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Keplinger T, de Juan A and

Thygesen LG (2020) Understanding
the Formation of Heartwood

in Larch Using Synchrotron Infrared
Imaging Combined With Multivariate

Analysis and Atomic Force
Microscope Infrared Spectroscopy.

Front. Plant Sci. 10:1701.
doi: 10.3389/fpls.2019.01701

ORIGINAL RESEARCH
published: 03 February 2020
doi: 10.3389/fpls.2019.01701
Understanding the Formation of
Heartwood in Larch Using
Synchrotron Infrared Imaging
Combined With Multivariate Analysis
and Atomic Force Microscope
Infrared Spectroscopy
Sara Piqueras1*, Sophie Füchtner1, Rodrigo Rocha de Oliveira2,
Adrián Gómez-Sánchez2, Stanislav Jelavić 3,4, Tobias Keplinger5,6, Anna de Juan2

and Lisbeth Garbrecht Thygesen1

1 Biomass Science and Technology Group, Department of Geosciences and Natural Resource Management, University of
Copenhagen, Frederiksberg, Denmark, 2 Chemometrics Group, Department of Analytical Chemistry, University of Barcelona,
Barcelona, Spain, 3 Nano-Science Center, Department of Chemistry, Faculty of Science, University of Copenhagen,
Copenhagen, Denmark, 4 Section for GeoGenetics, Faculty of Health and Medical Sciences, Globe Institute, University of
Copenhagen, Copenhagen, Denmark, 5 Wood Material Science Group, Department of Construction, Environment and
Geomatics, Institute for Building Materials (IfB), ETH Zürich, Zürich, Switzerland, 6 WoodTec Group, Cellulose & Wood
Materials, EMPA, Dübendorf, Switzerland

Formation of extractive-rich heartwood is a process in live trees that make them and the
wood obtained from themmore resistant to fungal degradation. Despite the importance of
this natural mechanism, little is known about the deposition pathways and cellular level
distribution of extractives. Here we follow heartwood formation in Larix gmelinii var.
Japonica by use of synchrotron infrared images analyzed by the unmixing method
Multivariate Curve Resolution – Alternating Least Squares (MCR-ALS). A subset of the
specimens was also analyzed using atomic force microscopy infrared spectroscopy. The
main spectral changes observed in the transition zone when going from sapwood to
heartwood was a decrease in the intensity of a peak at approximately 1660 cm-1 and an
increase in a peak at approximately 1640 cm-1. There are several possible interpretations
of this observation. One possibility that is supported by the MCR-ALS unmixing is that
heartwood formation in larch is a type II or Juglans-type of heartwood formation, where
phenolic precursors to extractives accumulate in the sapwood rays. They are then
oxidized and/or condensed in the transition zone and spread to the neighboring cells in
the heartwood.
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INTRODUCTION

Heartwood (HW) formation is the final step in the life cycle of
ray cells. Before cell death, ray cells undergo metabolic changes in
the transition zone between sapwood (SW) and HW, resulting in
increased synthesis of secondary metabolic compounds called
extractives. The extractives have a significant effect on the
properties of wood, most notably regarding its resistance to
fungal decay and other forms of biological attack (Hillis, 1987;
Hinterstoisser et al., 2000; Schultz and Nicholas, 2000; Taylor
et al., 2002). In order to understand how extractives contribute to
wood durability, many studies have focused on the chemical
interplay between extractives and decay agents (Valette et al.,
2017). However, there is an increasing understanding that the
distribution of extractives within cell walls also plays an
important role, though hitherto under-investigated (Kampe
and Magel, 2013).

The process of HW formation has been studied for decades
and is known to be associated with parenchyma cell death,
disappearance of storage material, and increase in extractives
content (Hillis, 1985; Hillis, 1987). Kampe and Magel (2013)
described two possible HW formation mechanisms: Type I or
Robinia-Type proposes the accumulation of the phenolic
extractives in the transition zone without any indication of
phenolic precursors in the aging SW (Nair et al., 1981; Magel
et al., 1994; Bergström et al., 1999); Type II or Juglans-Type of
HW formation suggests a gradual accumulation of phenolic
precursors in the aging SW tissues. In type II, HW extractives
are formed in the transition zone by primary and secondary
reactions, such as oxidation and hydrolysis of precursor
substances (Dellus et al., 1997; Burtin et al., 1998; Mayer et al.,
2006). Once the extractives are formed, they are released into the
lumina of neighboring cells and cell walls (Déjardin et al., 2010;
Kampe and Magel, 2013). When inside the cell walls, a few
studies suggest that at least some extractives are covalently bound
to the structural cell wall polymers through enzymatic activity
(Monties, 1991).

The extractive compounds typically associated with wood
durability fall into one of several polyphenolic classes such as
flavonoids, stilbenes, lignans, and polymers thereof. The types
and quantities of these extractives are species dependent,
genetically determined, and under environmental control
(Hillis, 1987; Kwon et al., 2001; Taylor et al., 2002; Bito et al.,
2011; Bush et al., 2011). In some species, extractives are present
in lower amounts (e.g. Spruce 0.9-1.5%) (Willför and Holmbom,
2004) as compared to other species (e.g. larch up to 30%)
(Gierlinger et al., 2004).

The genus Larix species (larch) are an important European
resource for durable wood (Hillis, 1987). The extractives in larch
belong to the molecular families of terpenoids, flavonoids,
lignans, fatty acids, and galactans (Zule et al., 2015; Zule et al.,
2017). Like all conifers, larch trees contain high amounts of
oleoresin, produced by specialized epithelial cells surrounding
resin canals and ray parenchyma cells. The resin is composed of
fatty acids and esters thereof, as well as various subgroups of
terpenoids, and is distributed throughout the HW and SW
through the network of resin canals and ray cells (Hillis, 1987).
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It was shown for Pinus sylvestris that in HW, the composition of
resin is enriched with phenolic compounds, presumably
produced by ray parenchyma cells during HW formation
(Felhofer et al., 2018).

