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Double-flower Eriobotrya japonica, of which one phenotype is homeotic transformation of
sepals into petals, is a new germplasm for revealing the molecular mechanisms underlying
the floral organ transformation. Herein, we analyzed the sequence, expression pattern and
functional characterization of EjPI, which encoded a B-class floral homeotic protein
referred to as PISTILLATA ortholog, from genetically cognate single-flower and double-
flower E. japonica. Phylogenetic analysis suggested that the EjPI gene was assigned to the
rosids PI/GLO lineage. Analysis of protein sequence alignments showed that EjPI has
typical domains of M, I, K, and C, and includes a distinctive PI motif at the C-terminal
region. Compared with asterids PI/GLO lineage, the K1 and K3 subdomains of EjPI both
contain a single amino acid difference. Subcellular localization of EjPI was determined to
be in the nucleus. Expression pattern analysis revealed that EjPI expressed not only in
petals, filament, and anther in single-flower E. japonica, but also in petaloid sepals in
double-flower E. japonica. Meanwhile, there were high correlation between EjPI transcript
level and petaloid area within a sepal. Furthermore, 35S::EjPI transgenic wild-type
Arabidopsis caused the homeotic transformation of the first whorl sepals into petaloid
sepals. Ectopic expression of EjPI in transgenic pi-1 mutant Arabidopsis rescued normal
petals and stamens. These results suggest expression pattern of EjPI is associated with
the formation of petaloid sepal. Our study provides the potential application of EjPI for
biotechnical engineering to create petaloid sepals or regulate floral organ identity
in angiosperms.
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INTRODUCTION

Structural diversification of flower organs has often been
considered to be function requirements of floral pollination/
ecology biology (Endress, 2006). Understanding the underlying
mechanisms for the diversification of floral organs has long been
a challenge in angiosperms (Schwarz-Sommer et al., 1990;
Frohlich, 2006; Irish, 2010). However, the most well-known
ABCE-model maintains that each whorl organ identity is
determined in a combinational way of four class homeotic
proteins, termed A, B, C, and E class proteins (Bowman et al.,
1991; Coen and Meyerowitz, 1991; Theißen, 2001; Theissen and
Saedler, 2001; Litt and Kramer, 2010). According to this model,
sepal identity is specified by the combinational A and E class
proteins; petal formation is regulated by the combination of A, B,
and E class proteins; stamen identity is specified by the
combinational B, C, and E class proteins; carpel formation is
regulated by the combination of C and E class proteins. All the A,
B, C, and E proteins, except for APETALA2, belong to MIKC-
type MADS-box transcription factors (Irish, 2010).

The MIKC-type MADS-box transcription factors are
identified originally as floral homeotic proteins, and exhibit the
characteristic domains from N- to C-terminus: a MADS (M), an
intervening (I), a keratin-like (K), and a C-terminal (C) domains
(Purugganan et al., 1995; Theißen et al., 1996; Theissen et al.,
2000; Kaufmann et al., 2005; Litt and Kramer, 2010). Among
these domains, the M domain, which is the most highly
conserved region, contributes to the dimerization and nuclear
localization (Gramzow and Theissen, 2010). The I domain, a
relatively weakly conserved region, is also important for the
DNA-binding dimer formation (Kaufmann et al., 2005). By
contrast, the relatively conserved K domain, which allows a
coiled-coil secondary structure by the formation of three-
segment amphipathic helices, is involved in the formation of
multimeric complex and protein dimerization (Yang and Jack,
2004; Puranik et al., 2014). Finally, the C domain, which is quite
variable, contributes to the transcriptional activation and the
formation of multimeric complex (Kaufmann et al., 2005;
Theißen and Gramzow, 2016). Sequence differences of the
MADS-box proteins from different flowering plant species has
been used to clarify the evolution and diversification of floral
organ identity (Theißen et al., 2016).

