused on seedling breeding, garden application, and salt
tolerance. The low temperature molecular research in V.
bonariensis has not been reported. Thus, it is urgent to
determine and improve the cold resistance in V. bonariensis.
The transcriptomic data of V. bonariensis in cold stress displayed
that WRKY TFs worked as a vital role in helping plants cope with
low temperatures stress.

In this study, we isolated and cloned VbWRKY32 gene from
V. bonariensis. The analysis of VbWRKY32 expression
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responding to cold stress was elaborated from multiple angles.
Overexpressed VbWRKY32 in V. bonariensis elevated tolerance
of cold stress, compared with WT. The statistics indicated that
VbWRKY32 could serve as a new candidate gene to accomplish
the cultivation of cold-tolerant plants and contribute more
detailed information to WRKY family.
MATERIALS AND METHODS

Plant Materials
V. bonariensis, c.v. Finesse was selected as research materials. The
VbWRKY32 gene was cloned from tissue-cultured seedlings
which were grown on Murashige and Skoog (MS) medium. V.
bonariensis were cultivated in the greenhouse of Sichuan
Agricultural University. The two OE lines (OE-1 and OE-5)
and WT of V. bonariensis were tested in our study.

Clone of the VbWRKY32
Total RNA extraction of tissue-cultured V. bonariensis leaves was
achieved by TRIzol Reagent (MyLab, Beijing, China). The
synthesis of complementary DNA (cDNA) was accomplished
by Takara® PrimeScript™ RT Reagent Kit with gDNA Eraser
(Perfect Real Time) (TAKARABIOIN, Beijing, China). The full-
length cDNA of VbWRKY32 was acquired by PCR. The
VbWRKY32 gene was cloned using specific primers (F:
C G T A A A G A A A A G A A A A A G C T T T T A T ; R :
CGCTACCACTACAATCAACCTATAT). PCR was performed
in 25-ml reaction volume containing 1 ml cDNA, 0.5 ml each
primer, 10.5 ml double-distilled H2O (ddH2O), and 12.4 ml Taq
Mix. The program employed was 30 cycles of 94°C for 30 s, 56°C
for 30 s, and 72°C for 1 min; finally stored at 4°C. The cloned
sequence was inserted into pCAMBIA 2300 with the control of
cauliflower mosaic virus (CaMV) 35S promoter to obtain
PVbWRKY32. The enzyme restriction sites were BamH I and Kpn I.

Phylogenetic and Conserved Domain
Analysis of VbWRKY32
Phylogenetic analysis was conducted by MEGA version 4.0 using
34 VbWRKY32 homologs selected from multiple sequence
alignment. Sequence alignment was performed using DNAMAN.

Transformation
The regenerated explants were selected from upper middle leaves
of V. bonariensis. The PVbWRKY32 construct was introduced into
Agrobacterium tumefaciens strain GV3101 and transformed into
leaves of V. bonariensis. The mediums used for transformation
were showed in Table 1. The explants were cultured in the M1
medium for 2 days at 35°C and under the 16/8 h light/dark
photoperiod with 3,000 lx intensity of illumination. The samples
were infected with bacterial solution of A. tumefaciens (OD600 =
0.4) for 10 min and placed on the M1 medium. After 2-day dark
culture, materials were transferred to the M2 medium in culture
bottles. These explants were transferred to fresh M2 medium
every 2 weeks to maintain appropriate selective pressure and at
the same time to prevent the growth of Agrobacteria. After 35
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days, the adventitious buds were cut off, transplanting to M3
medium. After rooting and elongation, the plantlets were
identified by PCR and adapted to growth in the soil in the soil.
The DNA secure Plant Kit (TIANGEN®DNAsecure) was used
for the PCR procedure for the transgenic identification.

Cold Treatment of Overexpression and
Wild-Type Plants
Three-month old seedlings of V. bonariensis were transferred
from the greenhouse (16 h photoperiod, 28°C/20°C day/night
temperature) to the thermoregulating incubator. The seedlings
were treated at the following temperature (this cooling process
was continuous.): 4°C for 24 h (T2), followed by −4°C for 4 h
(T3) and 6 h (T4). The upper leaves were harvested at the time
points of the control (T1), T2, T3, and T4 for physiological
experiments and histochemical detection of ROS, which were
frozen in liquid nitrogen instantly and stored at −80°C. Roots,
stems, and leaves of the same untreated seedlings were collected
for the analysis of tissue-specific expression.