Within the large family of terpenoids, diterpenoid acids
(called resin acids) constitute the largest part of the oleoresin
(Higuchi, 1997), and they have been repeatedly shown to have
fungicidal properties (Keeling and Bohlmann, 2006), which is
also the case for triterpenes, known as sterols (Burčová et al.,
2018). Triglycerides and fatty acids may have a role in moisture
regulation (Tomppo et al., 2011), which is important in the
context of degradation by microorganisms. The principal
phenolic compounds detectable in larch HW are flavonoids,
the main compounds being taxifolin (C15H12O7) and
dihydrokaempferol (C15H12O6). Minor amounts of lignans can
also be found. Flavonoids have been attributed with fungicidal
properties, but their main potential seems to be their ability to
scavenge different types of radicals, as well as to reduce and
chelate metals (Giwa and Swan, 1975; Cao et al., 1997; Babkin
et al., 2001; Ivanova et al., 2012; Zule et al., 2017).

Larch HW is appreciated for its good mechanical properties,
its color, and specially for its natural durability (Gierlinger et al.,
2004). A strong relationship between extractives content and
brown-rot decay resistance has been shown (Gierlinger et al.,
2002; Windeisen et al., 2002). Nevertheless, very little is known
about the formation and distribution of larch extractives within
the xylem tissue at the cell and cell wall level. Their micro and
nano-scale distribution is of importance (Taylor et al., 2002)
since extractives are more effective against wood degradation
within cell walls than in extracellular voids (Hillis, 1987). To
investigate extractives in context with the microstructure, TOF-
SIMS imaging has been applied in Cryptomeria japonica trees
and showed that the extractives tend to accumulate near radial
rays (Imai et al., 2005; Saito et al., 2008). Recently, the potential
of Confocal Raman Microscopy to follow the extractive
distribution in sapwood (SW) and heartwood (HW) of Scots
pine (Pinus sylvestris, a moderately durable species) was shown
(Belt et al., 2017; Felhofer et al., 2018). On the micro-level,
pinosylvins were reported in the lumen, as well as in the
compound middle lamella (CML), cell corner (CC), and pits of
tracheid cells.

Synchrotron Radiation Fourier Transform Infrared (SR-
FTIR) imaging is the ideal technique to study the extractive
deposition patterns at the microscale during HW formation in
larch because of the high brightness and high collimation of the
beam and avoidance of the fluorescent problems experienced
with Raman microspectroscopy. SR-FTIR imaging provides
spatial and spectral information about the samples and,
therefore, informs on the composition and location of the
different sample constituents. Despite the relevant information
contained in SR-FTIR images, the analysis of this kind of
measurement is not straightforward because of the often large
image sizes and the mixed signal components present in the
spectra collected. To help in the signal-unmixing task,
multivariate analysis tools like Multivariate Curve Resolution –
Alternating Least Squares (MCR-ALS) are used. Indeed, MCR-
ALS has already been proven to adapt particularly well to
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hyperspectral image analysis because of the easy introduction of
external spectral and spatial information about the image in the
analysis and the ability to work with both single and multiset
(several) image structures (Tauler et al., 1995; de Juan et al., 2004;
Piqueras et al., 2014). This approach is the main tool used in the
current study to obtain distribution maps and spectral signatures
of the wood sample (Felten et al., 2015; Piqueras et al., 2015).

To supplement the SR-FTIR images, atomic force microscopy
infrared spectroscopy (AFM-IR) was used. AFM-IR combines
atomic force microscopy (AFM) with pulsed IR laser (Figure S1)
to obtain localized mid-IR spectra (3600-900 cm-1) of regions as
small as tens of nm in the horizontal plane and with a vertical
resolution of ~0.1 nm (Dazzi and Prater, 2017). Such resolution
surpasses the resolution of optical IR instruments making AFM-
IR a suitable technique to study nanoscale properties of wood
materials. Within the study of plants, AFM-IR has been used to
analyze the composition of thylakoids (Janik et al., 2013) and of
epicuticular wax (Farber et al., 2019), and to understand how the
structure and composition of the Populus nigra cell wall affects
water transport within the xylem (Pereira et al., 2018). Further, it
has been used to identify the products of the reaction between the
cell wall of Pinus taeda and a phenol-formaldehyde resin (Wang
et al., 2005). However, to our knowledge, no one has yet studied
the nanoscale compositional variations between the cell wall, the
middle lamella, and the rays of SW and HW.

The objective of this work was to obtain a detailed overview of
the HW formation process in larch (Larch gmelinii i.e. var
Japonica) at the micro and nanoscale by combining SR-FTIR,
AFM-IR, and advanced chemometric tools.
Frontiers in Plant Science | www.frontiersin.org 3
MATERIALS AND METHODS

Sample Preparation
For this imaging study, a sample of Larix gmelinii var japonica
(Kurile larch) was taken at 1.3 m stem height. The tree was felled
in October 2017 near Hørsholm, north of Copenhagen, Denmark.
The wood was freeze dried to avoid possible artifacts from air
drying. From an area including nine annual rings, nine tangential
(DT1-DT9) and nine cross-sections (DX1-DX9) were cut without
any embedding of the samples, in order to preserve the major
content and distribution of extractives. Samples of nominally 10
µm thickness were obtained using a Leica microtome (Leica
RM2255) (Figure 1). For transportation, the samples were
placed on a glass slide and covered with a glass coverslip.

Synchrotron Infrared Imaging
All the tangential and cross-sections were imaged at the IR
beamline MIRAS of the ALBA synchrotron (Cerdanyola del
Vallés, Spain, proposal 2018022761). Before IR imaging, samples
were inspected by light microscopy in order to select regions of
interest (ROI) that included ray and tracheid cells and appeared to
have a sample transparency that would allow SR-FTIR
measurements in transmission mode. After area selection, the
sample was carefully transferred onto a ZnSe disc of 1 mm
thickness. The sample edges were fixed to the disc with tape to
avoid sample movement during imaging. The IR measurements
were acquired with a Bruker system (Hyperion 3000 microscope
coupled to a Vertex 70 spectrometer) equipped with a liquid-
nitrogen cooled mercury cadmium telluride (MCT) detector.
FIGURE 1 | Representation of the sampling procedure. Left plot: Scheme of a tree trunk. Middle plots: Transverse and tangential micro-sections of wood (Photo: A.
Musson/Royal Botanic Garden, Kew). The marked rectangles show the regions of interest for the heartwood formation study. Right plots: Collection of IR
Synchrotron images (40 µm x 40 µm) of tracheid and ray cells of larch. The numbered rectangles mark the chosen annual rings (1-9) from sapwood to heartwood
including the transition zone in between.
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Preliminary tests were carried out prior to the IR imaging. During
these tests, possible effects of the high-energy IR beam on the
wood material was studied by collecting punctual IR spectra at
different exposure times. No adverse effects on the tissue or the
spectra were observed for any of the exposure times tested.
Therefore, we are confident that the energy of the IR beamline
did not adversely influence our SR-FTIR measurements.