PISTILLATA (PI) homologues, which encode floral homeotic
B-function MADS-box transcription factors, play a crucial role
in the specification of petal and stamen identities in angiosperms
(Goto and Meyerowitz, 1994; Hernandez-Hernandez et al., 2007;
Whipple et al., 2007; Irish, 2009; Theißen et al., 2016). Molecular
evolution of PI lineages indicates that the PI homologues are
generated from a major duplication event of an ancestral gene,
and their encoding proteins include a highly conserved PI motif
in most angiosperms (Kramer et al., 1998). Therefore, functional
diversification or conservation of PI orthologous genes need to
be focused after the duplication events in different clades of
angiosperms. The altered expressional patterns of PI orthologs in
some angiosperm shaped floral organ diversification (Soltis et al.,
2007; Viaene et al., 2009; Chen et al., 2012; Hofer et al., 2012;
Sasaki et al., 2014; Jing et al., 2015; Dodsworth, 2017). However,
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the expression pattern and functional roles of PI ortholog in
Eriobotrya remain unclear.

Double flower is one of the earliest documented examples of
floral mutants (Meyerowitz et al., 1989). In many land plants,
double-flower cultivars are selected as ornamentals and provide
resources for elucidating the genetic difference between normal
and double-flower phenotypes (Dubois et al., 2010; Galimba
et al., 2012). Compared with the single-flower phenotype in
angiosperms, extra petals of double flower are from homeotic
transformation of the first whorl sepals or the third whorl
stamens. At present, the formation of double flower in few
species has been reported and mainly focus on the
transformation of stamens into petaloid organ. Recent studies
indicated that the transformation from stamen to petal in double
flowers is associated with expression patterns of C-class genes
(Dubois et al., 2010; Galimba et al., 2012; Liu et al., 2013; Ma
et al., 2018). However, the regulatory mechanisms underlying the
transformation from sepals to petals need further research.

Eriobotrya japonica, a Chinese originated evergreen tree,
belongs to the family Rosaceae and is cultivated broadly in
tropical and subtropical regions (Lin et al., 1999). The single-
flower E. japonica has four normal floral whorls, which include
four sepals in the first whorl, four petals in the second whorl,
numerous stamens in the third whorl and five carpels in the fourth
whorl (Figures 1A, D). However, the double-flower E. japonica, a
recently discovered natural variation, has four floral whorls
including four homeotic conversional petaloid organ from sepals
in the first whorl, (Figures 1B–F), four petals in the second whorl,
numerous stamens in the third whorl and five carpels in the fourth
whorl. In this study, we isolated and identified EjPI gene, a PI
ortholog, from genetically cognate single-flower and double-
flower E. japonica. Analyses of protein sequence alignment and
phylogenetic tree showed that EjPI is a typical B-class MADS-box
genes and assigned to the rosids PI/GLO lineage. Expression
pattern analysis suggested that EjPI expressed not only in petals,
filament and anther in single-flower E. japonica, but also in
petaloid sepals in double-flower E. japonica. Meanwhile, the
expression level of EjPI was highly correlated with petaloid area
within a sepal. The 35S::EjPI transgenic wild-type Arabidopsis
caused the first whorl sepals replaced into petaloid sepals. Ectopic
expression of the EjPI in homozygous pi-1 mutant Arabidopsis
rescued normal petals and stamens. These results reveal that
expression pattern of EjPI is associated with the formation of
petaloid sepal in double-flower E. japonica. Our study contributes
to better understand the roles of EjPI for homeotic transformation
of sepals into petaloid organs in double-flower E. japonica.
MATERIALS AND METHODS

Plant Materials
At different development stages, flower buds from the single-
flower and double-flower E. japonica were collected from an
experimental farm of Southwest University (Chongqing, China).
Sepals, petals, filaments, anthers, and carpels were sampled from
single-flower E. japonica. The petaloid sepals, petals, filaments,
January 2020 | Volume 10 | Article 1685
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anthers, and carpels from double-flower E. japonica were
collected, and immediately frozen in liquid nitrogen. The seeds
of pi-1 mutant Arabidopsis (Landsberg erecta, CS77) were
obtained from the Arabidopsis Biological Resource Center
(Ohio State University, Columbus, OH, USA).

