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Maize transformation is highly based on the formation of embryonic callus, which is mainly
derived from scutellum cells of the immature maize embryo. However, only a few genes
involved in callus induction have been identified in maize. To reveal the potential genes
involved in the callus induction of maize, we carried out a high-throughput RNA
sequencing on embryos that were cultured for 0, 1, 2, 4, 6, and 8 days, respectively,
on a medium containing or lacking 2,4-dichlorophenoxyacetic acid. In total, 7,525 genes
were found to be induced by 2,4-dichlorophenoxyacetic acid and categorized into eight
clusters, with clusters 2 and 3 showing an increasing trend related to signal transmission,
signal transduction, iron ion binding, and heme binding. Among the induced genes, 659
transcription factors belong to 51 families. An AP2 transcription factors, ZmBBM2, was
dramatically and rapidly induced by auxin and further characterization showed that
overexpression of ZmBBM2 can promote callus induction and proliferation in three
inbred maize lines. Therefore, our comprehensive analyses provide some insight into
the early molecular regulations during callus induction and are useful for further
identification of the regulators governing callus formation.

Keywords: maize, callus induction, RNA-Seq, AP2 transcription factors, Baby Boom
INTRODUCTION

Tissue culture technology has been widely used in breeding programs, genetic engineering, and
fundamental studies (Yadava, 2017). Agrobacterium-mediated transformation and particle
bombardment are widely used tissue culture technology in cereals, both of which require callus
induction and selection (Shrawat and Lörz, 2006). Sugimoto et al. (2010) suggested that callus are
induced through lateral root initiation pathways in Arabidopsis thaliana. The exogenous application
of auxin and cytokinin is necessary for in vitro callus induction for numerous plant species (Ikeuchi
et al., 2013). Auxin signaling is transduced by auxin response factors (ARF), especially ARF7 and
ARF19, which can activate the expression of the LATERAL ORGAN BOUNDARIES DOMAIN
(LBD) and E2F TRANSCRIPTION FACTOR a (E2Fa) transcription factors (Fan et al., 2012;
Ikeuchi et al., 2013). In A. thaliana, overexpression of LBD16, LBD17, LBD18, and LBD29 were
enough to induce callus with a similar appearance to the callus induced on callus-inducing-medium
(Fan et al., 2012). With the exception of the ARF transcription factor, WUSCHEL-related
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homeobox 11 (WOX11) and JUMONJI C DOMAIN-
CONTAINING PROTEIN 30 (JMJ30) can also regulate the
LBD genes in A. thaliana (Liu et al., 2014; Lee et al., 2018). It
was reported that LBD proteins interact with the basic leucine
zipper (bZIP) transcription factor to promote callus formation
(Xu et al., 2018). Furthermore, auxin downregulates the KIP-
RELATED PROTEIN (KRP) genes encoding cyclin-dependent
kinase (CDK) inhibitors, which have been identified as regulator
inhibitors in callus formation (Anzola et al., 2010).

Callus formation can be induced by cytokinin and wounds.
The critical components involved in this process include type-B
ARRs and the ethylene response factor (ERF) subfamily of AP2
(AP2/ERF) transcription factors (Ikeuchi et al., 2019).
Overexpression of ARR1 can induce callus formation (Sakai,
2001). Interestingly, overexpression of ARR1 or ARR21 lacking
the phosphorylation domain can induce callus formation
without exogenous plant hormones (Sakai, 2001; Tajima et al.,
2004). The AP2/ERF transcription factor WOUND INDUCED
DEDIFFERENTIATION1 (WIND1) is a central regulator of
wound-induced cellular reprogramming by upregulating the
expression of the ENHANCER OF SHOOT REGENERATION1
(ESR1) gene, which encodes another AP2/ERF transcription
factor in A. thaliana (Iwase et al., 2017).

