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Examining factors that influence seedling establishment is essential for predicting the
impacts of climate change on tree species’ distributions. Seedlings originating from
contrasting climates differentially express functional traits related to water and nutrient
uptake and drought resistance that reflect their climate of origin and influence their
responses to drought. Soil microbes may improve seedling establishment because they
can enhance water and nutrient uptake and drought resistance. However, the relative
influence of soil microbes on the expression of these functional traits between seedling
families or populations from contrasting climates is unknown. To determine if soil microbes
may differentially alter functional traits to enhance water and nutrient uptake and drought
resistance between dry and wet families, seeds of loblolly pine families from the driest and
wettest ends of its geographic range (dry, wet) were planted in sterilized sand (controls) or
in sterilized sand inoculated with a soil microbial community (inoculated). Functional traits
related to seedling establishment (germination), water and nutrient uptake and C
allocation (root:shoot biomass ratio, root exudate concentration, leaf C:N, leaf N
isotope composition (d15N)), and drought resistance (turgor loss point, leaf carbon
isotope composition (d13C)) were measured. Then, plants were exposed to a drought
treatment and possible shifts in photosynthetic performance were monitored using
chlorophyll fluorescence. Inoculated plants exhibited significantly greater germination
than controls regardless of family. The inoculation treatment significantly increased root:
shoot biomass ratio in the wet family but not in the dry family, suggesting soil microbes
alter functional traits that improve water and nutrient uptake more so in a family originating
from a wetter climate than in a family originating from a drier climate. Microbial effects on
photosynthetic performance during drought also differed between families, as
photosynthetic performance of the dry inoculated group declined fastest. Regardless of
treatment, the dry family exhibited a greater root:shoot biomass ratio, root exudate
concentration, and leaf d15N than the wet family. This indicates that the dry family allocated
more resources belowground than the wet and the two family may have used different
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sources of plant available N, which may be related to their contrasting climates of origin
and influence their drought resistance. Examination of variation in impacts of soil microbes
on seedling physiology improves efforts to enhance seedling establishment and beneficial
plant-microbe interactions under climate change.
Keywords: soil microbes, loblolly pine, seedling physiology, genetic variation, drought, turgor loss point, growth,
root exudates
INTRODUCTION

Increased intensity and frequency of heat waves, drought, and
wildfire (IPCC, 2018) have led to widespread forest mortality in
recent decades (Allen et al., 2010; Hartmann et al., 2018). To
sustain forests for ecosystem services and atmospheric CO2

sequestration, it is essential to understand vegetation responses
to changing climate that determine forest species’ geographic
distributions under future climate regimes. Successful seedling
establishment is a key determinant of future tree species’
distributions (Harper, 1977; Jackson et al., 2009; Zhu et al.,
2012; Davis et al., 2016; Simeone et al., 2019). However, the
seedling stage is the most vulnerable developmental stage of
plants because seedlings are small and delicate with limited
access to water and nutrients, which exacerbates their
susceptibility to climate change stresses like drought (Johnson
et al., 2011; García de la Serrana et al., 2015; Chen et al., 2016;
Yao et al., 2018). Therefore, examining factors that influence
seedling establishment and mortality (Kursar et al., 2009; Sapes
et al., 2019) are crucial for predicting future species’ distributions.

Intraspecific (within-species) variation in the expression of
functional traits related to water and nutrient uptake influences
seedling establishment and physiological responses to drought
(Sultan, 2000; Howe et al., 2003; Kawecki and Ebert, 2004; Isaac-
Renton et al., 2018; Ramírez‐Valiente et al., 2018; Roches et al.,
2018; Chauvin et al., 2019; Roskilly et al., 2019). Intraspecific
adaptations to their climate of origin collectively enable a species
to survive in diverse climates and span a large geographic range.
As regions shift to more arid conditions under climate change,
there is great research interest in identifying populations and
families that will thrive under more arid conditions to facilitate
adaptation and reforestation efforts (O’Neill et al., 2008; Grady
et al., 2015; Moran et al., 2017). Provenance, greenhouse, and
common garden studies have been used to examine how the
differential expression of functional traits in seedling populations
and families from contrasting climates influences physiological
responses to drought. Populations and families from drier
climates often exhibit functional traits that enable them to
enhance water and nutrient uptake and resist drought more
effectively than populations and families from wetter climates
(Fernández et al., 1999; Cregg and Zhang, 2001; Nguyen-Queyrens
and Bouchet-Lannat, 2003; Gratani, 2014; Kerr et al., 2015;
Carvalho et al., 2017; Marias et al., 2017; Moran et al., 2017).
Drought resistance is defined as the capacity of plants to avoid or
tolerate drought, which is achieved through diverse physiological
mechanisms (Levitt, 1980; Khanna-Chopra and Singh, 2015; Polle
et al., 2019). Compared to seedling populations and families from
.org 2
wetter climates, seedling populations and families from drier
climates can exhibit increased resource allocation to root growth
which enhances water and nutrient uptake. Seedling populations
and families from drier climates also can exhibit greater leaf carbon
isotope ratios which indicate greater intrinsic water use efficiency
and greater stomatal constraints on gas exchange, and lower leaf
turgor loss point which can indicate greater drought tolerance
(Grossnickle et al., 1996; Cregg and Zhang, 2001; Nguyen-
Queyrens and Bouchet-Lannat, 2003; López et al., 2009; Bartlett
et al., 2014; Kerr et al., 2015; Carvalho et al., 2017; Marias
et al., 2017).

Soil microbial communities of bacteria and fungi have been
suggested as a solution to improve seedling establishment
because they can alter functional traits related to water and
nutrient uptake and drought resistance (Kim et al., 2012).
However, we do not know if and when soil microbial impacts
on seedling function are positive or negative. Soil microbial
communities and host-specific microbial associates can
manipulate plant hormone signaling to stimulate root growth
and water uptake (Bent et al., 2001; Vonderwell et al., 2001;
Verbon and Liberman, 2016), increase nutrient availability to
enhance nutrient uptake (Yang et al., 2009), and alter soil
moisture conditions to delay the onset of drought (Gehring
et al., 2017; Kannenberg and Phillips, 2017) and promote
germination (Ulrich et al., 2019). Therefore, beneficial plant-
microbe interactions can improve seedling establishment and
adaptation to new conditions (Compant et al., 2010). However,
soil microbes can also negatively influence plant function
through pathogenesis and disease (Rodriguez et al., 2008;
Mendes et al., 2013; Jacoby et al., 2017; Schirawski and Perlin,
2018). Furthermore, sustaining microbial symbionts comes at a
significant C cost to plant hosts via the release of root exudates
(Bais et al., 2006). The positive and negative impacts of soil
microbes on seedlings, plus the overwhelming diversity of
microbes in the soil, complicates prediction of soil microbial
influences on plant physiological responses to drought (Allison
and Martiny, 2008; Mendes et al., 2013; Finkel et al., 2017;
Sánchez-Cañizares et al., 2017). Therefore, investigating how soil
microbes influence seedling physiological response to drought in
diverse systems is greatly needed (Dimkpa et al., 2009;
de Zelicourt et al., 2013; Baldrian, 2017).