Isolation of EjPI in E. japonica
Total RNA from floral buds of single-flower and double-flower E.
japonica was extracted using EASYspin plant RNA Extraction kit
(RN09, Aidlab, China). The 3′ rapid amplification of cDNA ends
(RACE) of EjPI was conducted from the DNase I-treated RNA
using a 3′-full RACE Core Set Version 2.0 kit (Takara, Japan).
The primers of 3′ RACE, 3REjPI1, and 3REjPI2 were designed
according to the conserved sequences of PI orthologs from
related species in Rosaceae, such as Kerria japonica (GenBank
accession number MH161203), Pyrus pyrifolia (KP164019),
Prunus pseudocerasus (KM243373), and Malus domestica
(AB081092). Then, first PCR was conducted using the gene-
specific primer 3REjPI1. The nested PCR was conducted using
the gene specific primer 3REjPI2. Furthermore, the primers of 5′
RACE, 5REjPI1, and 5REjPI2 were designed based on the
obtained sequences of 3′ RACE. The 5′ partial cDNA of EjPI
was isolated using the SMARTer RACE 5′/3′ kit (Takara, Japan).
Then, first PCR was conducted using the gene specific primer
5REjPI1. The nested PCR was conducted using the gene specific
primer 5REjPI2. To further verify the full-length cDNA sequence
of EjPI, PCR was conducted using the primers of FLEjPIF and
Frontiers in Plant Science | www.frontiersin.org 3
FLEjPIR. PCR parameters was at 94°C denaturation step for 5
min, followed by 35 cycles of 50 s at 94°C, 50 s annealing at 57°C
and 50 s extension at 72°C, with a final extension period of 72°C
for 10 min. These primers of PCR are shown in Table S1.

Sequence Alignments and
Phylogenetic Analysis
The BLAST analysis of deduced amino acid sequences of EjPI
was performed on the Genbank database. Multiple A, B, C, and E
class proteins were selected for alignment from various
angiosperm lineages. Accession numbers of these proteins are
listed in the Table S2. Amino acid sequences of these proteins,
which contain the M, I, K, and C domains, were aligned using a
ClustalW program (Thompson et al., 1994). A phylogenetic tree
was constructed using MEGA 5.0 software (Kumar et al., 2008;
Tamura et al., 2011) and the method described by Jing et al.
(2015). Parameters of the phylogenetic tree were the bootstrap of
1,000 replicates, substitution model of Jones–Taylor–Thornton
(Jones et al., 1992), uniform rates, nearest neighbor interchange,
and the complete deletion of gaps/missing data. Lower than 50%
of the values at each node was hidden.

Subcellular Localization, Semi-Quantitative
Reverse Transcription PCR and
Quantitative Real-Time PCR (qRT-PCR)
Subcellular localization of EjPI was detected using the modified
pCAMBIA 1300 vector (Liu et al., 2017) and Agrobacterium-
FIGURE 1 | Comparative morphological observation in the single-flower and double-flower of E. japonica. (A) Single-flower E. japonica; (B) Double-flower E.
japonica, showing homeotic conversional petaloid sepals from sepals in the first whorl (blue arrows) and petals in the second whorl (red arrows). (C) Petaloid sepals
(blue arrow) in double-flower E. japonica. (D) Sepal. (E) Petaloid sepal. (F) Comparison of petaloid sepal and petal. Sep, sepal; Pe-se, petaloid sepals; Pet, petal.
January 2020 | Volume 10 | Article 1685
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mediated transient transformation in Nicotiana benthamiana
leaves. Then, fluorescence signals of green fluorescent protein
(GFP) were observed via fluorescent microscopy using an
Observer DP80 (Olympus, Japan). As a control, the vector
expressing GFP alone was used.

Total RNA concentrations of sepals, petaloid sepals, petals,
filament, anther, and carpels were assayed using a Nanodrop 2000
Spectrophotometer (Thermo Scientific, USA). To synthesize first-
strand cDNA, 2 µg of the DNase I-treated RNA was used with
oligo (dT)-18 adaptor primer and M-MLV reverse transcriptase
(Takara, Japan). Then, semi-quantitative RT-PCR was conducted
using 2 µl of the cDNA, the forward primer of RTEjPIF and the
reverse primer of RTEjPIR. The PCR products from each reaction
were determined using a 1% agarose gel electrophoresis. The
experiments were assayed for three independent biological
replicates for each sample. As an internal control, the ACTIN
gene of E. japonica was used with the specific primers RTEjactinF
and RTEjactinR (Shan et al., 2008). These primers of semi-
quantitative PCR are shown in Table S3.