Analysis of the Level of Gene Expression
The materials were treated under following conditions: 4°C for
24 h, followed by −4°C for 4 h. The quantitative real-time
polymerase chain reaction (qRT-PCR) was performed in the
SsoFast EvaGreen Supermix (Bio-Rad, Hercules, CA, United
States) and Bio-Rad CFX96TM detection system. The Actin-11
gene served as a quantitative control to detect expression level of
VbWRKY32 and of nine cold-related genes, including
VbCor413im1, VbCor413pm2, VbPOD, VbCAT, VbSOD,
Frontiers in Plant Science | www.frontiersin.org 3
VbAPX6, VbP5CS, VbAMY3, and VbBAM1. The 20 ml qRT-
PCR reaction mixture was incubated at 95°C for 30 s, followed by
40 cycles at 95°C for 15 s, at 60°C for 30 s, then by a final single
melt cycle from 65 to 95°C. Each reaction was carried out for
three biological repetitions. Relative expression levels were
calculated by the 2−DDCT method. All correlative primers of
qRT-PCR were exhibited in Table 2.

Freezing Recovery Ratios
Three-month-old seedlings (WT, OE-1, and OE-5) were selected
to detect freezing recovery ratios. The materials were treated
under following conditions: 4°C for 24 h, followed by −4°C for 4
h (wilting symptoms began to appear), finally allowed to recover
for 10 days at 28°C. The freezing recovery ratios were measured.
It was recorded that less than 25% of withered leaves in seedlings
were regarded as recovery.

Determination of Physiological Indexes
Malondialdehyde (MDA) content and electrolyte conductivity
(EL) were measured according to Lei et al. (2009) andWang et al.
(2017b), respectively. Activities of superoxide dismutase (SOD),
peroxidase (POD), catalase (CAT), and ascorbate peroxidase
(APX) were measured by the methods of Beauchamp and
Fridovich (1971), Ranieri et al. (2000), and Zhang et al. (2011),
respectively. The content of soluble protein, soluble sugar, and
proline was measured following Wang et al. (2013) and Irigoyen
et al. (2010).

Histochemical Detection of Reactive
Oxygen Species
The accumulation of H2O2 and superoxide anion (O2

−) in leaves
was detected by the method of histochemical staining using 3,3′-
diaminobenzidine (DAB) and nitroblue tetrazolium (NBT),
respectively (Wang et al., 2017a). Finally, the stained leaves
were photographed. H2O2 and O2

− content were measured
following An (2012) and Yamamoto et al. (2001).

Statistical Analyses
All experiments were performed for three biological repeats. The
data were analyzed via one-way analysis of variance using SPSS
version 19.0, and statistically significant differences were
calculated with p < 0.05 as the thresholds for significance.
TABLE 2 | Primers used to quantitative real-time PCR (qRT-PCR).

Gene name Forward primers Reverse primers

VbWRKY32 GGTTATGCGTAAAGAAAAGAAAAA TCTGCAGATACAAATCTAAATCACC
Actin-11 TGCAATATAAATTTATATCTGGATG TATCAGCAATACCAGGAAACATAGT
VbCor413im1 CTATCTCTGTCTCTTTCTGATTCGC AAATTTCATTGTTAAAAGGGGG
VbCor413pm2 TAGAGCATCTGGTGGATTCAGA GGATCAGCAAACAATATGAAGAC
VbPOD GCATTGCATACATGAATACATAACA TTGTGTCTCATAGTTTTCGACCA
VbCAT ACTTTATTAACAAAATTCCAAAGCT GGTCTTGAAAATTAGTGTGTCAAGA
VbSOD GACATAAACCTTTTATTAAACGACA GAAAAGAAGGTAAGAAAATGATTCA
VbAPX6 ACCTAATTACTAAACCACGTCACAC AAAAGAGCTTCTCAAGACTACGTTC
VbP5CS TCTTTGTTGTCTCTGAAAGTTCCTA TTCTTGAACTTTCTCTAGCTGCTAC
VbAMY3 TACTTACAACAGACCCAGTCTTCC CAGCAATAGAACTGCTTGTATTAAA
VbBAM1 ACTTGTATTTTCTCAAACTCTCCCT ATGCTCAGCAGTCTAAAAGCAG
Jan
TABLE 1 | The mediums in transformation process.