Given the ability of seedling populations and families from
contrasting climates to differentially respond to drought,
populations and families from contrasting climates may also
differentially interact with soil microbes, which may influence
plant water and nutrient acquisition. For example, drought
tolerant and drought intolerant Pinus edulis associated with
January 2020 | Volume 10 | Article 1643
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distinct ectomycorrhizal fungal communities in the field
(Gehring et al. , 2017). This suggests that microbial
communities can vary by plant population, family, and
genotype (Schweitzer et al., 2008; İnceoğlu et al., 2010;
Berendsen et al., 2012; Whitham et al., 2012; Lamit et al.,
2016) due to differential gene expression in functional traits
such as the quantity and quality of root exudates used to shape
the soil and root microbiome (Micallef et al., 2009; Mendes et al.,
2013; Patel et al., 2015; Bakker et al., 2018). Variation in root
exudate quantity and quality can attract beneficial microbes and
repel harmful microbes to increase water and nutrient uptake
(e.g., root growth) and drought resistance (Mendes et al., 2013;
Coskun et al., 2017; Jacoby et al., 2017). One of the nutrients
important to plant drought resistance is nitrogen (N) as
numerous proteins underlie plant functional responses to
stress. RUBISCO is the main protein that determines
photosynthetic capacity, and thus contributes to the ability to
maintain gas exchange during stress (Field and Mooney, 1986;
Evans, 1989). Drought stress can inhibit RUBISCO activity via
reductions in ribulose-1,5-bisphosphate (RuBP) (Gimenez et al.,
1992) and reductions in the large subunit of RUBISCO
(Majumdar et al., 1991). Different soil microbes are responsible
for converting organic N into forms that are accessible to plants:
either ammonium (NH4

+) or nitrate (NO3
-) (Hayatsu et al., 2008;

Ohyama, 2010; Jacoby et al., 2017). Therefore, within-species
populations and families can use root exudates to recruit and
repel different soil microbes (Haney et al., 2015; Wille et al.,
2019) that cause the plant populations and families to use
different forms of N (i.e., NH4

+, NO3
-). The form of N used by

the plant is reflected in leaf N isotope ratios (d15N) (Kahmen
et al., 2008; Temperton et al., 2012). Therefore, within-species
variation in functional traits like leaf d15N, %N, and root
exudates suggests that within-species populations and families
may differentially interact with soil microbes, altering nutrient
acquisition among populations and families.

Intraspecific variation in plant-microbe interactions suggest
that soil microbes may differentially affect the performance of
plant populations and families under drought by differentially
altering functional traits related to water and nutrient uptake and
drought resistance. Indeed, the direction and magnitude of the
effects of soil microbes on plant performance can vary among
within-species groups (O’Brien et al., 2018). For example, during
drought, Ostrya virginiana and Betula nigra seedling populations
grew more biomass when grown with soil microbes originating
from drier sites than when grown with soil microbes from wetter
sites (Allsup and Lankau, 2019). This suggests dry-adapted soil
microbes may drive greater improvements in plant productivity
in populations and families from wetter climates than drier
climates. However, this hypothesis has only been tested on
plant biomass and needs to be tested on functional traits more
directly related to water and nutrient uptake and drought
resistance in diverse systems. Extending this research beyond
just plant biomass and focusing on functional traits that elucidate
the impact of soil microbes on plant physiology improves efforts
to engineer beneficial plant-microbe interactions under climate
change. Identifying specific plant populations and families that
Frontiers in Plant Science | www.frontiersin.org 3
may gain the greatest physiological benefits from soil microbes
facilitates seedling adaptation and reforestation efforts.

Loblolly pine (Pinus taeda L.) is the most widely planted and
the most economically valuable species in the southern USA
(Schultz, 1997). Its geographic distribution spans a wide range of
moisture conditions from its driest edge in eastern Texas to its
wettest edge on the mid-Atlantic coast, USA (97.5W to 75.0W).
Studies have shown that loblolly pine populations and families
can vary in functional traits related to drought resistance
including growth (Sierra-Lucero et al., 2002) and physiology,
where populations and families from drier locations were often,
but not always, more drought resistant (Buijtenen et al., 1976;
Wells, 1983; Lambeth et al., 1984; but see (Bongarten and Teskey,
1986; Meier et al., 1992; Yang et al., 2002). Mycorrhizal fungi can
improve water and nutrient uptake in loblolly pine (Ford et al.,
1985; Constable et al., 2001) and plant growth promoting
bacteria can have both positive and negative effects on loblolly
pine seedling growth (Enebak et al., 1998).

Here, our objective was to determine if and how soil microbes
differentially influence functional traits and photosynthetic
performance under drought in loblolly pine families from
contrasting climates. We grew seeds of loblolly pine families
from the driest and wettest ends of its geographic range (dry,
wet) and inoculated seeds of both families with a dry-adapted soil
microbial community (inoculated). We measured functional
traits related to seedling establishment (germination), water
and nutrient uptake, and carbon allocation (root:shoot biomass
ratio, root exudate concentration, leaf C:N, leaf N isotope
composition), and drought resistance (turgor loss point, leaf C
isotope composition) before drought. We imposed a drought by
completely withholding water and monitored photosynthetic
performance using chlorophyll fluorescence. We hypothesized
that soil microbes would differentially alter functional traits
between the dry and wet families where soil microbes would
alter functional traits to enhance water and nutrient uptake and
drought resistance to a greater extent in a family originating from
a wetter climate than in a family originating from a drier climate.
MATERIALS AND METHODS