Flower organ samples (200 mg) were collected, respectively
from sepals, petals, and different petaloid sepals, i.e., ~34%,
~45%, ~65%, and ~86% petaloid area within a sepal. Three
independent biological replicates were collected for each sample.
Then, total RNA from sepals, petaloid sepals and petals, was
extracted individually and treated with RNase-free DNase I
(Takara, Japan). To generate the first-strand cDNA, 2 µg of
total RNA were used using PrimeScript RT reagent Kit with
gDNA Eraser (Takara, Japan). Then, cDNA was added in a 20 µL
PCR reaction with the primers of QEjPIF and QEjPIR. The qRT-
PCR were assayed using the SYBR green I (Takara, Japan)
and CFX96 Touch Real-time PCR Detection System (Bio-Rad,
USA). The reaction mixture was cycled using the previous
parameters described by Jing et al. (2015). As an internal
control, the E. japonica b-actin was used to normalize small
differences in template amounts with the primers qEjactinF and
qEjactinR (Shan et al., 2008). These primers of qRT-PCR are
shown in Table S3. Three biological replicates for each sample
were conducted. The relative quantification of gene expression
level was determined by the 2-DDCT method (Livak and
Schmittgen, 2001).

Vectors Construction and
Arabidopsis Transformation
Coding sequences of EjPI was cloned into a pBI121 vector (BD
Biosciences Clontech, USA) using restriction enzymes ofXbaI and
SmaI (Takara, Japan). The 35S::EjPI construct was transformed
into heterozygous pi-1 mutant Arabidopsis lines via the
Agrobacterium tumefaciens strain GV3101-90 using the floral-
dip method described by Clough and Bent (1998). The seeds of
transgenic Arabidopsis lines were selected using the previous
method described by Jing et al. (2015). Then, the seedlings were
transplanted in soil. The 35S::EjPI transgenic lines were detected
by PCR and qRT-PCR. Genotype of transgenic Arabidopsis lines
were identified using the primers of PI-1MF and PI-1MR designed
by the dCAPS Finder program (Neff et al., 2002; Lamb and Irish,
2003; Jing et al., 2015). After genotyping, transgenic Arabidopsis
lines of wild-type and homozygous pi-1 mutant were observed.
Frontiers in Plant Science | www.frontiersin.org 4
For qRT-PCR analysis of transgenic Arabidopsis lines, three
biological replicates were performed using the primers of
QEjPIF and QEjPIR, qApiF and qApiR. The Actin gene of
Arabidopsis was used to normalize small differences in template
amounts with the primers of qAactinF and qAactinR (Zhang et al.,
2014). The primers of these PCR are shown in Table S3.

Analysis of Scanning Electron Microscopy
Epidermal cells of floral organ from different Arabidopsis lines
were fixed in 2.5% glutaraldehyde solution at 4°C for 48 h. The
materials were dehydrated in a graded ethanol series and
introduced at a critical point into the liquid CO2. The dried
samples were coated with gold-palladium using a Hitachi E-1010
sputter Coater (Hitachi, Japan). Epidermal cells of the samples
were observed using a FEI-Quanta 200F scanning electron
microscope (FEI Company, Hillsboro, USA).
RESULTS

Isolation and Sequence Analyses of EjPI
To isolate the EjPI sequence, we performed RACE technique to
obtain full-length cDNA of EjPI from E. japonica flower bud
(Figure S1). The EjPI cDNA sequence was 988 base pairs (bp)
including a 61-bp of 5′ untranslated region (UTR), 648-bp
open reading frame and 279-bp 3′ UTR with a poly-A tail at
3′-end (Figure S2). Isoelectric points and molecular weight of
EjPI protein is 8.69 and 25.04 kD (Table S4), respectively.
Accession number of the sequence was MK913362 in the
GenBank database.