Serial
no.

Name of
medium

Composition of medium

M1 Pre-culture
medium

4.4 g·L−1 MS+1.0 mg·L−1 6-BA+0.1 mg·L−1 NAA+6.5
g·L−1 agar+30 g·L−1 sucrose

M1 Co-culture
medium

4.4 g·L−1 MS+1.0 mg·L−1 6-BA+0.1 mg·L−1 NAA+6.5
g·L−1 agar+30 g·L−1 sucrose

M2 Selective
medium

4.4 g·L−1 MS+1.0 mg·L−1 6-BA+0.1 mg·L−1 NAA+450
mg·L−1 CARB+6.5 g·L−1 agar+30 g·L−1 sucrose+1.0
mg·L−1 kana

M3 Rooting
medium

4.4 g·L−1 MS+6.5 g·L−1 agar+30 g·L−1 sucrose
uary 2020 | Volume 10 | Article 1746
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RESULTS

Isolation and Sequence Analyses
of VbWRKY32
To obtain valuable candidate genes from V. bonariensis and to
facilitate the molecular culture of cold-resistant varieties, next
generation sequencing technique were applied to construct a
cDNA library out of V. bonariensis leaves (Wang et al., 2019).
The RNASEQ data it was deposited in National Center for
Biotechnology Information (NCBI) (NCBI GEO series
GSE112477, NR ID: XP_011083976.1). The WRKY32 TF
(Cluster-14918.129050) was selected from differentially
expressed genes (DEGs) with functional annotations, and
named VbWRKY32. Its log2 (fold change) was 5.45 and q
value was less than 0.01.

The full-length VbWRKY32 gene was 1,689 bp, of these, the
open reading frame (ORF) was 1,500 bp and encode 499 amino
acids with predicted protein molecular weight of 55.138 kDa. It
contained two WRKY domains of WRKYGQK and two C2H2
zinc-finger motifs (Cx4Cx22HxH and Cx4Cx23HxH) (Figure 1).
Comparisons of the amino acid sequences between VbWRKY32
and other WRKY proteins in plants showed that WRKYGQK
and two C2H2 zinc-finger motifs were highly conserved in four
plant species (Figure 2). The phylogenetic tree was constructed
with full-length amino acid sequences, the result demonstrated
that VbWRKY32 belonged to group I of the WRKY family
(Figure 3).

The Analysis of VbWRKY32 Expression in
Wild-Type Plants Under Cold Stress
To determine the involvement of VbWRKY32 under cold
stresses, the expression of VbWRKY32 in different tissues of V.
bonariensis was measured by RT-qPCR. The results were showed
in Figure 4A. The transcript level of VbWRKY32 was higher in
leaves than that in stems and roots. The change of VbWRKY32
expression was not significant during the course of the
experiment under normal condition (28°C). The expression of
VbWRKY32 was increased during 4°C and reached a peak at 4 h
during −4°C, then decreased at 5 h (Figure 4B). The result
indicated that VbWRKY32 was involved in the cold response.

Overexpression of VbWRKY32 in Verbena
Bonariensis Enhanced the Cold Resistance
To further identify the function of VbWRKY32, V. bonariensis
transgenic plants overexpressing VbWRKY32 were obtained. The
expression level of VbWRKY32 in leaves was measured through
RT-qPCR. The results of RT-qPCR showed the VbWRKY32
transcript abundance of lines OE-1 and OE-5 was evidently
(P < 0.05) higher than that of other OE andWT lines under 28°C
(Figure 5). Therefore, OE-1 and OE-5 lines were selected for
cold stress experiment. The plants were treated under following
conditions: 4°C for 24 h, followed by −4°C for 4 h, finally allowed
to recover for 10 days at 28°C (Figure 6). Under 28°C for 7 days,
there were no obvious phenotypic difference between OE and
WT lines. Under 4°C for 24 h, leaves of WT plants began to wilt,
while transgenic plants’ leaves remained unchanged. The WT
Frontiers in Plant Science | www.frontiersin.org 4
and OE plants were then treated at −4°C for 4 h, WT plants
obviously fell over and even dead, leaves of OE lines partially
wilted. The plants recovered at 28°C for 10 days, most of leaves of
WT turned yellow and withered. The leaves of OE lines were not
affected much and only a few of leaves turned yellow. The
transgenic V. bonariensis showed better recovery than WT.
The recovery ratio of OE-1 and OE-5 were 84.45 and 86.67%,
respectively, whereas WT plants was 44.44% (Table 3).