Plant Material and Experimental Set-Up
To test our hypothesis, weused a controlled greenhouse experiment
where loblolly pine seedlings from dry and wet climates of origin
were grown from seed in sterilized sand and exposed to an
inoculation treatment with a soil microbial community from an
arid region. Single family, open-pollinated, geographically distinct
(Schultz, 1997) loblolly pine seed originating from Bastrop county
in Texas (“dry”) and Orangeburg county in South Carolina (“wet”)
were provided by the Western Gulf Forest Tree Improvement
Program and International Forest Genetics & Seed Company,
respectively. These families originated from climates that
represent loblolly pine’s wettest and driest ends of its geographic
range (Schultz, 1997).Mean annual precipitation of thewet family’s
climate of origin was 33% greater than that of the dry family
(Table 1; PRISM, 2018).
January 2020 | Volume 10 | Article 1643
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Inoculated plants were inoculated with a microbial community
from a soil sample collected 0–5 cm deep in north central New
Mexico, USA (35.5194, −106.2277), a site that receives 67% less
mean annual precipitation than the dry family and 75% less mean
annual precipitation than the wet family (Table 1). Because we
aimed to focus on how seedling families from contrasting climates
may differentially interact with any kind of soil microbial
community, we selected a soil microbial community outside the
contemporary range of loblolly pine. By choosing a soil microbial
community towhich neither family has been exposed enabled us to
isolate contrasting seedling family responses to a novel microbial
community, not confounded by previous exposure to such a
microbial community. The microbial community was sequenced
as in (Ulrich et al., 2019) to determine its bacterial and fungal
composition. Briefly, DNA extractions were performed using the
DNeasy PowerSoilDNAextraction kit (Qiagen,Hilden,Germany).
DNA samples were quantified with an Invitrogen Quant-iTTM ds
DNA Assay Kit on a BioTek Synergy HI Hybrid Reader. PCR
templates were prepared by diluting an aliquot of each DNA stock
in sterile water to 1 ng/ml. The bacterial (and archaeal) 16 S rRNA
gene (V3-V4 region) was amplified using primers 515f-806r
(Mueller et al., 2016). The fungal 28 S rRNA gene (D2
hypervariable region) was amplified using the LR22R and the
reverse LR3. Amplicons were cleaned using a Mobio UltraClean
PCR clean-up kit, quantified using the same procedure as for the
extractedDNA, and thenpooled at a concentration of 10 ng each. A
bioanalyzer was used to assess DNA quality, concentration was
verified using qPCR, and paired-end 250 bp reads were obtained
using an Illumina MiSeq sequencer at the Los Alamos National
Laboratory, NM, USA.

To create the soil inoculum for the microbial inoculation
treatment, microbes from the soil were extracted by suspension in
sterile DI water to create a 1:20 dilution; this isolates the microbial
community and reduces potential biogeochemical effects of the
original soil. Before planting, stratified seeds (moistened then stored
at 35°C for 45 days) were surface sterilized for 10min in 10%bleach
and rinsed for 15 min in sterile DI water twice. Seeds were then
soaked in the soil inoculum (inoculated) or sterile DI water
(controls) for 10 min. Seeds were each planted in 2.65 L pots
(10.2 cm× 10.2 cm× 34.3 cm) of sterilized sand (1 seed per pot) on
23 August 2017 (day 0). Five ml of soil inoculum (inoculated) or
sterile DI water (controls) was applied to each pot once during
initial planting and also a second time 13 days (5 September 2017)
after planting to ensure effects of soil microbial communities (e.g.,
Frontiers in Plant Science | www.frontiersin.org 4
Corkidi et al., 2002). Both the soil inoculum and water-only
treatments each were applied to 15 pots that formed the
inoculated and control groups, respectively (N = 15 in each group
and family). Clear plastic was placed over all pots to maintain high
humidity to promote germination and then was removed after 13
dayswhenmost of the plants had germinated.A fertilizer treatment
of 5 ml of ammonium nitrate (1mg/ml) was applied evenly to each
pot19days after planting (11 September2017).All plantswerewell-
watered every 2–3 days to field capacity using reverse osmosis (RO)
water filtered with a 0.2-µm filter, until drought treatment during
which water was completely withheld. Drought was imposed by
completely withholding water beginning on day 395 after planting
(22 September 2018).

Plants were grown under a 14-h photoperiod in a
temperature-controlled greenhouse at the New Mexico
Consortium in Los Alamos, New Mexico, USA. Average
daytime temperature in the greenhouse was 22.6°C, average
nighttime temperature 20.6°C, average daytime relative
humidity 47.5%, and average daily maximum photosynthetic
photon flux density (PPFD) was 382.4 umol m-2 s-1.

Measurements
Germination was determined by counting the total number of
individuals that germinated per group (inoculated, control) in
each family (dry, wet) 14 days after planting (6 September 2017).
Shoot height of all 15 individuals per group in each family was
measured 287 days after planting (6 June 2018).

To examine family and treatment effects on gas exchange,
photosynthesis (A) and stomatal conductance (gs) were
measured on four randomly selected individuals per group in
each family using a portable photosynthesis system with an
infrared gas analyzer (LI-6400 XT, Licor, Lincoln, NE, USA)
on day 307 (26 June 2018) between 08h00 and 11h00. In the
cuvette, flow rate was set to 500 µmol s-1, reference [CO2] 400
µmol mol-1, quantum flux 2,000 µmol m-2 s-1 to avoid any light
limitation of A, and leaf temperature 20°C. Needles in the cuvette
(eventually collected for biomass measurements; see below) were
scanned using ImageJ image processing software (Schindelin
et al., 2012; Schneider et al., 2012) to determine leaf area and
normalize gas exchange values by leaf area.

After gas exchange was measured, root exudate concentration
was measured in the same four individuals per group in each
family used for gas exchange measurements. Total organic
carbon (TOC) released by roots (hereafter referred to as root
TABLE 1 | Location and climate information (1960–2017) for the dry and wet families and the drought-adapted soil microbial community used for inoculation treatment.