The IR images were acquired in transmission mode, using a
36x objective. The images were collected with a 3 x 3 µm2 spatial
resolution. All spectra were obtained in the infrared region (4000
−800 cm−1) with 64 co-added scans. Absorbance representation
was used throughout. A total of nine SR-FTIR images were
acquired in both tangential and cross directions.

Atomic Force Microscopy
Infrared Spectroscopy
AFM-IR exploits the photothermally induced resonance effect to
detect the absorption of IR radiation with the AFM tip (Dazzi
et al., 2005). In short, the sample is irradiated with the IR source
and mechanically expands to dissipate the absorbed energy
(Figure S1). The strongest expansion happens when the
sample is irradiated with the IR wavelength that corresponds
to the maximum absorption by the sample. Thus, by placing the
AFM tip directly above the irradiated area, it is possible to detect
the expansion of a sample by monitoring the deflection and
oscillation of the AFM cantilever. This thermal expansion is
directly proportional to the absorption coefficient of the excited
area (Dazzi et al., 2012). By analyzing the many frequencies and
amplitudes of the resonant oscillations of the AFM cantilever
with Fourier transform, we extracted the useful information and
reconstructed the IR spectra of various regions on the sample
with a spatial resolution that is close to the size of an AFM tip.

We used a nanoIR from Analysis Instruments, Inc., to obtain
mid-IR spectra of the ray, the middle lamella, and the secondary
cell wall. Only two of the samples of the cross-sections (DX1 and
DX8) were used for the AFM-IR investigation. We fixed the edges
of a sample with adhesive tape to a glass slide and acquired AFM
images in contact mode. First, we found a suitable region where
we could see both the middle lamella and the tracheid cell wall, or
the ray and the adjacent tracheid cell wall and imaged it. Then,
we collected and averaged three-background IR spectra with the
resolution of 4 cm-1 to account for the variations in power of the
IR source. For the IR spectral acquisition, we chose the second
mode of the cantilever vibration to record the signal. This mode
had a frequency of about 190 kHz and we chose the frequency
window to be ±25 kHz to account for the variations in
thermoelastic properties between the cell walls and the middle
lamella or the ray. The second mode was chosen to improve the
signal to noise ratio of the cantilever amplitude. For AFM-IR, it is
crucial to position the IR laser directly at the tip-sample contact
to make sure that the recorded spectrum originates directly from
the area at the sample above where the tip is positioned. To do so,
we scanned around the tip-sample contact area with the IR laser
to find the highest cantilever amplitude, which corresponds to
the position where the IR laser has maximum power. Once the
tip, sample, and laser positions were optimized, we collected the
Frontiers in Plant Science | www.frontiersin.org 4
spectra at various positions of the sample with the energy
resolution of 4 cm-1 and by co-averaging 256 scans. After IR
spectral acquisition, the same area was inspected by using the
build-in camera. No laser damage was observed on any of the
samples. The AFM images were flattened to remove the tilt and
the AFM-IR spectra were smoothed by a Savitzky-Golay filter
(2nd polynomial degree, 15 points window size) (Savitzky and
Golay, 1964).
SR-FTIR DATA TREATMENT

The data treatment of SR-FTIR images consisted of two
consecutive steps: (1) preprocessing of the image spectra to
correct for scattering effects and (2) analysis by Multivariate
Curve Resolution – Alternating Least Squares (MCR-ALS)
(Tauler et al., 1995; de Juan and Tauler, 2006) to obtain pure
spectra of the image constituents and their related distribution
maps. The next subsections describe these steps.

Data Preprocessing
Due to the thickness and density of the samples, the infrared
spectra of ray and tracheid cells were oversaturated in both the
low and the high spectral wavelength range. Therefore, these
spectral areas had to be excluded, and only the 1200-1750 cm-1

range was included in the analysis.
Infrared spectra are prone to artifacts because of Mie

scattering associated with surface irregularities. Such artifacts
may produce a broad oscillation in the baseline spectrum and
can lead to distortions in both the position and intensity of
absorption bands (Romeo et al., 2006). The raw data were
corrected by the algorithm Asymmetric Least Squares (AsLS)
(Eilers, 2004), which has been demonstrated to cope well with
this type of scattering (Piqueras et al., 2013).

Hyperspectral Image Resolution
The goal of hyperspectral image resolution and, consequently, of
the multivariate curve resolution alternating least squares (MCR-
ALS) algorithm, is the decomposition of the original raw image
data into distribution maps and pure spectra of the constituents
present in the imaged sample (Tauler et al., 1995; Jaumot et al.,
2005; de Juan and Tauler, 2006; Tauler et al., 2009). In the matrix
form, hyperspectral images can be well described by a bilinear
model based on the Beer-Lambert law [Eq.(1)], where the D
matrix contains the original raw spectra, which are decomposed
into a set of concentration profiles (Cmatrix) and corresponding
pure spectra (ST matrix) of the constituents present in the image.
Every row of the ST matrix corresponds to the pure spectrum of
an image constituent, while every column of the C matrix of
concentration profiles corresponds to the related pixel-to-pixel
variation of its chemical concentration. It should be pointed out
that each column of the C matrix can be refolded appropriately
in order to recover the original two-dimensional spatial image
structure and then pure distribution maps are obtained.