Callus formation can also be influenced by embryonic or
meristematic fate-related genes. Overexpression of master
regulators in embryonic fate, such as LEAFY COTYLEDON 1
(LEC1), LEAFY COTYLEDON 2 (LEC2), BABY BOOM (BBM),
and meristem fate WUSCHEL (WUS) could induce callus
formation (Wójcikowska et al., 2013; Yang et al., 2014; Zheng
et al., 2016; Ikeuchi et al., 2019). In particular, BBM, an AP2/ERF
transcription factor, can ectopically induce somatic
embryogenesis in many plant species, such as A. thaliana,
Brassica napus, Theobroma cacao, and Zea mays (Boutilier,
2002; Florez et al., 2015; Lowe et al., 2016). BBM is a member
of the AINTEGUMENTA-LIKE (AIL) family of AP2/ERF
domain transcription factors, which are expressed in all
dividing tissues and have central roles in developmental
processes (Horstman et al., 2014). In A. thaliana, AIL family
contains eight genes, with single AIL knockout mutants showing
hardly any defects. However, double or triple mutants have
stronger phenotypes in different developmental processes
(Krizek, 2015). The overexpression of AIL proteins can induce
somatic embryogenesis and ectopic organ formation (Boutilier,
2002; Tsuwamoto et al., 2010). In A. thaliana, BBM was reported
to induce somatic embryogenesis via regulating LEC1, LEC2,
FUSCA3 (FUS3), and ABSCISIC ACID INSENSITIVE3 (ABI3)
(Horstman et al., 2017).

Maize provides an important source of food, feed, and
industrial raw materials worldwide and is one of the prime
targets for genetic manipulation (Que et al., 2014). Genetic
transformation in maize usually requires the formation of
embryonic callus, which is mainly derived from the scutellum
cells of immature maize embryos (Ishida et al., 2007). However,
embryonic callus is difficult to induce in many maize lines,
restricting the scope of maize transformation (Ma et al., 2018).
To cope with this question, transformation method without
Frontiers in Plant Science | www.frontiersin.org 2
callus growth has been developed using ZmBBM and Wus2
(Lowe et al., 2018). A previous study suggested that five
quantitative trait loci can explain 82% of the phenotypic
variance for embryogenic callus formation in an A188 × B73
population (Armstrong et al., 1992). Immature embryo from the
maize line A188 at 0, 24, 36, 48, and 72 hours after induction were
analyzed by high-throughput RNA sequencing (RNA-Seq), and
the results showed that the expression of the genes involved in
stress response and hormone transport was increased (Salvo et al.,
2014). A multi-omic data analysis on different stages of callus
formation of maize line 18-599R revealed that several genes and
miRNAs related to metabolism, cellular processes, and signaling
may function in callus induction (Shen et al., 2012; Shen
et al., 2013).

Until now, few genes related to callus induction have been
identified in maize except for ZmBBM and Wus2 (Lowe et al.,
2016). Because callus induction is influenced by genotype, it has
been speculated that novel genes could be identified using
different maize lines. In the present study, we carried out RNA
sequencing of maize line CAL to identify crucial genes involved
in maize callus formation, including ZmBBM2. Furthermore, we
confirmed that overexpression of ZmBBM2 could promote the
transformation efficiency of immature maize embryos in three
inbred lines. Our research will help further identification of the
crucial genes in callus induction.

MATERIALS AND METHODS

Samples, RNA Isolation, and Sequencing
Plants from the inbred maize line CAL were grown in a
greenhouse with a 16 h/8 h light/dark cycle at 20–25°C.
Immature embryos were collected from the maize ears 10–12
days after pollination. The immature embryos (1.0–1.2 mm)
were isolated and placed on N6 medium with 1.5 mg/L 2,4-
dichlorophenoxyacetic acid (2,4-D) and subjected to aphotic
culturing at 27°C. After culturing for 0, 1, 2, 4, 6, and 8 days
(D0, D1, D2, D4, D6, andD8) at 27°C, the immature embryos were
collected and stored at −70°C for RNA extraction. Meanwhile,
immature embryos cultured without 2,4-D (N1, N2, N4, N6, and
N8)were also collected as control.More than50 immature embryos
were collected for each sample, and three biological replicates of
each sample were used for the following RNA-Seq.