The Overexpression of VbWRKY32
Alleviated the Degree of Plants Injury
In the process of aerobic metabolism of plants, ROS such as
H2O2 and O2

− was accumulated under cold stress, harming the
membrane and related biological macromolecules. To visualize
H2O2 and O2

− produced in V. bonariensis leaves under cold
stress, the leaves were stained by using DAB and NBT chemical.
Histochemical staining showed that less brown or blue
precipitations were observed in overexpressed lines (OE-1 and
OE-5) than that in WT (Figures 7A, B). In addition, quantitative
analysis also exhibited that the accumulated level of H2O2 and
O2

− in leaves of all lines were increased when exposed to cold
condition, WT significantly (P < 0.05) produced more H2O2 and
O2

− than OE lines (Figures 7C, D).
MDA and EL, the two important indexes of cell damage,

could reflect the extent of membrane injury (Huang et al., 2013).
The MDA content and EL were prominently (P < 0.05) lower in
transgenic V. bonariensis than that in WT (Figure 8). Under T4
treatment, the MDA content of OE-1, OE-5 lines increased to
2.78- and 2.76-fold, while WT increased to 3.65-fold; The EL of
WT, OE-1, and OE-5 raised to 2.18-, 2.07-, and 1.87-fold of that
before stress.

The conclusion above indicated that the degree of cell damage
in WT plant was more severe than the transgenic lines under
cold stress.ss

The Enhancement of Cold Tolerance by
the Physiological Changes of VbWRKY32
Overexpression
The existence of antioxidant enzymes was essential for
scavenging ROS and alleviating cell injury. Hence the activities
of antioxidant enzymes (SOD, POD, APX, and CAT) at various
time and temperature points were monitored (Figures 9A–D).
Under 28°C condition (T1), these enzymes activities revealed no
remarkable difference in between WT and OE lines. After
chilling treatment of −4°C for 4 h (T3), there was an evident
increase in all lines; exposure to −4°C treatment for 6 h (T4), the
activities of SOD, POD, and APX decreased in OE and WT lines.
The contents of proline, soluble sugar, and soluble protein were
measured to investigate the regulated capable of osmotic
mechanism in VbWRKY32 OE lines of V. bonariensis under
cold stress. Compared with WT, OE lines accumulated distinctly
(P < 0.05) higher content of proline, soluble sugar, and soluble
protein under cold condition (Figures 9E–G). In addition, SOD,
POD, APX, and CAT were normalized by protein data
(Figure S1). As a whole, the value of SOD, POD, APX, and
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FIGURE 1 | Nucleotide and deduced amino acid sequences of VbWRKY32. The WRKY domain is underlined. The two cysteines and two histidines in the zinc-
finger motifs are framed.
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CAT after normalized treatment were lowered in OE lines than
that in WT during cold condition.

These results indicated that overexpression of VbWRKY32
could raise the ability of plants against ROS persecution and
alleviate cell injury under cold stress.

Differential Expression of Cold-Related
Genes in Wild-Type and Overexpression
Lines Under Cold Stress
Based on the above physiological data of V. bonariensis under
low temperature stress, it was found that the antioxidant enzyme
activity and osmotic adjustment substance content of plants
reached a high level under −4°C for 4 h. Considering that the
physiological changes depended on the change of molecular
mechanism, it was speculated that the gene expression should
be at a high level at this time. Therefore, in order to understand
the effect of VbWRKY32 overexpression on the cold resistance at
Frontiers in Plant Science | www.frontiersin.org 6
gene level, expressions of nine cold-related genes were detected
by qRT-PCR at T1 (28°C), T2 (4°C), and T3 (−4°C).