Dry Wet Soil microbial community

Region Interior Texas, USA (“lost pines”) Coastal South Carolina, USA Interior New Mexico, USA
Latitude (°N) 30.1036 33.4390 35.5194
Longitude (°W) −97.3120 −80.8003 −106.2277
Elevation (m) 131 54 1750
MAT (°C) 20.0 17.8 12.1
Tmin 13.5 11.3 3.8
Tmax 26.4 17.8 20.5
MAP (mm) 917 1215 306
MVPD (hPa) 10.9 9.2 12.2
January 2020
Mean annual temperature (MAT), minimum temperature (Tmin), maximum temperature (Tmax), mean annual precipitation (MAP), mean vapor pressure deficit (MVPD).
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exudates) was collected using methods adapted from (Phillips
et al., 2008; Karst et al., 2017; Preece et al., 2018). Loblolly
seedlings were carefully dug up to keep roots intact, and roots
were dipped in an antimicrobial solution (10,000 units penicillin,
10 mg streptomycin, and 25 mg amphotericin B per ml) to halt
microbial activity. Seedlings were then transplanted into pots of
glass beads (500-µm diameter). Pots were wrapped in aluminum
foil to exclude light and seedlings were allowed to acclimate for 3
days. For root exudate collection, seedlings were first flushed
with 150 ml of sterile DI H2O using a vacuum pump. Another
150 ml of sterile DI H2O was added and seedlings were left to
release exudates for 24 h. Root exudates were then collected in
vials with a vacuum pump. TOC concentration of the collected
root exudates was measured using a microplate reader with a
UV-visible absorbance detector (Synergy H1 Hybrid Reader,
BioTek, Winooski, VT, USA) at a wavelength of 254 nm. Root
exudate concentration was determined by converting absorbance
(x) to concentration (y) using the linear relationship: y = 6.3259x +
2.5901 (R2 = 0.6). This relationship was determined using 92 liquid
TOC samples that had been measured with both UV-visible
absorbance and a wet oxidation TOC analyzer (OI Analytical
model 1010, Xylem Inc., Rye Brook, NJ, USA) as in (Jones et al.,
2014). This method is advantageous because soil water TOC
concentrations can be rapidly and cheaply estimated from spectral
properties, yet may be limited because variability in concentration
within a soil type was observed (Jones et al., 2014). Root exudate
concentration values were normalized by dry root biomass. Roots and
shoots from the same four plants per group in each family were then
harvested, dried, and weighed for root:shoot biomass measurements.
While roots were excavated for root exudate collection, we observed
that seedlings were not root bound.

To evaluate intraspecific differences in the effect of inoculation
treatment on nutrient uptake and drought resistance, dried leaves
from the same four plants per group in each family were then
analyzed for C andN content (%) andC andN isotope ratios (d13C,
d. Approximately 0.8 mg of dried needle powder was packed in tin
capsules for combustion for subsequent elemental analysis using a
stable isotope ratiomass spectrometer (FinniganMAT253, Thermo
Electron Corporation, Waltham, MA, USA) coupled to an
elemental analyzer (Costech Analytical Technologies, Inc.,
Valencia, CA, USA). The d and15N were recorded as deviations
per thousand (‰) and were calibrated using International Atomic
EnergyAgency (IAEA) standardsC3,C6,C8,N1, andN2. The d13C
of leaf tissue (d13Cleaf) reflects the d13C of CO2 in the atmosphere
(d13Cair), the fractionation against the heavier carbon isotope (

13C)
due to physiological processes and the ratio of the concentration of
CO2 inside the leaf (ci) to that in the ambient air (ca):

d13Cleaf = d13Cair − a − b − að Þ ci
ca

(1)

where a is the fractionation effect of diffusion of CO2 through
stomata (4.4‰), and b is the fractionation effect (27‰) associated
with discrimination against 13C by the enzyme RUBISCO during
carbon fixation (Farquhar et al., 1982; Farquhar and Richards,
1984). d13Cleaf is also an integrated measure of intrinsic water-use
efficiency (iWUE) at the time the tissue was formed where greater
Frontiers in Plant Science | www.frontiersin.org 5
d13Cleaf (i.e., less negative) indicates greater iWUE (Farquhar et al.,
1989). Like d13Cleaf, thed15Nof leaf tissue reflects sources ofN taken
up by the plant and the possible discrimination against 15N during
the assimilation of each source (Shearer and Kohl, 1986).
Discrimination for the reduction of nitrate to nitrate can occur via
the nitrate reductase enzyme (Comstock, 2001; Cernusak et al., 2009)
wherea is the fractionationeffect of diffusionofCO2 through stomata
(4.4‰), and b is the fractionation effect (27‰) associated with
discrimination against 13C by the enzyme RUBISCO during carbon
fixation (Farquhar et al., 1982; Farquhar andRichards, 1984). d13Cleaf

is also an integratedmeasure of intrinsicwater-use efficiency (iWUE)
at the time the tissue was formed where greater d13Cleaf (i.e.,
less negative) indicates greater iWUE (Farquhar et al., 1989). Like
d13Cleaf, the d15N of leaf tissue reflects sources of N taken up by the
plant and the possible discrimination against 15N during the
assimilation of each source (Shearer and Kohl, 1986).
Discrimination for the reduction of nitrate to nitrate can occur via
thenitrate reductase enzyme(Comstock, 2001;Cernusaket al., 2009).

Before drought treatment, we measured leaf drought
tolerance using the water potential at turgor loss or turgor loss
point (YTLP; Bartlett et al., 2014) on four new individuals
randomly selected per group (inoculated, control) in each
family (dry, wet; 16 curves total) not used for the
aforementioned measurements. YTLP was determined from
pressure-volume (P-V) curves as in (Meinzer et al., 2014). P-V
curves plot leaf water potential in response to changes in water
volume as leaves dry and are used to determine bulk leaf
parameters related to leaf cellular composition and structural
properties such as YTLP. Species with lower (more negative)
YTLP are more tolerant of drought because they are able to
maintain turgor and function under more negative soil water
potentials (Bucci et al., 2004; Blackman et al., 2010). P-V curves
were measured over five days (days 338-343, 27 July–1 August
2018). Seedlings were cut at predawn and were then placed in
beakers of water to rehydrate for 2-3 hours. No rehydration-
induced plateau was detected (Kubiske and Abrams, 1991).
Shoots were allowed to dry out slowly on the laboratory bench.
Measurements of shoot mass taken with a balance, and water
potential taken with a pressure chamber (PMS Instruments,
Albany, OR, USA) were recorded as shoots dried out. Data
were plotted with relative water deficit on the x-axis and 1/Y on
the y-axis. Data were checked during measurement to ensure at
least 3–5 points were recorded along the linear portion of the
curve. YTLP was estimated from the intersection of the linear
portion of the curve with a negative exponential function fitted to
the nonlinear portion as in (Meinzer et al., 2014).