The extracted RNA was inserted into a 1% agarose gel to
assess the RNA integrity. RNA yield and purity were checked
using a Nano-drop ND-1000. mRNAs were isolated from total
RNA using oligo(dT) magnetic beads (Illumina, San Diego, CA,
USA). RNA fragmentation, cDNA synthesis, and PCR
amplification were performed according to the Illumina RNA-
Seq protocol. cDNA libraries were sequenced with a read length
of 150 bp (paired-end) using an Illumina HiSeq 2500 System at
Berry Genomics (Beijing, China).

RNA-Seq Reads Mapping and Expression
Analysis
All clean reads with high quality from each sample were mapped
to the maize B73 AGPv3.27 reference genome using Tophat2
December 2019 | Volume 10 | Article 1633
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version 2.1.0 with the strict parameters “-i 5 -I 60000 –mate-
inner-dist 238 –mate-std-dev 45”, which allow a default of two
mismatches (Kim et al., 2013). Next, SAMtools v1.2 was used to
filter the reads with a mapping quality score under 50 (Li et al.,
2009). The filtered reads were used as inputs into the DESeq2 R
package and fragments per kilobase of transcript per million
reads mapped values were calculated to evaluate the expression
levels of the genes. Differentially expressed genes (DEGs) were
identified with the criteria of |log2fold change| ≥1 and false
discovery rate (FDR) adjusted p-value < 0.01. All the upregulated
and downregulated DEGs at the same day with or without 2,4-D
induction were compared and only the DEGs in the 2,4-D
induced samples were identified as the induced genes.

Cluster Analysis and Gene Ontology
Analysis
TheMfuzz R package was used to cluster the expression levels of
all induced genes, which is based on the soft clustering of time
series gene expression data, called c-means clustering (Lokesh
and Matthias, 2007). An optimal setting of fuzzifier m, which
prevented clustering of random gene expression, was estimated
as 1.722. To characterize the functional categories among the
induced genes, we used the agriGO online website (http://
systemsbiology.cau.edu.cn/agriGOv2/) to perform gene
ontology analysis (Tian et al., 2017). The hypergeometric
statistical test method followed by FDR correction
(FDR < 0.05) was used to enrich significant functional terms.

Agrobacterium-Mediated Transformation
of Immature Embryos
The coding sequence of ZmBBM2 were amplified from the
cDNA of immature embryos at D8, and then inserted into the
binary vector pCambia3301 at the NcoI and BstEII restriction
sites, to produce pCambia3301-35S-ZmBBM2 expression vector.
This vector was transformed into Agrobacterium strain EHA105.
Immature embryos from maize inbred lines CAL, Zong31, and
B73 were transformed according to the Agrobacterium-mediated
method (Chen et al., 2018). The tissues of Zong31 and B73 were
cultured and selected under dim light (10 mmol m−2 s−1). The
tissues of CAL were cultured and selected under both darkness
and dim light (10 mmol m−2 s−1), respectively. Resistant calli were
placed in Murashige and Skoog medium for regeneration under
fluorescent white light in a 16/8 h light/dark cycle. Genomic
DNA was extracted from the calli using the CTAB method and
the presence of transgene was confirmed by PCR amplification
using the primers listed in Table S1. The calli with amplified
fragments were confirmed as positive. The transformation
efficiency was calculated as by the number of the positive calli
per the infected embryos. The transformation experiment was
performed with three independent replicates.

Analysis of the Effect of ZmBBM2
Overexpression on Tissue Growth
The diameter of CAL positive calli transformed with
pCambia3301 or pCambia3301-35S-ZmBBM2 were measured,
respectively, after three rounds of 2-week long selection with
Frontiers in Plant Science | www.frontiersin.org 3
bialaphos. The data came from three biological replicates, and
four calli were measured in each biological replicate. The positive
calli were also collected for RNA extraction and quantitative real-
time PCR analysis (qRT-PCR).