These genes selected were related to antioxidant enzyme, cold
regulated protein, and osmotic adjustment substances. The
antioxidant enzyme activities and the content of osmotic
adjustment substances were increased, which helped clear
excess ROS, maintain the balance of cell osmotic pressure, and
stabilize the cell structure. Under normal environment, there was
no remarkable difference in transcript accumulation between
WT and OE lines. Under chilling stress (4°C), the gene
expression levels of OE lines were specifically up-regulated
than that of WT. Compared with the control (28°C), VbSOD
in the WT, OE-1, and OE-5 lines was remarkably (P < 0.05)
increased by 1.80, 2.10, and 2.69 times under freezing stress
(−4°C) (Figure 10A), respectively. The gene expression level of
VbPOD and VbCAT matched similar pattern with VbSOD,
which was 3.01 and 3.35 times in OE-5 lines, respectively,
FIGURE 2 | Comparison between the amino acid sequences deduced by VbWRKY32 gene and the multisequences of WRKY protein from other plants. Identical
amino acid residues are shaded in black boxes, others meet two identical residues in gray boxes. The completely conserved WRKYGQK amino acids are enclosed
by oblong. The cysteine (C) and histidine (H) in zinc-finger motifs are pointed out by black trigon. AtWRKY2 (NP_200438.1) from Arabidopsis thaliana; VpWRKY2
(GU565706) from Vitis pseudoreticulata; EgWRKY32 (XP_012841117.1) from Erythranthe guttata; SiWRKY32 (XP_011083976.1) from Sesamum indicum.
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FIGURE 3 | Phylogenetic tree analysis of VbWRKY32 and WRKY proteins from different species. VbWRKY32 is boxed. The plant WRKY proteins used for the
phylogenetic tree are as follows: OsWRKY11 (AK108745), OsWRKY24 (NC_029256), OsWRKY30 (NP_001062148), OsWRKY45 (AY870611), and OsWRKY71
(NC_029257) from Oryza sativa; AtWRKY2, AtWRKY10, AtWRKY11 (NP_849559), AtWRKY15 (NP_179913.1), AtWRKY17 (NP_565574.1), AtWRKY18
(NP_567882), AtWRKY20, AtWRKY25 (NP_180584), AtWRKY26 (AAK28309), AtWRKY32, AtWRKY34, AtWRKY41, AtWRKY53 (NP_194112), and AtWRKY58 from
Arabidopsis thaliana; TaWRKY2 (EU665425), TaWRKY19 (EU665430) from Triticicum aestivum; CsWRKY2 (AFJ54352), CsWRKY46 from Camellia sinensis;
VpWRKY2 (GU565706) and VpWRKY3 from Vitis pseudoreticulata; GmWRKY54 (DQ322698) from Glycine max; Hv-WRKY38 from barley; VvWRKY11 (EC935078)
from Vitis vinifera; BcWRKY46 (HM585284) from Brassica campestris; BcWRKY46 (HM585284) from B. campestris.
Frontiers in Plant Science | www.frontiersin.org January 2020 | Volume 10 | Article 17467
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higher than that of the control (Figures 10B, C). VbAPX6 in the
WT, OE-1, and OE-5 lines was increased to 3.14, 4.93, and 4.44
times under −4°C than that of the control (Figure 10D). The
transcription levels of VbCor413im1 in OE lines were over 7.56-
fold at 4°C and 9.13-fold at −4°C, greater than that in control,
respectively; the expression level of VbCor413pm2 in OE lines
was more than 6.30 times at 4°C and 8.11 times at −4°C higher
than that of WT, respectively (Figures 10E, F). The expression
level of VbAMY3, VbBAM1, and VbP5CS were significantly (P <
0.05) increased by over 3.49, 3.64, and 5.99 times in OE lines
under −4°C stress than that of control, a maximum reached
(Figures 10G–I). The results indicated that VbWRKY32
transcription factor could increase the expression level of cold-
related genes and the cold tolerance of transgenic plants.
Frontiers in Plant Science | www.frontiersin.org 8
DISCUSSION

Despite low-cost cultivation and high-ornamental value, the
study on V. bonariensis has generally been slower compared
with many landscape plants, especially in terms of the abiotic
stress response. Cold stress decrease production and ornamental
value of V. bonariensis. The WRKY TF family was paid great
attention to in the field of abiotic stress. It represented as one of
major plant-specific transcriptional regulators. ManyWRKY TFs
were up-regulated under drought, heat, or salt stresses (Wang
et al., 2018b; Xu et al., 2018). However, few researches reported
the function of WRKY TF under cold stress. In our experiment,
VbWRKY32 was separated from V. bonariensis on its differential
expression in response to freezing stress.