Analysis of Phylogenetic Tree and Protein
Sequence Alignments
Analysis of phylogenetic tree showed that the EjPI gene is
assigned to the rosids PI/GLO lineage (Figure 2). Conceptual
translation reveals that EjPI encode 215 amino acids (aa)
including a 59-aa M domain, a 27-aa I domain, an 82-aa K
domain, and a 47-aa C domain from N- to C-terminus
(Figure 3). Among these domains, the M, I, and K domains
were conserved in these aligned PI orthologous proteins. The K
domain contains K1 (87-108), K2 (121-135), and K3 (143-169)
subdomains with (abcdefg)n heptad repeats, which could
potentially mediate protein interaction (Yang et al., 2003; Yang
and Jack, 2004). In comparison to K domain of asterids PI/GLO
lineage, K1 subdomain contains substitution of polar neutral
amino acid (Asn-92) to acidic amino acid (Asp-92/Glu-92), and
K3 subdomain contains substitution of basic amino acid (Lys-
149/His-149) to polar neutral amino acid (Asn-149) in rosids PI/
GLO lineage, respectively. However, the C domain, which
includes a distinctive PI motif, showed more variable than the
other domains (Figure 3).

Subcellular Localization and Spatial
Expression of EjPI
To observe the subcellular localization of EjPI, EjPI-GFP
fusion proteins transiently expressed in leaf epidermal cells in
January 2020 | Volume 10 | Article 1685
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N. benthamiana. Fluorescence from 35S::GFP was as control and
detected in both the nucleus and cytoplasm, but the fluorescence
from 35S::EjPI-GFP was detected only in the nucleus (Figure 4).

To analyze spatial expression pattern of EjPI, the semi-
quantitative RT-PCR were performed in single-flower and
double-flower E. japonica. In flower buds of single-flower
E. japonica, EjPI was transcribed only in the petals, filaments
and anther, but not in sepals and carpels (Figure 5). However, in
the flower buds of double-flower E. japonica, EjPI was transcribed
in petaloid sepals, petals, filaments, and anthers (Figure 5).

We analyzed EjPI expression levels in petaloid sepals of
different areas within the sepals. The expression level of EjPI in
larger petaloid area within a sepal was significantly higher than
that in small petaloid area (Figure 6). The correlationship
between petaloid area and EjPI transcript level was further
investigated. There were high correlation coefficients between
EjPI transcript level and petaloid area (Pearson’s correlation
Frontiers in Plant Science | www.frontiersin.org 5
coefficient of 0.977, Table S5), indicated that increased EjPI
expression level causes the increased petaloid area within a sepal.

Functional Analyses of EjPI in Transgenic
Arabidopsis
The pi-1 Arabidopsis, which is a strong allele leading to a
truncated protein product, results in the phenotype of full B-
class loss-of-function. Flower of wild-type Arabidopsis has four
sepals in the first whorl, four petals in the second whorl, six
stamens in the third whorl and a carpel in the fourth whorl
(Figure 7A). However, in homozygous pi-1 mutant Arabidopsis,
the second whorl petals are transformed into sepals and the third
whorl stamens are replaced into a carpel (Figure 9A).

To analyze the functional characterization of EjPI,
overexpression and complementation assays were conducted
by ectopic expression of EjPI into wild-type and homozygous
pi-1mutant Arabidopsis plants, respectively. We obtained thirty-
FIGURE 2 | Phylogenetic analysis of PI/GLO-like MADS-box proteins. The EjPI protein sequence is blasted with twenty-six B-class proteins from other
angiosperms, with two A-class proteins, four C-class proteins and four E-class proteins as out group. Black arrows show that the gene lineages are obtained
through gene duplication. EjPI protein is marked. PI, PISTILLATA.
January 2020 | Volume 10 | Article 1685
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FIGURE 3 | Sequence comparisons of EjPI and the other PI/GLO orthologous proteins. First underlined region represents the MADS domain. Second underlined
region represents the K domain. The PI-motif is boxed. Dots indicate the amino acid residues identical to EjPI. Dashes are introduced into the sequences to improve
the alignment. The K domain contains K1, K2, and K3 subdomains with (abcdefg)n heptad repeats (Yang et al., 2003), which are also underlined. Meanwhile, Asp-
92/Glu-92 and Asn-149 in K1 and K3 subdomains in rosids PI/GLO lineage are boxed.
FIGURE 4 | Subcellular localization of EjPI. GFP, GFP fluorescence; 4,6-diamidino-2-phenylindole (DAPI) staining shows nuclear localization; BF, bright-field;
Merged, merged image of GFP and DAPI. GFP, green fluorescent protein.
Frontiers in Plant Science | www.frontiersin.org January 2020 | Volume 10 | Article 16856
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one 35S::EjPI transgenic wild-type Arabidopsis lines. Among
them, compared with untransformed wild-type plants, ten lines
(32.26%) were phenotypically indistinguishable, but 21
remaining transgenic lines (67.74%) showed identical
phenotypic alterations. In these transgenic lines with altered
phenotypes, green/white petaloid sepals were produced in the
first whorl (Figures 7D–F). Meanwhile, the first whorl sepals of
Arabidopsis plants of wild-type and transgenic wild-type with
the pBI121 vector were tightly closed even after pollination
(Figures 7A–C). However, the first whorl petaloid sepals of
Frontiers in Plant Science | www.frontiersin.org 7
35S::EjPI transgenic wild-type lines opened immediately and
separated completely after flower opening (Figures 7D–F).