Quantitative Real-Time PCR
The first-strand cDNA synthesis was performed with the M-
MuLV reverse transcriptase (Promega) using total RNA as the
template. qRT-PCR was carried out with three biological
replicates of each sample using the ABI 7300 system. The
relative transcriptional levels were calculated using the 2-DDCt

method or 2-DCt method (Livak and Schmittgen, 2001) with actin
as a housekeeping gene. The primers used in qRT-PCR analysis
are listed in Table S1.
RESULTS

Whole Transcriptome Profiling
RNA-seq experiments were performed to investigate global
transcriptome changes during callus induction in the maize
inbred line CAL, using immature embryos cultured on a
medium with 2,4-D for 0, 1, 2, 4, 6, and 8 days. To exclude the
influence of the culture medium components, RNA was also
extracted from immature embryos cultured on a medium
without 2,4-D and sequenced. Approximately 807 million
(806,937,547) clean reads were mapped to the maize B73
reference genome (AGPv3.27, Table S2). The proportion of
concordant pair alignment of all samples were more than
64.25% (64.25%~71.15%), which were then used for further
analyses (Table S2).

To ensure high confidence in the genes expressed, the genes
were analyzed only if their fragments per kilobase of transcript
per million reads mapped values were >1 in at least one sample.
For every sample, approximately 21,602 (20,681 to 22,375) genes
were detected (Figure 1A). The DEGs were obtained by
comparing the samples to D0 (|log2fold change| ≥1 and
FDR < 0.01). The number of DEGs were all increased with and
without the 2,4-D induction (Figure 1B).

Induced Genes in Callus Formation
In order to obtain the induced genes during callus formation, the
upregulated and downregulated DEGs at the same day with or
without 2,4-D induction were compared. Only the DEGs in the
2,4-D induced samples were identified as the induced genes. In
total, 7,525 induced genes were obtained in callus induction
(Table S3). Among them, 324, 1,595, 1,617, 1,794, and 1,918
genes were identified as the upregulated genes for D1, D2, D4,
D6, and D8, respectively (Figure S1A). A total of 644, 1,579,
1648, 1,846, and 1,780 genes were downregulated for D1, D2, D4,
D6, and D8, respectively (Figure S1B). Only 25 upregulated and
48 downregulated genes overlapped between different days of
induction, indicating a notable variation of expression level
changes during callus formation (Figures 2A, B). qRT-PCR
analysis were performed on 10 genes to verify the RNA-seq
data, and the expression changes of these genes revealed by qRT-
December 2019 | Volume 10 | Article 1633
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PCR were similar to those observed in RNA-seq data, indicating
the accuracy of RNA-seq data (Figure S2).

Characterization of Induced Genes
Grouped by Cluster Analysis
To provide further insights into the functional transitions in
callus induction, 7,525 induced genes were grouped to eight
clusters according to their expression patterns using the Mfuzz R
program, which was followed by a gene ontology annotation to
assign functional categories for each gene cluster (Table S4).
Clusters 2 and 3 show an increasing trend with induction (Figure
3A). Induced genes in cluster 2, such as ARF20 and ARF27, were
upregulated between D1 and D4, and they are mainly related to
external st imuli , s ignaling transmissions, signaling
transductions, intracellular signaling cascades (Figure 3B). The
cluster 3 genes, such as LBD24, were rapidly induced after D4,
and they are related to oxidation-reduction reactions, iron ion
binding, heme binding, peroxidase activity, and transferase
activity (Figures 3A, B).
Frontiers in Plant Science | www.frontiersin.org 4
Clusters 1 and 4 exhibited similar expression patterns
showing peak expressions at D2 and dropping thereafter
(Figure 3A). These two clusters included genes related to
hormone-mediated signaling pathways and cellular response to
these stimuli, especially in relation to the presence of auxin, such
as IAA, PIN, and ZmWOX11 (Figure 3B). The genes in cluster 6
exhibited rapid upregulation at D4, followed by maintaining a
high level of expression (Figure 3A). These genes, such as
ZmBBM, were primarily related to hydrolase activity and
nucleoside binding (Figure 3B). The genes in clusters 5, 7, and
8 show a decreasing trend with 2,4-D induction (Figure 3A). The
genes in these clusters were related to small molecule
biosynthetic processes, plastids, envelopes, and intracellular
membrane-bounded organelles (Figure 3B).