To compare the effects of drought on inoculated and control
groups in both families, drought was imposed by completely
withholding water beginning on day 395 after planting (22
September 2018). To detect family and treatment differences in
drought effects on seedling physiology related to photosynthetic
performance, dark-adapted chlorophyll fluorescence was
measured on the remaining seven individuals per group in
each family the day before drought began and then weekly
until photosynthetic performance declined to zero. Chlorophyll
fluorescence measurements were made on mature, fully
January 2020 | Volume 10 | Article 1643
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expanded needles at ambient temperature using a field portable
pulse-modulated chlorophyll fluorometer (FMS2, Hansatech,
Norfolk, UK) at predawn to ensure plants were dark-adapted.
Chlorophyll fluorescence was measured as the ratio of variable to
maximum fluorescence (FV/FM) in the convention of Maxwell
and Johnson (2000). FV/FM measures the maximum quantum
efficiency of PSII photochemistry (Genty et al., 1989) and is
calculated as:

FV
FM

=
FM − FO

FM
= 1 −

FO
FM

,

where FV is variable fluorescence, FM is maximum fluorescence,
and FO is the minimum level of fluorescence. FO was induced
using a measuring light (red light-emitting diode, 650 nm, 0.15
mmol m-2 s-1 PAR) with a pulse-width of 3 ms and a pulse
modulation frequency of 0.6 kHz. FV/FM was then determined by
applying a 0.8 s saturating pulse of white light (18,000 mmol
photons m-2 s-1 PAR), which transiently closed all PSII reaction
centers (preventing any photochemical processes from
occurring), minimized heat dissipation (since leaves were dark-
adapted), and inducedmaximum and variable fluorescence. FV/FM
is considered a sensitive indicator of photosynthetic performance
(Maxwell and Johnson, 2000) and has been used to monitor
photosynthetic function during severe drought stress (e.g. Ings
et al., 2013; García de la Serrana et al., 2015; Chen et al., 2016;
Yao et al., 2018). Because FV/FM is most affected by severe drought,
we focused on relative FV/FM differences among groups under
severe drought. Optimal FV/FM values are ~0.8 (Björkman and
Demmig, 1987); however, our plants before drought had FV/FM
values ~0.6 because plants were grown in pure, fast-draining sand
with lownutrients. FV/FMbefore drought did not significantly differ
among families or treatment (P > 0.05). We used FV/FM as a rapid,
nondestructive method to compare relative differences in effects of
severe drought among groups. We did not measure gas exchange
because it requires destructively harvesting the leaf area (to correct
gas exchange measurements for leaf area) and we did not want
needle loss to influence the functions of the remaining needles (for
example, compensatory gas exchange that can occur in response
to defoliation).

Statistical Analyses
A two-way ANOVA was used to evaluate the significance of the
main effects of family and treatment on functional traits (i.e.
response variables): germination, height, root:shoot biomass ratio,
root exudates, turgor loss point, leaf%C,%NandC:N, leafd13C and
d15N, photosynthesis (A), and stomatal conductance (gs).
Assumptions of equal variance and normality were checked using
residual and quantile-quantile plots. Root:shoot biomass was log-
transformed to meet the normality assumption. Tukey’s posthoc
testwasused to identify statistically significantdifferences inmeans.
To compare differences in inoculation treatment effects between
families, we determined the treatment effect size and the 95%
confidence interval on the aforementioned functional traits for
both the dry andwet families. Effect size was calculated as themean
difference in functional trait between the control and inoculated
groups dividedby thepooled standarddeviationwithin each family.
Frontiers in Plant Science | www.frontiersin.org 6
We corrected the effect size for bias using the standard correction
that accounts for small sample averages according to (Hedges et al.,
1985; Lakens, 2013; Hedges and Olkin, 2014). Effect size was
considered to be significant if the 95% confidence interval did not
overlap with an effect size of 0. Effect size was considered to be
moderately significant if the 95% confidence interval overlapped an
effect size of 0 by less than ± 0.1. A positive effect size indicates an
increase in the functional trait.

A linear mixed effects model was used to determine differences
in FV/FM between inoculated and control groups through time
during the drought treatment. Fixed effects were treatment
(inoculated, control), family (dry, wet), and week and the random
effectwas individual.A linearmixedeffectsmodel, as opposed to the
two-way ANOVA, enables us to account for repeated
measurements through time by fitting models with different
correlation structures. The model of best fit was selected based on
Akaike information criterion (AIC) values. Assumptions of
constant variance and normality were checked using residual and
quantile-quantile plots. All interactive andmain effects offactors on
the response were tested usingmarginal F-tests (also known as type
III tests). Post-hoc comparisons weremade using a 95% confidence
interval and P ≤ 0.05. All statistical analyses were conducted in R
version 3.4.2 (R Core Team, C. T., 2018). The linear mixed effects
model was conducted using the nlme and gmodels R packages
(Warnes et al., 2018; Pinheiro et al., 2019).
RESULTS

The microbial inoculation treatment affected functional traits of
both families similarly for the majority of traits we measured
(germination, height, YTLP, root exudate concentration, %C, d13

C, photosynthesis (A), and stomatal conductance (gs)) but the effect
size was only significant for one trait: germination (Figure 1,
Supplementary Table 1), where inoculated plants exhibited
significantly greater germination than controls regardless of
family (ANOVA; P < 0.001; Figures 1 and 2A, Supplementary
Table 2). In contrast, the inoculation treatment affected the
remaining traits (root:shoot biomass ratio, leaf d15N, %N, C:N) of
the dry andwet families in opposite directions but the effect sizewas
only significant or moderately significant for two traits: root:shoot
biomass ratio and leaf d15N (Figure 1, Supplementary Table 1).
The inoculation treatment significantly increased the root:shoot
biomass ratio in the wet family but not the dry family, as indicated
by only the wet family’s significant, positive effect size of 1.7. The
inoculation treatment increased leaf d15N in the dry family but not
the wet family, as indicated by only the dry family’s moderately
significant, positive effect size of 1.5 (i.e., 95% CI = −0.05 to 3.1,
Supplementary Table 1). Despite these significant andmoderately
significant effect sizes on root:shoot biomass ratio and leaf d15N, the
ANOVA did not result in significant effects of treatment or the
interaction on root:shoot biomass ratio and leaf d15N in either
family (ANOVA; P = 0.78, 0.12; P = 0.30, 0.23; Figures 2C, D,
Supplementary Table 2), possibly due to sample size (N = 4).