Epidermis cellular shapes of adaxial side from the first whorl
floral parts were further examined. Adaxial epidermis cellular
shapes of sepal margin in a wild-type Arabidopsis were irregular
(Figure 7G). Epidermis cellular shapes of the second whorl petals
exhibited cone-shaped (Figure 7H). However, cell shapes of
white portion of the petaloid sepals in transgenic wild-type
Arabidopsis exhibited to be morphologically distinct from the
first whorl sepal epidermis in wild-type plants, but similar to the
FIGURE 5 | Spatial expression of EjPI in single-flower and double-flower E. japonica by semi-quantitative RT-PCR. (A) Spatial expression of EjPI in double-flower E.
japonica. (B) Spatial expression of EjPI in single-flower E. japonica. Sep, sepals; Pe-se, petaloid sepals; Pet, petals; Sta, stamens; Car, carpels; Fi, filaments; An, anthers.
FIGURE 6 | Relative expression levels of EjPI in petaloid sepals in double-flower E. japonica by qRT-PCR. (A) Different types of petaloid sepals. (B) Petaloid area
within one sepal. (C) Relative expression levels of EjPI in petaloid sepals. Sep, sepals; Pe-se, petaloid sepals; Pet, petals. Error bars indicate the standard deviation
of three biological replicates. Different letters indicate significant differences (P < 0.05).
January 2020 | Volume 10 | Article 1685
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epidermal cells of the second whorl petals (Figure 7I).
Furthermore, the expression levels of EjPI in transgenic wild-
type lines were confirmed by qRT-PCR (Figure S3).

Twenty-seven 35S::EjPI transgenic homozygous pi-1 mutant
Arabidopsis lines were obtained by PCR analysis (Figure 8).
Compared with untransformed homozygous pi-1 lines, nineteen
of these lines (70.37%) showed altered phenotypes in flower
organ structure, but eight remaining transgenic plants (29.63%)
were phenotypically indistinguishable. In these 35S::EjPI
transgenic lines with altered phenotypes, eleven plants
produced shortened petals in the second whorl and runtish
stamens in the third whorl (Figure 9C). Eight transgenic
homozygous pi-1 lines produced normal petals in the second
whorl and completely rescued stamens in the third whorl
(Figure 9D). The expression levels of EjPI in transgenic lines
Frontiers in Plant Science | www.frontiersin.org 8
were further confirmed by qRT-PCR. The Pearson correlation
between EjPI expression level and phenotype alteration was
significant in transgenic lines (P-value < 0.01) (Table S6).
Meanwhile, EjPI expression levels of transgenic pi-1 lines with
normal petals and stamens were significantly higher than those
of transgenic lines with runtish petals and stamens (Figure S4).
DISCUSSION