The results of multiple sequence alignment and phylogenetic
tree analyses showed that the VbWRKY32 gene belonged to the
group I of WRKY family. The transgenic plants of VpWRKY2,
which are in the same branch as VbWRKY32, possessed high
cold resistance (Li et al., 2010). Overexpression of TaWRKY19
enhanced the ability of responding salt, drought, and freezing
stresses in transgenic plants (Niu et al., 2012). In addition,
WRKY32 was actively upregulated in kenaf responding to
drought and salinity stresses (Niu et al., 2015). Moreover, the
expression level of VbWRKY32 in leaves was remarkably raised
under cold stress. The above results showed that VbWRKY32
could participate in the cold resistance process in V. bonariensis.

The expression level of VbWRKY32 in leaves is higher than in
stems and roots and the transcript peak was after 4 h at −4°C.
The leaves reflected the chilling and freezing injury. We
speculated that the leaves activated the expression of
VbWRKY32 more quickly than other tissues exposed directly
to cold air. CsWRKY2 expression was highly promoted in leaves
than in other organs exposed to coldness, drought, and
exogenous abscisic acid (Wang et al., 2016). The previous
result may be consistent with our speculation. The VbWRKY32
gene in WT could increase expression under cold stress. The
elevated expression of VbWRKY32 transgenic lines under
FIGURE 4 | The expression analysis of VbWRKY32 in leaves of Verbena bonariensis. (A) Relative expression level of VbWRKY32 in roots, stems, and leaves of WT
lines at 28°C. (B) Cold treatment. Control stands for non-stress treatment and at 28°C. The process of temperature treatment was continuous. The temperature was
at 28°C, then drop to 4°C for 12 h, 24 h, and then to −4°C for 1, 2, 4, 5 h. Data indicate means ± standard errors (SE) of three biological replicates. The different
letters above the columns represent significant differences (P < 0.05) on the basis of Duncan’s multiple range test.
FIGURE 5 | Acquisition of transgenic VbWRKY32 Verbena bonariensis.
Expression level of VbWRKY32 in wild-type (WT) and transgenic V.
bonariensis. Actin-11 served as the internal reference gene. The different
letters above the columns represent significant differences (P < 0.05) on the
basis of Duncans multiple range test.
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normal circumstances could account for its rapid response to
cold. The damage of WT plants could have occurred in the early
stages responding to cold stress in the process of resistance.

In the experiment for exploring the cold tolerance of V.
bonariensis, the OE lines were promoted in response to chill
compared with WT. The results were revealed by observing
phenotypic changes and measuring recovery ratios, MDA, EL,
antioxidant enzyme activities, and osmotic regulating substance
contents. VbWRKY32 overexpression caused the elevated
expression of down-stream genes and the changes of their
related substances in plants.

The MDA content and EL could be used to test the degree of
lipid peroxidation and the change of membrane permeability,
respectively. Due to cold stress, the high concentration of ROS
which was reactive and toxic caused the enhanced production of
MDA. The accumulation of MDA under abiotic stress, which
caused membrane lipid peroxidation, injury of plant cells, lead to
the death of plants ultimately (Mittler et al., 2004; Wang et al.,
2018a). Under the chilly condition, the cell membrane of plant
transformed from liquid crystalline phase to gel phase with the
deviation of selective permeability, which resulted in the cellular
electrolyte exosmosis. Therefore, the damage of plants under low
temperature stress could be measured by MDA and EL. The
production of MDA and the EL of WT were greater compared
with VbWRKY32 OE lines. The results illustrated that
Frontiers in Plant Science | www.frontiersin.org 9
VbWRKY32 might reduce the accumulation of MDA and
stable cell membrane structure.

The antioxidant enzyme system, including POD, SOD, CAT,
and APX, could scavenge excessive ROS and improve plant
resistance under various types of abiotic stresses (Yu et al.,
2014; Singh et al., 2017; Xu et al., 2017; Ma et al., 2018).
Compared with the OE lines, the WT plants showed deeper
intense histochemical staining by cold treatment. The
appearance suggested that less ROS was accumulated in OE
lines than the WT. To scavenge ROS, the expression level of
ROS-scavenging related genes (e.g., VbSOD, VbPOD, VbCAT,
and VbAPX6) had a significant increase in OE lines than that in
WT. The transcript levels of these genes were in line with the
antioxidant enzyme (SOD, POD, CAT, and APX) activities. The
antioxidant enzymes converted toxic superoxide radicals to
harmless ion and eliminated hydrogen peroxide in plants
(Sarvajeet Singh and Narendra, 2010). The activities of SOD,
POD, CAT, and APX in OE lines were remarkably (P < 0.05)
increased than that in WT. However, intrinsic antioxidant
systems of plants only eliminate a certain amount of ROS and
excessive ROS could destroy antioxidant systems.