D = CST + E (1)
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MCR-ALS is a flexible method that allows analyzing a single
image individually or several images simultaneously. To obtain a
complete and reliable description of the HW formation, the
simultaneous analysis of the recorded images along the nine-
annual rings obtained from larch sample was performed. Thus,
two multisets were built and analyzed separately—formed by
nine and eight images collected in the cross-sectional (DX) and
tangential directions (DT), respectively. See Figure 2 for a
visualization of the image multiset structure. In these multisets,
the spectral dimension of all images is the same, while the image
dimensions may differ between images because the images are
unfolded before being merged into a single matrix (Figure 2).
Due to extreme cases of over-saturation, the first image of the
cross-sections (DT1) and the last image of the tangential sections
(DX9) had to be excluded from the multiset structures DT and
DX, i.e:

DX = ½DX1;DX2;DX3;DX4;DX5;DX61; DX62DX7;DX8�

DT = DT2;DT3;DT4;DT5;DT6;DT7;DT8;DT9½ �

A multiset structure also follows the bilinear model based on
Beer–Lambert law [see Eq. (1)]. In this example, image multiset
analysis by MCR-ALS provides a single matrix ST of pure
spectra, identical for all the images analyzed, and a C matrix
formed by as many submatrices as the number of images
included in the data set. Every column of each C submatrix
can be refolded conveniently to recover the distribution map of
each constituent present in the different images of the data set
(Figure 2).

MCR-ALS multiset analysis was performed on both multiset
structures DX andDT following the MCR-ALS steps described in
the literature (Jaumot et al., 2005). The first step consisted of
determining the number of components involved during HW
Frontiers in Plant Science | www.frontiersin.org 5
formation by singular value decomposition of the whole
preprocessed DX and DT matrices (Golub and Reinsch, 1970).
Five contributions were needed to describe the variation in both
multisets. Then, initial estimates of pure spectra were obtained
with a method based on SIMPLISMA (Windig and Guilment,
1991). The spectral estimates and the original multiset are used
to perform an iterative alternating least squares optimization
of matrices C and ST under constraints. To obtain unmixed
resolved profiles that are chemically meaningful, the constraints
used in the resolution of both multiset structures were non-
negativity in both, the concentration and the spectral profiles
(Bro and de Jong, 1997), and normalization of pure spectra in the
ST matrix (using 2-norm, i.e., the Euclidean norm).

After a preliminary MCR-ALS analysis of both multisets (DX

and DT) under non-negativity constraints, we realized by
inspection of the distribution maps obtained that there were
components absent in some sub-images of both multisets. As a
consequence, a new MCR-ALS analysis was performed to obtain
more accurate solutions by imposing the additional constraint of
correspondence of species, which encodes information on the
presence/absence of constituents in the concerned images of the
multisets (Tauler et al., 2009), i.e. when a certain constituent is
absent in one image, the related concentration profile is null. The
lack of fit was 6.37% and 7.44% for DX and DT, respectively,
which is satisfactory for FTIR measurements (Felten et al., 2015).

It is important to note that, when resolving images of
biological samples, each resolved contribution (component)
may refer to a mixture of chemical compounds of defined
composition (polysaccharides, sugars, polymers, fatty acids,
flavonoids…) that are present in a particular location of the
sample and often represent a distinct biological element, e.g., a
tissue or a cell part. This means that an MCR contribution is not
necessarily a pure chemical compound. In imaging, the
component discriminating ability of MCR will also depend on
FIGURE 2 | MCR-ALS analysis for a multiset structure of images, where x and y are spatial pixels and l represents the wavenumbers of the spectra. Dxn is the
augmented data matrix; C is the concentration profiles; and ST is the pure spectra matrix.
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how fine the spatial resolution of the imaging technique used is,
e.g., if two components are differently distributed at nanoscale
level, MCR will not resolve them if imaging is performed at
microscale level.
RESULTS

Exploratory Analysis of the
SR-FTIR Images
In order to identify the main spectral variations during the HW
formation of Kurile larch, an exploratory analysis was done. A
small area of the ray and tracheid cell wall was selected for each
of the images collected in the cross-sectional direction (Figure
3A). Figure 3B shows the average spectra of the ray area selected
for each of the collected images (the average spectra of the
tracheid cell wall area can be found in the supplementary
information (Figure S2). The main spectral features when
going from the SW to the HW of the ring area are the
Frontiers in Plant Science | www.frontiersin.org 6
emergence of a new band at 1640 cm-1 and the decrease in
intensity of the band at 1660 cm-1. These spectral features appear
in the sample DX5, which we therefore determined to be the
transition zone between SW and HW (Figure 3C). According to
the literature, the band at 1640 cm-1 could correspond to
adsorbed water (Popescu et al., 2007) or to a carbonyl
stretching (C = O) as a consequence of the presence of para
substituted ketone or aryl aldehydes (Lawther et al., 1996; Shi
et al., 2012). Since the OH band at 3360 cm-1 appears not to co-
vary with the band at 1640 cm-1, we find it unlikely that the latter
is related to water adsorption.

Resolution of Image Multiset Structures.
MCR-ALS on Complete SR-FTIR Images
MCR-ALS multiset analysis on complete images provides the
biological spectral signatures and distribution maps needed to
integrally describe the ray and tracheid cells across the transition
zone during the HW formation of larch. Although, as mentioned
before, there is not necessarily a one-to-one correspondence
between the MCR-ALS contribution and the individual chemical
FIGURE 3 | (A) Representation of the area selection of the lumen, cell wall, and ray. (B) Average spectra of the ray area selected for each of the cross-section
images collected across the heartwood formation zone. (C) Zoom of the spectral range from 1200 cm-1 to 1800 cm-1 of the average spectra of the ray area selected
for each of the cross-section images. The spectra gradually change from blue (sapwood) to red (heartwood) color.
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compounds, each contribution can be associated with some
particular kind(s) of plant cell region, because of the
morphology of the distribution maps and the spectroscopic
features found in the resolved spectra. The resolution results
for the multiset of the cross sections (DX) are shown in Figure 4.
The multiset analysis of the tangential section images (DT) gave
similar MCR-ALS results asDX and are shown in Figure S3. The
light microscopy images, corresponding to the imaged ray and
the two surrounding tracheid cells areas are shown in the left of
Figure 4A. The resolved distribution maps of each image are
displayed in the right side of Figure 4A and the related resolved
spectra in Figure 4B.