Characterization of key regulatory genes in model plants
provides the opportunity to uncover the functional roles of
orthologous genes in other plants. In model plants, such as
Arabidopsis and Antirrhinum, PI homologues encode floral
homeotic B-function MADS-box transcription factors and
FIGURE 7 | Comparison of the phenotypes of the wild-type and 35S::EjPI transgenic wild-type lines. (A) Flower of the wild-type Arabidopsis, showing tightly closed
sepals and stamens (line 1#). (B) Inflorescence of the transgenic wild-type Arabidopsis with the pBI121 vector only (negative control, line 2#). (C) Flower of the
transgenic wild-type Arabidopsis with the pBI121 vector only, showing no phenotypic alteration (line 3#). (D) Inflorescence of 35S::EjPI, showing completely
separating petaloid sepals (red arrows) and opening stamens (white arrows) (line 4#). (E) Flower of 35S::EjPI transgenic wild-type Arabidopsis, showing green/white
petaloid sepals in the first whorl (red arrows) (line 5#). (F) Flower of 35S::EjPI transgenic wild-type Arabidopsis, showing completely separating petaloid sepals (red
arrows) and opening stamens (white arrows) (line 6#). (G) Cell shapes of adaxial surface in a wild-type Arabidopsis sepals, showing irregular cell margin; (H) Cell
shapes of adaxial surface in petals in wild-type Arabidopsis; (I) Cell shapes of adaxial surface in petaloid sepals in 35S::EjPI transgenic wild-type lines, showing a
petaloid margins (white arrow). Bars = 500 µm in (A), (B), (C), (D), (E), and (F) and Bars = 100 µm in (G), (H), and (I).
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regulate petal and stamen identities (Trobner et al., 1992; Goto
and Meyerowitz, 1994). In this study, we identified the sequence,
phylogenetic evolution, and expression patterns of EjPI from
single-flower and double-flower E. japonica. Meanwhile, ectopic
expression of EjPI in Arabidopsis plants of wild-type and pi-1
mutant was further conducted to confirm the functional roles in
regulating floral organ identities.

Protein sequence and phylogenetic analysis showed EjPI
protein was assigned to the rosids euPI lineage containing a
highly-conserved M domain, an I domain, a less-conserved K
domain, a highly divergent C-terminal domain and a distinctive
PI motif at the C-terminal region. Therefore, EjPI encodes a
typical class B-function MADS-box transcription factor
according to the structural features of MADS-box proteins
(Kim et al., 2004; Kaufmann et al., 2005). However, K1 and K3
subdomains both contain a single amino acid difference between
rosids and asterids PI/GLO lineage. This difference may be
related to the divergence of rosids and asterids in the core
eudicot. Furthermore, the subcellular localization of EjPI was
detected in the nucleus; this is consistent with the nuclear
localization of PI in Arabidopsis (Mcgonigle et al., 1996).
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In our study, EjPI was expressed in the petals, filament and
anther in the flower buds of E. japonica. Spatial expression of EjPI
matched well with that in some core eudicots, such as Arabidopsis
thaliana (Goto and Meyerowitz, 1994), Taihangia rupestris (Lu
et al., 2010), Antirrhinum majus (Trobner et al., 1992), Torenia
fournieri (Sasaki et al., 2014), Nicotiana tabacum (Hansen et al.,
1993), and Catalpa bungei (Jing et al., 2015). However, expression
pattern of EjPIwas different from that of the PI orthologs in some
eudicots and monocots. In basal eudicot Magnolia wufengensis,
MawuPIwas mainly expressed in the first and second whorl inner
tepals and the third whorl stamens (Liu et al., 2018). In
Fagopyrum esculentum, FaesPI was expressed only in stamens
(Fang et al., 2015). In monocot Oncidium Gower Ramsey,
OMADS8 expression was restricted in all floral organs, such as
sepals, petals, lips, stamen, and carpel (Chang et al., 2010).