During cold treatment, we found the enzymes activities of
SOD, POD, APX, and CAT were higher in OE lines than that in
WT. On the one hand, this may be due to an increase in the level
of transcription, which in turn leaded to an increase in protein
activities. Further studies need to determine the relation of the
transcription of SOD, POD, APX, and CAT to protein activities.
On the other hand, the protein normalization treatment of SOD,
POD, APX, and CAT was performed, the results have showed
that the concentration of enzymes (including protein per FW) in
OE lines were lower than that in WT (Figure S1). While the
decreases in MDA, H2O2, O2

− content (expressed per g FW) in
FIGURE 6 | Phenotypic comparison of wild-type (WT) and VbWRKY32 overexpressed lines (OE-1 and OE-5) under cold stress.
TABLE 3 | The statistics of seedling recovery.

Recovery ratio Dead ratio

WT 44.44% 4.45%
OE-1 84.45% 2.22%
OE-5 86.67% 2.22%
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FIGURE 7 | Analysis of the reactive oxygen species (ROS) accumulation levels in wild-type (WT) and VbWRKY32 overexpression (OE)-1 and OE-5 lines of Verbena
bonariensis (OE-1 and OE-5) under cold stress. (A, B) Histochemical staining with 3,3′-diaminobenzidine (DAB) and nitroblue tetrazolium (NBT) for observing the
accumulation situation of H2O2 and O2

−. (C, D) The quantitative measurement of H2O2 and O2
−. The temperature kept at 28°C (T1), then drop to 4°C for 24 h (T2),

then to −4°C for 4 h (T3), 6 h (T4). Data indicate means ± standard errors (SE) of three biological replicates. The different letters above the columns represent
significant differences (P < 0.05) on the basis of Duncan’s multiple range test.
FIGURE 8 | The extent of membrane injury. (A) Malondialdehyde (MDA) content. (B) Relative electrolyte conductivity. Data indicate means ± standard errors (SE) of
three biological replicates. The different letters above the columns represent significant differences (P < 0.05) on the basis of Duncan’s multiple range test.
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the WRKY OE lines might be explained by an increased
retention of water in the OE lines. However, SOD, POD, APX,
and CAT (expressed per g FW) in the OE lines increased and
they are no significantly different when normalized for protein
(expressed per mg protein, Figure S1), it was speculated that
increased water loss of in OE lines. These two phenomena were
contradictory and not easy to explain. Therefore, the relation of
the loss water of plants under cold stress to the protein activities
needed further study.

The osmotic adjustment substances such as soluble sugar,
soluble protein, and free proline could keep the stability of
cellular structure and cell osmotic pressure. It was proved that
they aided to maintain proteins and cell structures, particularly
under severe or prolonged stress (Hoekstra et al., 2001). Under
freezing stress, the transcription levels of VbAMY3, VbBAM1,
and VbP5CS had been greatly improved, the expression levels of
these gene in OE lines were evidently higher than WT. The
expression levels of AMY3 increased significantly under cold
conditions in Arabidopsis (Thalmann et al., 2016). By degrading
starch into maltose under stress, BAM1 sustained the
biosynthesis of proline and soluble sugars, alleviating the
oxidative stress (Kyonoshin et al., 2009). The lack of AMY3
and BAM1 prevented plants from mobilizing starch in leaves in
Frontiers in Plant Science | www.frontiersin.org 11
face of stress. Carbon exported to the root was reduced, which
ultimately affected osmolyte accumulation for water, nutrient
intake, and root growth (Zanella et al., 2016). The expression
level of VbP5CS which functioned in osmotic adjustment was
up-regulated in OE lines. The expression of the P5CS gene
induced by environmental stress could promote proline
synthesis and increase proline content in plants (He et al.,
2018). Therefore, the proline, soluble protein, and soluble
sugar in OE lines was of improved content compared with WT
under freezing stress.