MCR-ALS was able to resolve the main plant cell constituents
of the wooden tissue and to give further details on chemical
changes occurring in the transition from SW to HW.
Component I is characterized by signals in the region between
1317-1370 cm-1, which are mainly associated with cellulose
(Colom et al., 2003; Popescu et al., 2010) (see Table 1). The
corresponding distribution maps show higher intensity in what
we identify as the secondary cell wall (S2) of the tracheids, known
to be thick in latewood and rich in cellulose (Fengel and
Wegener, 1989). This component was distributed evenly across
all the growth rings, as is also seen clearly in Figure S3A of the
tangential sections.

The most prominent bands of lignin at 1505 and 1610 cm-1

are associated with C = C stretching of the aromatic ring modes
(Colom et al., 2003; Weiland and Guyonnet, 2003; Popescu et al.,
2010; Gorsás et al., 2011). They appear in components I, III, IV,
and V, but show higher intensity and thus higher lignin
contribution in components IV and V. Components IV and V
appear to be situated in the same anatomical segments, i.e. in the
cell corners (CC) and in the compound middle lamella (CML;
middle lamella + adjacent primary walls), which is consistent
with previous studies showing high lignin concentration in these
Frontiers in Plant Science | www.frontiersin.org 7
locations (Fengel and Wegener, 1989). The main spectral
difference between component IV and V is the same spectral
variation that was observed during the exploratory analysis of
SR-FTIR images: Component IV shows the characteristic band at
1660 cm-1, which is attributed to the ethylenic C = C (in coniferyl
alcohol/sinapyl alcohol units) and C = O (in coniferaldehyde/
sinapaldehyde) bond stretches of lignin (Umesh and Rajai, 2010;
Umesh et al., 2011; Bock and Gierlinger, 2019). This component
was prevalent in the CC and CML of SW tracheid cells but
disappears in the HW. The other feature observed in the
preliminary analysis, the band at 1640 cm-1, only appears in
component V, which is distributed in the CC, CML, and part of
the ray area of HW tracheids, as is also observed in Figure S3A.
According to the literature, the IR band at 1640 cm-1 is assigned
to a carbonyl stretching due to para substituted ketone or aryl
aldehydes (Lawther et al., 1996; Shi et al., 2012). This band was
also assigned to hydrogen bonding to the carbonyl group, as
reported elsewhere (Pomar et al., 2002; Agarwal and Reiner,
2009; Bock and Gierlinger, 2019). Because component IV is
present fromDX1 toDX5 (SW region), and component V appears
from DX5 to DX8 (HW region), it can be deducted that this fifth
annual ring represents the transition zone, where the process of
HW formation starts.

The resolved IR spectrum for component III shows a distinct,
broad band at 1700-1736 cm-1 and is assumed to be formed by
the overlapping of the C = O stretch vibration of acetyl or
carboxylic acid (COOH) groups (Faix, 1991; Schwanninger et al.,
2004) and the C = O stretch vibration of unconjugated ketones,
carbonyls, and esters groups. This broader band centered at
1728 cm-1 could suggest the presence of resin acids in the rays
since C = O stretching belonging to the -COOH group absorb
around 1700 cm-1 (Traoré et al., 2018). Besides, bands are
observed around 1600, 1637, and 1660 cm-1; the same ones as
found in components IV and V, but weaker. Candidates for para
FIGURE 4 | MCR-ALS image multiset results of the multiset structure formed by complete cross-section images. (A) Distribution maps of components involved in
the heartwood formation of Kurile larch. Each line of maps represents the resolved maps of all constituents for a particular sample. Each column of maps represents
the distribution map of a particular constituent in all samples analyzed. Distribution maps use a gradual color scale where yellow color refers to high concentration
values and the blue color to low values. (B) Related pure spectra.
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substituted ketones are flavonoids such as taxifolin and
dihydrokaempferol (Ruddick and Xie, 1994; Kocábová et al.,
2016), known to be abundant in larch (Nisula, 2018). This
component is represented in all the images in the ray, as well
as tracheid lumina and S3 layer.
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As mentioned before, resolved IR spectra reflect a mixture of
different kinds of biomolecules. For example, the IR spectrum
related to component IV consists of a mixture of mainly lignin
andhemicelluloses, knownby thepresenceof thebandat 1738 cm-1,
which is attributed to ester carbonyl groups prominent in
hemicelluloses (Stewart et al., 1995; Gorsás et al., 2011) (see
Table 1 for the different IR bands of wood assembled from the
literature). Finally, since the samples weremeasured in the dry state
for the SR-FTIR experiment, the IR spectrum of component II
associated with part of the lumen is not shown, since it does not
contain any biologically relevant information. The spectrum
corresponds to the IR absorbance of the ZnSe slide used in
the measurements.

AFM-IR Spectra Analysis
The AFM-IR spectra collected in the tracheid cell in the cross-
sectional sectionsofSW(DX1) andHW(DX8) are shown inFigure5,
together with the AFM images. Where possible, we acquired the
AFM image of the middle lamella and cell wall in a single image
(Figure 5A). However, in some places, the middle lamella (and the
ray) contain topographical features that exceed a few micrometers.
Such complex topography is difficult to image in contact mode
becauseof the limitedvertical rangeof theAFMscanner. In addition,
the imaging of such complex topographical features blunts theAFM
tip rapidly.Hence,we took imagesof variousdimensions, depending
on the topography of the area, in order to minimize the mechanical
strain exerted on theAFM tip, but to still be able to get a viewof both
the cell wall and the middle lamella in the same image (Figure 5B).
Numbered crosses on the AFM images indicate the location of
AFM-IR spectra. In contrast to the SR-FTIR spectra, the spectral
region between 1000-1200 cm-1 is not saturated in the AFM-IR
measurements, so we were able to obtain information from that
region as well. Although the IR spectra of CML (point nr. 2) and S2
layer (point nr. 1) are very similar to each other in the SW
(Figure 5A), we can observe different intensities around 1504-
1510 cm-1, associated with C = C stretching of the aromatic ring
modes of lignin. This band is more intense in the CML, which was
also seen in the SR-FTIR data and is consistent with literature
(Fengel andWegener, 1989). The C = O stretching mode is slightly
shifted to lower wavelengths (1724 cm-1) in point nr. 3, which is
characteristic of pectins and/or hemicelluloses (Gorsás et al., 2011).
Cellulose bands dominate the IR spectra in the S2 layer (seeTable 1).
In the case of the HW tracheids (Figure 5B), no spectral differences
between the CML (point nr. 2) and S2 layer (point nr. 1) were
observed. By comparingAFM-IR spectra of Figures 5A (SW) andB
(HW), we see the presence of the band at 1648 cm-1, while the band
at 1660 cm-1 is missing in the HW tracheid cell wall; the opposite is
the case for SW.These are the samemain spectroscopic features that
were found in the analysis of SR-FTIR images. Finally, a newband at
1108 cm-1 appears in HW (Figure 5B), linked with COH in plane
deformation of celluloses and hemicelluloses (Schwanninger et al.,
2004) and/or with aromatic C-H in plane deformation of lignin.