Despite the variation in the direction and magnitude of
treatment effect size on measured functional traits between
January 2020 | Volume 10 | Article 1643
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plant families, the dry family exhibited functional traits
indicative of a greater capacity to withstand drought than the
wet family regardless of treatment. Regardless of treatment, the
dry family exhibited a significantly greater root:shoot biomass
ratio (P = 0.047; Figure 2C), was significantly shorter (P = 0.030,
Figure 2B), exhibited significantly greater leaf d15N (P < 0.001,
Figure 2D), and released a greater root exudate concentration
compared to the wet family (P = 0.031, Figure 2E).

Leaf d13C, %C, %N, C:N, A, gs, andYTLP were not significantly
influenced by treatment, family, or the interaction between
treatment and family (P > 0.05; Table 2, Supplementary Table
2). Germination was not affected by family or the interaction
between treatment and family (P = 0.27, 0.55, respectively; Figure
2A, Supplementary Table 2). Height was not significantly affected
by treatment or the interaction (P = 0.35, 0.51, respectively; Figure
2B, Supplementary Table 2). Root exudate concentration was not
affected by treatment or the interaction (P = 0.19, 0.080,
respectively; Figure 2E, Supplementary Table 2). In addition to
YTLP, other parameters derived from pressure-volume curves were
not significantly influenced by treatment, family, or the interaction
between treatment and family (P > 0.05; Supplementary Table 3).
Representative pressure-volume curves for each family and
treatment are included in Supplementary Figure 1.

The effect of the inoculation treatment on the time course of
photosynthetic performance during drought as measured with
Frontiers in Plant Science | www.frontiersin.org 7
FV/FM differed between dry and wet families. During drought at
week 3, FV/FM of the inoculated group declined the fastest and
was significantly lower than that of controls in the dry family (P <
0.05), but not the wet family (Figure 3). No statistically significant
differences in FV/FM existed between groups before drought or at
other weeks (P > 0.05). Model selection parameters for FV/FM are
contained in Supplementary Table 4.

The taxonomic profile of the soil microbial community used
for the inoculation treatment is presented in Supplementary
Tables 1 and 2.
DISCUSSION

Intraspecific Variation in Microbial
Treatment Effects on Functional Traits
Consistent with our hypothesis, we found evidence that soil
microbes can alter functional traits such as root:shoot biomass
ratio that improve water and nutrient uptake and drought
resistance more so in the wet family than in the dry family.
The taxonomic profile of the soil microbial community used for
the inoculation treatment contained drought-adapted bacteria
(Supplementary Table 5), where the majority (60%) of the top
ten most abundant fungal taxa was identified as Pleosporales in
Ascomycota, which is dominant in arid soils (Porras-Alfaro
FIGURE 1 | Effect size of inoculation treatment on physiological measurements in dry and wet families (germination, root:shoot biomass ratio, leaf N isotope ratio
(d15N), leaf N content (%N), leaf C:N ratio (C:N), height, turgor loss point (YTLP), root exudate concentration, leaf C content (%C), leaf C isotope ratio (d13C),
photosynthesis (A), stomatal conductance (gs)). A positive effect size indicates an increase in the physiological measurement. Bars represent 95% confident intervals.
Effect sizes were considered significant if the 95% confidence intervals did not overlap with an effect size of zero. N = 4. Seedlings were ~11 months old for all
measurements except germination (14 days old) and height (~9 months old).
January 2020 | Volume 10 | Article 1643

https://www.frontiersin.org/journals/plant-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


Ulrich et al. Intraspecific Variation in Seedling-Microbe Interactions
et al., 2008; Porras-Alfaro et al., 2011). This supports its potential
to benefit the wet family more than the dry family (Allsup and
Lankau, 2019). The wet family’s significant and positive
treatment effect size on root:shoot biomass ratio and the dry
Frontiers in Plant Science | www.frontiersin.org 8
family nonsignificant effect size on root:shoot biomass ratio suggest
that the inoculated group in thewet family allocatedmore resources
belowground to increase root growth, which enhances plant water
and nutrient acquisition, drought resistance, and the capacity to
TABLE 2 | Physiological measurements of control and inoculated groups in dry and wet families (leaf C content, N content, C:N ratio, C isotope ratio (d13C),
photosynthesis (A), stomatal conductance (gs), turgor loss point (YTLP)).

Dry Wet

Controls Inoculated Controls Inoculated

C content
(%)

45.42 ± 0.28 a 45.10 ± 0.39 a 45.77 ± 0.46 a 45.67 ± 0.39 a

N content
(%)

0.50 ± 0.062 a 0.41 ± 0.0090 a 0.40 ± 0.011 a 0.47 ± 0.036 a

C:N 93.52 ± 9.0 a 110.41 ± 3.41 a 114.88 ± 2.06 a 98.84 ± 7.3 a
d13C
(‰)

−29.9 ± 0.8 a −30.5 ± 0.4 a −29.8 ± 0.2 a −30.5 ± 0.7 a

A
(µmol m-2 s-1)

1.67 ± 0.83 a 0.74 ± 0.078 a 1.37 ± 0.63 a 0.82 ± 0.069 a

gs

(mol m-2 s-1)
0.038 ± 0.008 a 0.018 ± 0.002 a 0.033 ± 0.008 a 0.030 ± 0.006 a

YTLP

(MPa)
−1.36 ± 0.08 a −1.34 ± 0.07 a −1.36 ± 0.11 a −1.34 ± 0.12 a
January 2020 | Volume 1
Letters indicate statistically significant differences among groups at P ≤ 0.05. All values are expressed as means ± SE. N = 4. Seedlings were ~11 months old.
FIGURE 2 | Mean number of individuals germinated (A), shoot height (B), root:shoot biomass ratio (root:shoot; C), leaf N isotope ratios (d15N; D), and root exudate
concentration (E) of control and inoculated groups in dry and wet families. Letters indicate statistically significant differences among the four groups at P ≤ 0.05. Error
bars represent ± SE. N = 4. Seedlings were ~11 months old for all measurements except germination (14 days old) and height (~9 months old).
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withstanddrought (Brunner et al., 2015;Hagedorn et al., 2016). The
inoculation treatment also differentially altered leaf %N, C:N, and
d15N between families where the effect sizes were opposite in sign
between families.