Massive studies had revealed that expression of COR genes
was positively related to cold tolerance in plants (Liang et al.,
2011; Wathugala et al., 2011; Wan et al., 2014). The Cor413
family were divided into Cor413-inner membrane (Cor413im)
and Cor413-plasma membrane (Cor413pm) proteins (Ghislain
et al., 2003). In this study, the expression level of VbCor413im1
and VbCor413pm2 were up-regulated in OE lines compared with
WT. Arabidopsis AtCor413immapped in the inner membrane of
chloroplasts might stabilize the chloroplast membrane under
cold stress (Okawa et al., 2010; Okawa et al., 2014).
Overexpression of PsCor413im1 isolated from Phlox subulata
improved cold resistance of Arabidopsis plants (Zhou et al.,
2018b). PsCor413pm2, a plasma membrane protein, enhanced
FIGURE 9 | The changes of physiological indexes on wild type (WT) and VbWRKY32 overexpression (OE) lines leaves of Verbena bonariensis (OE-1 and OE-5)
under cold stress. (A) Superoxide dismutase (SOD) activity. (B) Peroxidase (POD) activity. (C) Ascorbate peroxidase (APX) activity. (D) Catalase (CAT) activity. (E)
Proline content. (F) Soluble sugar content. (G) Soluble protein content. Data indicate means ± standard errors (SE) of three biological replicates. The different letters
above the columns represent significant differences (P < 0.05) on the basis of Duncan’s multiple range test.
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cold tolerance of transgenic Arabidopsis. The plasma membrane
suffered most from cold injury (Zhou et al., 2018a).

The TFs played an important role in activating multiple
biological processes to insulate plant cells from cold. They
functioned as a pivotal regulator for adaption of the plant
through the binding of TFs to cognate cis-acting elements
present in the promoter region of their target genes (Zou et al.,
2010; Yang et al., 2012; Peng et al., 2013). The downstream-
related genes were regulated by TFs to adapt to external
environmental changes. The cold tolerance in plants was
enhanced by regulating various series of cold-responsive genes
(Thomashow, 1999).

Therefore, the data indicated VbWRKY32 improve the
activities of antioxidant enzymes and the content of osmotic
adjustment substances by influencing downstream genes, and
then alleviate the oxidative damage and stabilize the plasma
membrane of V. bonariensis under cold stress.

It is worth mentioning that in addition to affecting the
expression of downstream genes and physiological changes,
WRKY may also have an impact on water retention, and thus
increase the cold resistance of plants. In Arabidopsis, the
Frontiers in Plant Science | www.frontiersin.org 12
WRKY54-WRKY70 double mutants exhibited clearly enhanced
tolerance to osmotic stress. The enhanced tolerance was
correlated with improved water retention and enhanced
stomatal closure (Li et al., 2013). The water retention also may
be related to EL, enzyme activities, MDA, H2O2, O2

− and proline.
In addition, the VbWRKY32 over-expression transgenic plants
were validated by qRT-PCR in our study, the VbWRKY32 gene
played a vital role in improving cold stress tolerance. Whether
there will be changes in protein levels in the transgenic plants in
cold stress, further studies need to determine the relation of the
VbWRKY32 gene to protein level. These issues will be focused in
the future.
CONCLUSION

Taken together, the overexpression of VbWRKY32 in the
seedling stage of V. bonariensis resulted in elevated cold
tolerance without abnormal growth by phenotypic observation.
The expression level of down-stream genes was remarkably
promoted, which accounted for the improvements in
FIGURE 10 | The expression analysis of transcripts of stress-response genes in wild-type (WT) and overexpression (OE) lines (OE-1 and OE-5) at various time and
temperature points. (A) VbSOD. (B) VbPOD. (C) VbCAT. (D) VbAPX6. (E) VbCor413im1. (F) VbCor413pm2. (G) VbAMY3. (H) VbBMY1. (G) VbP5CS. Actin-11 was
amplified as a control. Data indicate means ± standard errors (SE) of three biological replicates. The different letters above the columns represent significant
differences (P < 0.05) on the basis of Duncan’s multiple range test. (I) The seedlings were treated at the following temperature (this cooling process was
continuous.): 28°C (the control), 4°C for 24 h, followed by −4°C for 4 h.
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antioxidant enzyme activities and the contents of osmotic
adjustment substance. The VbWRKY32 gene alleviated the
damage of membrane lipid peroxidation and relieved the
electrolyte exosmosis of the cell. These performances proved
the positive function of VbWRKY32 in V. bonariensis under cold
stress. Currently, this cold resistance experiment was
provisionally limited to the laboratory. Further exploration and
verification would be required on whether the transgenic V.
bonariensis plants’ safely survival and winter duration in the field
environment below 4°C.
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