Figure 6 shows the AFM images and AFM-IR spectra of the
ray region and the S2 cell wall of an adjacent tracheid in SW
(Figure 6A) and HW (Figure 6B). Imaging of the ray and the cell
wall in contact mode was particularly difficult because of their
different material properties. This is why the image is blurry and
TABLE 1 | The characteristic bands in FT-IR spectra of the studied samples and
their assignments according to the literature data.

Wavenumber
(cm-1);
literature

Band origin (assignment)
with comments

Wavenumber
(cm-1) from SR-
FTIR & AFM-IR;

this work

1060–1015 C-O valence vibration mainly from C3-
O3H (Cellulose)a; 1060cm-1

polysaccharideb

1056

1072 C-O deformation in secondary alcohol of
galactosyl subunitsc

1072–1076

1095 C-C and C-O stretching motions
(cellulose)a

1096

1108 COH in plane deformation (celluloses and
hemicelluloses)d; Aromatic C-H in plane
deformation (typical syringyl units)e; C = O
stretche

1108

1162-1125 C-O-C valence vibration (polysaccharide)b;
1165cm-1 (characteristic for 5,7-
dihydroxysubstituted flavonoids)f

1156–1164

1230-1221 C-C plus C-O plus C = O stretcha; lignin,
Guaiacyl condensed > Guaiacyl etherifiedg

1220–1228

1235-1225 OH plane deformation, also COOHa 1232
1270-1266 Guaiacyl ring plus C = O stretcha 1263–1265
1280-1277 CH-deformation in cellulosed 1272–1284
1317-1315 CH2 rocking vibration (cellulose)b 1315–1317
1335-1320 CH in plane bending in cellulosed 1320–1332
1365-1335 OH plane deformation vibration (cellulose)a 1336
1375-1365 CH bending in cellulosed 1368–1372
1430-1422 CH2 scissoring in lignin and cellulosed CH

bending; aromatic skeletal vibrations with
C-H plane deformation in lignina

1423–1432

1460 Asymmetric C-H bending from methoxy
groups in ligninsa;h; asymmetric C-H
bending in CH3 and CH2 in pyran for
hemicellulosesh

1452–1456

1520-1505 Aromatic skeletal vibrations in lignina 1520–1505
1605-1593 Aromatic skeletal vibrations plus C = O

stretching in lignina
1595–1608

1640-1635 C = O stretching of para substituted
ketone or aryl aldehydesi; C = O stretch of
taxifolinj

1640–1635

1650-1640 H-bonded C = O stretching in coniferyl/
sinapyl aldehyde k

1640–1648

1655-1660 Ring conj. C = C stretching of Coniferyl/
sinapyl alcohol; C = O stretch of coniferyl/
sinapyl aldehydek

1660

1690-1670 C = O stretching in conjugated ketonesh 1672–1692
1700-1690 C = O vibration in carboxylic group in resin

acid h
1700–1690

1730-1725 C = O vibration of acetyl-or COOH-
groups a

1728

1738-1709 C = O stretching in unconjugated ketones,
carbonyls and ester groups (frequently of
carbohydrate origin)a,e

1724–1740

1770-1760 C = O stretching in conjugated ketonese 1752–1764
aSchwanninger et al., 2004; bFackler et al., 2010; cGhosh et al., 2015; dPopescu et al.,
2010; ePopescu et al., 2007; fZu et al., 2012; gFaix, 1991; hTraoré et al., 2018; iLawther
et al., 1996; jKocábová et al., 2016; kBock and Gierlinger, 2019.
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it appears as if the ray is smeared over the cell wall (Figure 6).
Such topography and relationship between the ray and the cell
wall are unrealistic and simply an artefact of imaging in contact
mode. This artefact does not affect the acquisition of AFM-IR
spectra or its spectral features because the spectra are acquired
after imaging was finished and at the frequency characteristic for
the tip-substrate system. Lignin and cellulose bands are more
intense in the S2 cell wall (points nr. 3, 8, and 9) of SW compared
to the ray area (points nr. 1, 2, 4, 5, 6, and 7). A characteristic
peak occurs at 1076 cm-1 inside the ray, assigned to C-O bands in
Frontiers in Plant Science | www.frontiersin.org 9
primary and secondary alcoholic groups (Compounds and
Hergert, 1960). A low intensity of the band at 1728 cm-1 is
seen in the S2 cell wall. The ray region spectrum of HW (points
nr.1 and 2) (Figure 6B) reveals characteristics peaks at 1692,
1756, and 1764 cm-1, which represent the C = O stretching in
conjugated ketones (Popescu et al., 2007) and carboxylic acid
groups (Schwanninger et al., 2004), alkyl esters (including the
methyl ester of fatty acids), and in g-lactone (Lievens et al., 2011),
respectively. The band at 1164 cm-1 is typical for 5,7- dihydroxy-
substituted flavonoids (Zu et al., 2012) and indicates the presence
FIGURE 5 | AFM deflection images and AFM-IR spectra of the middle lamella and secondary cell wall. The numbered crosses on the AFM images indicate the
location of the AFM-IR spectra. Point nr.1: Secondary cell wall (S2); point nr.2: Compound middle lamella (CML) and point nr.3: Assumable primary cell wall.
(A) sapwood tracheid cell (Dx1) and (B) heartwood tracheid cell (Dx8).
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of taxifolin. It is also important to highlight the presence of the
band at 1072 cm-1, associated with C-O deformation in primary
and secondary alcohol groups of galactosyl subunits (Ghosh
et al., 2015). In the S2 layer (point nr. 3), the AFM-IR
spectrum shows more intense cellulose/hemicellulose bands,
whereas the band at 1660 cm-1 is shifted to higher
wavenumbers compared to the S2 layer in SW, likely due to
the formation of C = O conjugated ketones. Nevertheless, the
lignin band is again more intense and a shoulder at 1640-1660
cm-1 appears.
Frontiers in Plant Science | www.frontiersin.org 10
DISCUSSION