Similar to root:shoot biomass ratio, FV/FM was also
differentially affected by the inoculation treatment between
families. FV/FM of the inoculated group declined faster than
controls during the imposed drought only in the dry family and
not the wet. One proposed mechanism underlying this
observation is that the slightly greater height of the dry
inoculated group compared to dry control group (albeit not
significant) resulted in increased leaf area which may have
contributed to faster desiccation and functional decline during
drought. Another possible mechanism underlying the dry
Frontiers in Plant Science | www.frontiersin.org 9
inoculated group’s FV/FM decline may be related to the
opposite (albeit not significant) effect sizes between families for
%N and consequently C:N. In the wet family, we observed a
positive treatment effect size on leaf %N and a negative effect size
on C:N, while in contrast, the dry family exhibited the opposite: a
negative effect size on leaf %N and a positive effect size on C:N.
Increased C:N, as we observed in the dry inoculated group, can
indicate greater drought stress (Chen et al., 2015; Ma et al., 2016).
This may possibly be due to a negative interaction between the
soil microbes and the dry family. (Enebak et al., 1998) also
observed a negative effect of plant growth-promoting bacteria on
loblolly pine seedling growth.

In addition to leaf %N and C:N, the family difference in
inoculation treatment effect on FV/FM may also be related to
FIGURE 3 | FV/FM time courses of control and inoculated groups in dry (A) and wet (B) families measured weekly before and throughout drought. Drought was
imposed after week 0 (when seedlings were ~13 months old). Error bars represent ± SE. At week 3, letters indicate statistically significant differences among the four
groups at P ≤ 0.05. No significant differences among groups were detected at other time points. N = 7.
January 2020 | Volume 10 | Article 1643
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family differences in inoculation treatment effects on N uptake
(e.g. NO3

-, NH4
+), as indicated by the moderately significant,

positive treatment effect size on leaf d15N in the dry family and
the nonsignificant effect size in the wet family. Leaf d15N reflects
the 15N abundance of N sources available to plants (Shearer and
Kohl, 1986). Our leaf d15N results suggest that soil microbes may
influence N uptake in the dry family differently than the wet
family. This may occur because within-species families can
interact differently with soil microbes by altering root exudate
composition and quantity to recruit and repel different microbes
(Haney et al., 2015). Because different soil microbes are
responsible for transforming organic N to plant-accessible
NH4

+ or NO3
- (Hayatsu et al., 2008), the form of plant

available N and thus leaf d15N can differ between within-
species families. The family differences in inoculation
treatment effect sizes on leaf d15N resulted in the dry
inoculated group exhibiting the greatest leaf d15N, which may
indicate higher uptake of NH4

+ (Miller and Bowman, 2002;
Falkengren-Grerup et al., 2004), the primary form of N for
loblolly (Lucash et al., 2008) and coniferous systems
(Alexander, 1983). At NH4

+ levels of 0.1 to 0.5 mmol/L,
NH4

+can be toxic to plants but the level at which it becomes
toxic varies among species (Britto and Kronzucker, 2002).
Therefore, it is possible that this could have contributed to the
dry inoculated group’s decline in FV/FM during drought at week
3 if the microbes in the inoculation treatment transformed N into
relatively more NH4

+ in the dry family compared to in the wet
family. However, we present this only as a possibility because we
cannot determine the quantity of NH4

+ present given only the
leaf d15N data in this study. The low FV/FM values of ~0.6 before
drought suggest that seedlings may have been nutrient-deficient
because they were grown in pure, fast-draining sand.

The taxonomic profile of the soil microbial community used
for the inoculation treatment supports the possibility that the dry
inoculated group’s FV/FM decline may have been related to
microbial effects on plant N availability due to the presence of
fungi involved in plant N acquisition (Supplementary Table 6),
which may have interacted with each seedling family differently.
The majority of the top most abundant fungi was in Pleosporales,
which contains dark septate fungi that can colonize Pinus species
and are found in nutrient-stressed environments (Barrow, 2003),
such as in our experiment using fast-draining sand. Dark septate
fungi can form mutualistic relationships with plants by obtaining
C from the plant in return for making nutrients available to the
plant (Usuki and Narisawa, 2007; Wagg et al., 2008; Vergara
et al., 2018), specifically transforming organic N into plant
available forms (Alberton et al., 2010; Newsham, 2011; Bueno
de Mesquita et al., 2018). The most abundant fungal genus in the
soil microbial community used for the inoculation treatment was
Alternaria of Pleosporales, which has been shown to vary with
soil N availability (Porras-Alfaro et al., 2011). Given the presence
of fungi involved in plant N acquisition, it is possible that the dry
family’s significantly greater concentration of root exudates may
have differentially affected the microbial community and resulted
in different N types available compared to that of the wet family.
This may have contributed to the observed variation in treatment
Frontiers in Plant Science | www.frontiersin.org 10
effect size on leaf %N, C:N, and d15N between families.
Additionally, contrary to our hypothesis, the soil microbe
treatment did not always influence functional traits that
increased water and nutrient uptake and drought resistance
(e.g. root:shoot biomass ratio) more in the wet family than in
the dry family. This suggests that significant effects of soil
microbes on plant function can vary depending on the trait of
interest (Rincón et al., 2008). Regardless of family, inoculated
plants exhibited significantly greater germination than controls,
suggesting that soil microbes may improve seedling
establishment regardless of family by directly or indirectly
enhancing seed germination (Madhaiyan et al., 2005; Balshor
et al., 2016). Soil microbes can directly enhance germination via
the production of plant growth hormones (Wu et al., 2016), and
also indirectly by increasing the soil water holding capacity of
soil (Roberson and Firestone, 1992; Kaci et al., 2005; Or et al.,
2007; Ulrich et al., 2019) and maintaining high soil moisture
required for germination (Schultz, 1997), as well as increasing
nutrient acquisition.

The taxonomic profile of the soil microbial community used
for the inoculation treatment reflects its arid environment of
origin and indicates the presence of fungi involved in plant N
acquisition (Supplementary Tables 5 and 6). The majority
(60%) of the top ten most abundant bacterial taxa was
composed of Rubrobacterales in Actinobacteria, known to be
thermophilic, radiation-resistant, and common in arid, desert
soils (Holmes et al., 2000).