Beside expression in the petals, filaments and anthers, EjPIwas
also transcribed in petaloid sepals in double-flower E. japonica.
Furthermore, there was a high correlation between the expression
level of EjPI and petaloid area within a sepal in double-flowers
E. japonica. Previously, compared with the sepal in Papaver
somniferum, higher expression level of PapsPI was detected in
FIGURE 8 | PCR analysis of 35S::EjPI transgenic homozygous pi-1 mutant lines. Lane M: DL2000 DNA marker. Lane 1-27: the PCR with DNA of 35S::EjPI
transgenic homozygous pi-1 Arabidopsis as templates. Lane pi-1: the PCR with DNA of pi-1 line containing the pBI121 vector only as a template. Lane P: the PCR
with plasmid containing EjPI full-length CDS as a template.
FIGURE 9 | Phenotypic comparison of the homozygous pi-1 mutant and 35S::EjPI transgenic homozygous pi-1 Arabidopsis. (A) Flower of a homozygous pi-1
mutant Arabidopsis (line 1#). (B) Flower of the transgenic homozygous pi-1 mutant with the pBI121 vector only (negative control) (line 2#). (C) The flower of 35S::EjPI
transgenic homozygous pi-1 Arabidopsis, showing shortened petals (red arrows) and runtish stamens (white arrows) (line 3#). (D) Flower of 35S::EjPI transgenic
homozygous pi-1 Arabidopsis, showing normal petals (red arrows) and completely rescuing stamens (white arrows) (line 4#). Bars = 500 µm.
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the petaloid sepals (Singh et al., 2014). In the flowers of monocot
such as Zingiberales, Commelinales, Alismatales, and Liliales,
expanded expression of class B genes into the first floral whorl
was correlatedwith the formation of petaloid organs (Kanno et al.,
2007; Hsu et al., 2015; Kanno, 2015; Theißen et al., 2016). These
results suggested that altering expression pattern of PI
orthologous genes caused the transformation from sepal to
petaloid organ in flowers. However, in some basal angiosperms,
expression patterns of PI orthologues in petaloid organs are
variability, which can be found in the relative expression level of
PI vs paleoAP3. The expression pattern differences of PI
orthologues in petaloid organs between E. japonica and basal
angiosperms might be due to functional diversification within PI
andAP3 gene lineages during the course of angiosperm evolution.

Functional analysis suggested that ectopic expression of EjPI
in transgenic wild-type Arabidopsis caused the first whorl sepals
replaced into petaloid sepals. Similar phenotypes of transgenic
wild-type Arabidopsis were observed in the ectopic expression of
PI homologues from rosids species such as Arabidopsis (Krizek
and Meyerowitz, 1996; Lamb and Irish, 2003), and asterids
species such as C. bungei (Jing et al., 2015), T. fournieri (Sasaki
et al., 2010) and monocots such as Lilium longiflorum (Chen
et al., 2012), Agapanthus praecox (Nakamura et al., 2005) and
Cymbidium faberi Rolfe (Fei and Liu, 2019). For instance, ectopic
expression of PI caused the transformation of the first whorl
sepals to petaloid organs in transgenic wild-type Arabidopsis
(Lamb et al., 2003). Ectopic expression of CabuPI in transgenic
wild-type Arabidopsis produced homeotic conversion of sepals
into petaloid sepals in the first floral whorl (Jing et al., 2015). In
T. fournieri, TfGLO expression in sepals exhibited a petaloid
sepal phenotype (Sasaki et al., 2010; Sasaki et al., 2014).

Further functional complementation assay showed that EjPI
could substitute the endogenous PI gene in pi-1 mutant
Arabidopsis and rescue the identity of petals and stamens. The
phenotype differences of EjPI between transgenic wild-type and
pi-1 Arabidopsis may due to an effect of pi genotype. However,
transgenic phenotypes of EjPI in pi-1 Arabidopsis differed from
those of PI orthologs from Magnoliaceae such as MAwuPI
(Liu et al., 2018), and from monocots such as LMADS8/9 of
L. longiflorum (Chen et al., 2012) and CyfaPI of C. faberi (Fei and
Liu, 2019). Ectopic expression of these monocots PI orthologs
only partially rescued petal formation in pi mutant Arabidopsis.
CONCLUSIONS

In our study, EjPI was isolated and its expression pattern and
functional characterization were analyzed. The relative
Frontiers in Plant Science | www.frontiersin.org 10
expression level of EjPI in larger petaloid area within a sepal
was significantly higher than that in small petaloid area. Ectopic
expression of EjPI in transgenic wild-type Arabidopsis caused a
petaloid sepal phenotype in the first floral whorl. These data
revealed that expression pattern and function of EjPI are
associated with the formation of petaloid sepals in double-
flower E. japonica. This improves our knowledge of PI
orthologous genes in E. japonica, and provides the potential
application of EjPI for biotechnical engineering to create petaloid
sepals in angiosperm. Meanwhile, we did not find the difference
of amino acid sequences of EjPI between the single-flower and
double-flower E. japonica on distinct phenotype. Therefore,
future work should compare the difference in EjPI promoter
between the single-flower and double-flower E. japonica.
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