The formation of HW is linked to the occurrence of non-
structural substances called extractives, which play an
important role in the resistance of wood to fungal decay
(Hinterstoisser et al., 2000; Schultz and Nicholas, 2000). By
combining high resolution SR-FTIR with the powerful
unmixing algorithm MCR-ALS, we were able to identify a
component associated mainly with phenolic compounds and
likely with deposition of resin acids (component III from DX and
FIGURE 6 | AFM deflection (a) and height (b) images and AFM-IR spectra of the ray cell and secondary cell wall. The numbers on the AFM images indicate the
location of the AFM-IR spectra. (A) sapwood tracheid and ray region (Dx1) where points nr.: 1, 2, 4, 5, 6, 7 correspond to the ray and points nr.: 3, 8, 9 to the
secondary layer (S2) of tracheid cell wall. (B) heartwood tracheid and ray region (Dx8) where points nr.: 1, 2 are the analyses of the ray and point nr. 3 of the
secondary layer (S2) of tracheid cell wall.
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DT, Figures 4 and S2). Component III shows prominent IR
bands at 1637, 1658, and 1728 cm-1 in the ray, tracheid lumen,
and S3 layer. The band around 1637 cm-1 was assigned to the
ketone bond in taxifolin (Ruddick and Xie, 1994; Miklečić et al.,
2012; Kocábová et al., 2016; Liu et al., 2018), one of the most
abundant phenolic compounds in larch wood (Giwa and Swan,
1975; Babkin et al., 2001; Ivanova et al., 2012; Zule et al., 2017)
(see reference spectrum of taxifolin in Figure S4 for
comparison). The other peaks seen in the taxifolin spectrum
are not seen due to overlap with the spectra of the structural
wood cell wall biopolymers. The distinct, broad band 1700-1736
cm-1 centered at 1728 cm-1, is assigned to the C = O vibration of
carboxylic acid groups in resin acids (Faix, 1991; Schwanninger
et al., 2004). It is important to emphasize that component III
appears to be more common in the ray than in tracheid cells in
the SW and vice versa in the HW (see Figures 4B and S3). As
described by Hillis (1987), parenchyma cells die when HW forms
and the polyphenols diffuse into cell walls. The relatively higher
concentration of taxifolin and resin acid mixtures in the HW cell
walls likely explains its natural durability.

With the MCR-ALS multiset analysis of tangential and cross-
sections, two MCR-ALS contributions were found to be directly
linked to the process of HW formation in Kurile larch
(components IV and V, Figures 4 and S3). Both of them
mainly showed lignin bands but had different spatio-temporal
distributions, as well as different spectral features. Component IV
was located in the CC and CML of tracheid cells in the SW,
although in the transition zone it was almost exclusively present
in the ray area. The other lignin contribution (Component V)
was distributed in CC, CML, and in the ray cells of HW. The
main spectroscopic difference between component IV and V was
the appearance of the band at 1640 cm-1 and the simultaneous
disappearance of the band at 1660 cm-1.The disappearance of the
1660 cm-1 band might be explained by a decrease in the intensity
or as a drastic shift in the frequency to 1640 cm-1.

The decrease of the intensity of band at 1655-1660 cm-1 could
be explained in terms of condensation reactions (Yamauchi et al.,
2005) of coniferyl alcohol in lignin. By condensation, coniferyl
alcohol loses the ethylenic bond which then no longer
contributes to the vibration at 1660 cm-1. However, this
process cannot explain the appearance of the 1640 cm-1 band.
Possible coupling of the condensation reaction with the
integration of new coniferyl aldehyde moieties into the lignin
structure and their H-bonding to unreacted alcohols would
decrease the frequency of the 1660 cm-1 band to 1640 cm-1, as
described by Bock and Gierlinger (2019) and Agarwal and Reiner
(2009). Another possibility for the band shift is the oxidation of
coniferyl alcohol to its aldehyde and subsequent H-bonding to
the carbonyl groups during the aging of the wood cells. Lastly,
the appearance of taxifolin and other flavonoids may explain the
appearance of the 1640 cm-1 band, as they contain carbonyl
vibrations at 1640 cm-1. Since flavonoids are rich in OH-groups,
they are likely to interact with lignin and cause the shift of the
1660 cm-1 band frequency.

From the MCR-ALS distribution maps, interpretation of the
deposition pathways of the components involved during HW
Frontiers in Plant Science | www.frontiersin.org 11
formation of larch was achieved. It is interesting to observe that
distribution of extractives (component III from DX and DT, see
Figures 4A and S3A) is represented in all the images and can be
found in the ray region, lumen, and S3 layer of tracheid cells. Itmay
suggest that precursor molecules are present before and after the
actual transition from SW to HW. This pattern is observed in
Juglans-Type II HW formation. Not much is known about this
mechanism, but it has been described for deciduous trees, as well as
conifers, such as Prunus, Platycarya, Eucalyptus, and Pseudotsuga
(Kampe and Magel, 2013). If we follow their deposition in the
distribution maps of Figures 4A and S3A, it seems that extractives
are accumulated in the ray in SW and after ray cell death, they
spread to the surrounding wood tissues. We can also see how
component V emerges and component IV diminishes during the
HW formation process. The similar IR spectra and spatial
deposition indicate that component IV corresponds to a set of
precursor molecules of component V. Thus, Type II seems the
reasonable mechanism of larch HW formation.