Intraspecific Variation in Functional Traits
Related to Seedling Drought Resistance
and N Use
The dry family’s significantly greater root:shoot biomass ratio and
root exudate concentration than that of the wet family suggests that
the dry family may be more drought-adapted than the wet family.
The dry family’s significantly greater root:shoot biomass ratio and
concentration of root exudates supports its greater capacity to resist
drought and reflects its drier climate of origin compared to the wet
family (regardless of treatment). This greater belowground
allocation of resources to root biomass enables the dry family to
access deep water sources during limited water availability, a trait
observed in families and populations adapted to drier climates
(Brunner et al., 2015; Hagedorn et al., 2016). Greater allocation to
root growth also enhances nutrient acquisition (López-Bucio et al.,
2003; Hodge, 2004;Maire et al., 2009; Chapman et al., 2012), which
can vary among loblolly pine families and populations (Li et al.,
1991). The dry family’s greater allocation to belowground growth
mayalsounderliewhyweobserveda significant treatment effect size
on root:shoot biomass in only the wet family, as the dry family was
already allocating more resources belowground independent of
treatment.Thedry familywas also significantly shorter than thewet
family, reducing leaf area through which water can be lost, another
mechanism of drought resistance.

The dry family’s significantly greater concentration of root
exudates compared to the wet family may be used to shape the
soil microbial community by attracting or repelling different
microbes (Bever et al., 2012; Sasse et al., 2018; Zhalnina et al.,
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2018), another strategy to increase water and nutrient uptake,
enhance drought resistance (Badri and Vivanco, 2009; Lareen
et al., 2016; Jacoby et al., 2017), and alter the water holding
capacity of the soil (Young, 1995; Angers and Caron, 1998;
Walker et al., 2003). Families adapted to drier or wetter climates
can differ in their root exudation quantity and quality (Whitham
et al., 2003) because root exudate quantity can increase during
drought (Liese et al., 2018; Preece et al., 2018) and root exudate
composition can also change as a result of dry conditions
(Gargallo-Garriga et al., 2018). Furthermore, root exudate rates
and composition have been shown to vary across genotypes
(Cieslinski et al., 1997; Hoekenga et al., 2003; Badri and Vivanco,
2009) and influence the genotype-specific ability to recruit
beneficial soil microbes (Haney et al., 2015).

The dry and wet families may have used different sources of
plant available N (e.g. NO3

-, NH4
+), as suggested by the dry

family’s significantly greater leaf d15N than the wet family
regardless of treatment. N use is driven by the quantity of N
forms available in the soil and the capacity of plants to take up
different N forms (Vasquez et al., 2008). Within-species pine
populations and families can differ in their use of NH4

+ or NO3
-

(Miller and Hawkins, 2007; Maire et al., 2009) because plants can
switch their N source (Louahlia et al., 2000) depending on
precipitation (Houlton et al., 2007) and season (Lucash et al.,
2008), suggesting that plasticity exists in the uptake of different N
sources between within-species populations and families from
contrasting climates. Plasticity in N use can be driven by within-
species variation in root morphology, preferential expression of
N transporters (NO3

- versus NH4
+) (Maire et al., 2009), and/or

activity patterns of soil enzymes involved in the acquisition of N
(Purahong et al., 2016). However, it remains unclear if the
relationship between shoot d15N and N source is universal
(Kahmen et al., 2008; Temperton et al., 2012) because the d15N
of NO3

- and NH4
+ can vary substantially depending on relative

mineralization, nitrification, and denitrification (Shearer et al.,
1974; Mariotti et al., 1981; Handley et al., 1999).

The family differences in N use may be related to the family
differences in root exudates because the dry family both released
greater root exudates and exhibited greater leaf d15N than the wet
family. Root exudates can alter the availability of plant available
N sources by stimulating microbial growth and activity
(Marschner, 2012). An increase in microbial activity can
increase microbial N transformations and influence the
quantity and type of plant available N (Yin et al., 2013). Root
exudates may also affect the N cycling function of the soil
microbial community by attracting or repelling specific
microbes that may promote the plant availability of NO3

- or
NH4

+ and alter the NO3
-:NH4

+ ratio (Hayatsu et al., 2008). Root
exudates can also alter N availability by influencing different
steps of the N cycle such as inhibiting nitrification (Subbarao
et al., 2006; Coskun et al., 2017).

Despite significant family differences in root:shoot biomass, root
exudates, and d15N, we did not observe significant family or
treatment differences in functional traits related to leaf drought
tolerance, intrinsicwater use efficiency, and stomatal constraints on
gas exchangeas indicatedbyYTLP,d13C,A, and gs, respectively.This
Frontiers in Plant Science | www.frontiersin.org 11
suggests that YTLP, a metric of drought tolerance (Bartlett et al.,
2014), can reflect the conditions under which plant tissues develop
and can outweigh ecotypic differences between families and
populations. Meier et al. (1992) also did not find significant
differences in YTLP between P. taeda families and populations
from contrasting climates. For leaf d13C, ametric of intrinsic water
use efficiency (Farquhar et al., 1989), some studiesof conifer species
have observed intraspecific variation in leaf d13C reflecting climate
of origin (Yang et al., 2002; Kerr et al., 2015; Marias et al., 2017)
while others have not (Zhang et al., 1993; Zhang et al., 1997). ForA,
and gs, others also have not observed significant differences in gas
exchange parameters among within-species loblolly pine families
and populations (Yang et al., 2002; Aspinwall et al., 2011). Given
these mixed results, future provenance studies have been urged to
focus on growth and survival traits rather than d13C as a proxy for
drought resistance (Moran et al., 2017).

CONCLUSION

Our results showed that soilmicrobial inoculation treatment effects
varied in direction andmagnitude by trait and family. Soilmicrobes
may alter functional traits that improve water and nutrient uptake
anddrought resistance such as the root:shoot biomass ratiomore so
in a family originating from a wetter climate than in a family
originating from a drier climate. Regardless of treatment, the dry
family exhibited a greater root:shoot biomass ratio, root exudate
concentration, and leaf d15N than the wet family. This suggests that
the dry family allocated more resources belowground than the wet,
and that within-species families may have used different sources of
plant available N, which may be related to their climate and soil of
origin. Together, this work highlights the need to further investigate
indiverse systemshowabiotic factors like drought andbiotic factors
like soil microbes influence diverse functional traits that influence
seedling establishment offamilies andpopulations fromcontrasting
climates. Given the mix of positive and negative microbial
treatment effects on the dry family (e.g. increased germination but
reduced FV/FM), more research is needed to inform plant-microbe
interactions by identifying potential physiological tradeoffs due to
negative interactions with soil microbes. Examination of
intraspecific variation in plant physiological impacts of soil
microbes informs species’ distributions, improves efforts to
engineer beneficial plant-microbe interactions, and facilitates
seedling adaptation and reforestation under future climate regimes.
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