AFM-IR spectroscopy revealed variations in the composition
between the tracheid and the ray regions in SW and HW
(Figures 5A, B). The main spectral differences were found at
1108, 1456, 1648, and 1660 cm-1. In the HW tracheid cell walls,
the band at 1108 cm-1, assigned to COH in plane deformation of
celluloses and hemicelluloses (Schwanninger et al., 2004) and/or
to aromatic C-H in plane deformation of lignin, increases. At the
same time, the band at 1456 cm-1, related to C-H bending of
methoxyl groups (Schwanninger et al., 2004) becomes broader.
According to the literature, the IR band at 1108 cm-1 could
appear because of cross-linking reactions of –OH groups of
cellulose/hemicellulose with phenolic compounds at the cell
wall level (Wang et al., 2016), resulting in an increase in the
hardness of the wood cell walls. The most important difference is
again the appearance of the band at 1648 cm-1 and the absence of
the band at 1660 cm-1 in the HW tracheid cell walls. As
mentioned earlier, the band at 1655 cm-1 could be mainly
present because of C = O and C = C groups in coniferyl
aldehyde and coniferyl alcohol structures of lignin. Hence, it is
likely that the reduction of band intensity may be attributable
mainly to condensation reactions of lignin molecules or oxidative
alteration of lignin.

It is well known that lignin condensation makes
lignocellulosic biomass more recalcitrant, mainly due to
limiting the accessibility to the polysaccharides in the cell wall
(Li et al., 2016). Additionally, generation of new carbonyl groups
by oxidation, as discussed above, may increase non-productive
binding of cellulases or enzyme inhibition via chelation of metal
co-factors (Li et al., 2016), thereby starving the fungus. The
attachment of other, potentially fungitoxic or antioxidant
phenolics, i.e. flavonoids, to these newly formed reaction sites
are other possibilities that lignin modification would allow for.
These steric or chemical inhibitory effects are important for
understanding the durability of heartwood (Valette et al., 2017).

The AFM-IR spectra of the ray also show differences between
SW and HW (Figures 6A, B).

Forexample, theappearanceof thebandaround1680-1692 cm-1

suggests the presence of conjugated ketones and carboxylic acids,
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such as resin acids, in the HW ray and its surrounding cell wall
tracheid. The presence of taxifolin inside the ray is supported by the
presence of the band at 1164 cm-1 (a characteristic band for 5,7-
dihydroxysubstituted flavonoids) (Zu et al., 2012).

We can also observe an intense C = O stretching vibration at
1764 cm-1 and around 1750 cm-1 (see Figure 6B), indicating the
presence of g-lactones and alkyl esters, including the methyl
esters of fatty acids (Lievens et al., 2011). Prominent bands that
appear at 1072 and 1728 cm-1 are assigned to C-O deformation
in primary and secondary alcohol groups of galactosyl- and
carbonyl of carboxylic groups.

The interpretation of the spectra is complex since mixtures of
chemical compounds are present throughout the plant tissue, i.e
spectra of pure chemical constituents are rarely possible to
obtain, neither by use of high spatial resolution (as in AFM-
IR), nor by use of MCR-ALS modelling. Consequently,
comparing to a spectral data base with the most common
components present in plant cell walls might help to further
identify the chemical compounds, but it would most likely not
lead to conclusive results. AFM-IR is presented in this study as a
potent technique to further characterize plant cell wall
components because of its higher spatial resolution than SR-IR
imaging, and because spectra could be obtained for a broader
range of wavenumbers. However, measurements of a more
comprehensive sample set would be necessary in order to not
simply illustrate the technique but obtain representative results.
CONCLUSIONS

MCR-ALS multiset analysis on sets of SR-FTIR images collected
across theHW formation zone of Kurile larch provided a cellular
level description of the components involved in HW formation.
In particular, the IR resolved spectral signatures and comparison
with IR reference spectra from the literature allowed us to
identify taxifolin, one of the most abundant extractive in larch,
in rays as well as in the lumen and S3 cell wall layer of adjacent
tracheids. Moreover, refolding of the concentration profiles to
the original image formats allowed us to see that one initial
phenolic lignan contribution (component IV) was present in the
SW, while a second somewhat similar contribution (component
V) emerged in the transition zone and continued in theHW.Our
interpretation of this result is that component IV is a set of
precursor molecules for component V. Such a pattern is
characteristic for Type II heartwood formation, also called
Juglans-type. The main spectroscopic difference between
component IV and V was the appearance of the band at 1640
cm-1 and the simultaneous disappearance of the band at 1660
cm-1. We hypothesize that the disappearance of the 1660 cm-1

band may be attributable mainly to condensation reactions of
lignin/lignan molecules or oxidative alteration of lignin. Lignin
condensation reactions are known to make lignin more
recalcitrant. Generation of new carbonyl groups by oxidation
of coniferyl alcohol to coniferyl aldehyde could also help explain
both the peak shift and the resistance against fungal attack of
Kurile larch HW.
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AFM-IR has been proven to be a powerful technique to study
the nanoscale compositional variations between the cell wall, CML,
and the ray of SW andHWof larch. The AFM-IR results confirmed
the trends observed in the SR-FTIR image analysis and provided
more detail about the plant cell wall composition as spectra were
obtained for a broader spectral range. Conjugated ketones and
carboxylic acids accompanied with the presence of g-lactone and
alkyl ester were also found in the HW rays. Finally, AFM-IR spectra
proposed the existence of cross-linked reactions of cellulose/
hemicelluloses with phenol compounds at the cell wall level in HW.
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FIGURE S1 | Schematic diagram of AFM-IR setup. IR laser irradiates the sample
which then expands. The expansion of the sample is detected by the AFM tip which
deflects the whole AFM cantilever. The deflection is then monitored by tracking the
movements of the AFM laser shone on the cantilever.

FIGURE S2 | (A) Representation of the area selection of the lumen, cell wall, and
ray. (B) Average spectra of the cell wall selected for each of the cross section
images collected across the heartwood formation zone. (C) Zoom of the spectral
range 1200 cm-1 to 1800 cm-1 of the average spectra of the cell wall selected for
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each of the cross section. The spectra gradually change from blue (sapwood) to red
(heartwood) color.

FIGURE S3 | MCR-ALS results of the multiset structure formed by a series of
tangential section images. (A) distribution maps of components involved in the
heartwood formation of Kurile larch. Each line of maps represents the resolved
Frontiers in Plant Science | www.frontiersin.org 13
maps of all constituents for a particular sample. Each column of maps represents
the distribution map of a particular chemical constituent in all samples analyzed.
Distribution maps use a gradual color scale where yellow color refers to large
concentration values and blue color to small values. (B) Related pure spectra.

FIGURE S4 | FTIR spectrum of taxifolin crystal according to (Liu et al., 2018).
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