Identification of the Induced Transcription
Factors During Callus Induction
Among the induced genes, 659 transcription factors were found,
belonging to 51 gene families (Figure 4A). Among these genes,
FIGURE 1 | Analysis of global gene expression among different samples. (A) The number of expressed genes in different samples (fragments per kilobase of
transcript per million reads mapped > 1). (B) The number of differentially expressed genes in different samples compared with D0. D and N indicate the embryos
cultured on N6 medium with or without 1.5 mg/l 2,4-D, respectively.
FIGURE 2 | Summary of the induced genes. (A) Comparison of upregulated genes at different stages. (B) Comparison of downregulated genes at different stages.
December 2019 | Volume 10 | Article 1633
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65 genes are BASIC/HELIX–LOOP–HELIX (bHLH)
transcription factors, followed by ERF transcription factors
with 46 members that showed expression changes after
induction (Figure 4A). Other transcription factors include 39
MYBs, 36 bZIPs, 36 WRKYs, 31 NACs, and 18 ARFs that
exhibited obvious expression changes after induction (Figure
4A). Thirteen LBD transcription factors, which play roles in
callus initiation and plant regeneration, showed upregulation at
least in one time period, with the exception of ZmIG1 and LBD15
(Figure 4B, Table S5). In particular, LBD5, LBD24, LBD33, and
LBD38 showed continuous upregulation.

Among the 16 induced AP2 transcription factors, 9 genes
belonging to clusters 5 and 8 were downregulated after
induction, and other seven genes showed gene upregulation
Frontiers in Plant Science | www.frontiersin.org 5
(Figure 4C, Table S6). ZmTS6, ZmHSCF1, and ZmEREB81
exhibited peak expressions at D4. ZmBBM, ZmEREB26, and
ZmEREB197 exhibited peak expressions at D6. In comparison,
ZmBBM2, were dramatically and rapidly induced from D2
(Figure 4C, Table S6). The amino acid sequence of ZmBBM2
has a 78% similarity with OsBBM2 and 43% similarity with
ZmBBM (Figure 4D, Figure S3). According to MaizeGDB data,
ZmBBM2 is expressed only in the immature embryos and roots.

Overexpression of ZmBBM2 Promotes
Callus Formation and Proliferation
To verify the role of ZmBBM2 in callus formation, ZmBBM2 was
amplified and ligated into the plasmid pCambia3301, under the
control of the cauliflower mosaic virus 35S promoter. The
FIGURE 3 | Cluster analysis and gene ontology functional categorization of the induced genes. (A) Clustering of the induced genes based on their expression
patterns at D0, D1, D2, D4, D6, and D8. The numbers in parentheses indicate the number of genes in a cluster. The x-axis represents the sample and the y-axis
represents centralized and normalized expression values. The black lines are the mean expression trends of the induced genes within each cluster. (B) Functional
categories within the different clusters. Only significant categories (false discovery rate < 7.90E-4) are displayed.
December 2019 | Volume 10 | Article 1633

https://www.frontiersin.org/journals/plant-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


Du et al. BBM2 promotes maize callus formation
plasmid was then transformed into immature maize embryos of
CAL and Zong31, both of which have high transformation
efficiency and are frequently used in maize transformation.
The transformation efficiency of ZmBBM2 overexpression in
CAL and Zong31 were significantly increased compared with
that in the controls (6% in the control to 21% with
overexpression in CAL, and from 3% in the control to 20%
with overexpression in Zong31) (Figures 5C and 7B). Compared
with control samples, the ZmBBM2 positive calli were bigger and
exhibited rapid growth in darkness and dim light (Figures 5A, B,
6A, 7A). After three rounds of 2-week selection on the medium
containing bialaphos (Figure S4), the callus size was determined
based on the diameter of callus masses, and the sizes of ZmBBM2
positive calli were higher than the control calli (Figure 6B). The
positive calli was confirmed by PCR amplification of the fragment
Frontiers in Plant Science | www.frontiersin.org 6
containing ZmBBM2 and NOS terminator using the specific
primers, and the results showed that specific fragments could
only be amplified from ZmBBM2 positive calli (Figure 6C, Table
S1). Significantly higher expression levels of ZmBBM2 in these
positive calli were detected compared to the controls (Figure 6D).

The ZmBBM2 construct was also transformed into immature
embryos of inbred line B73 that is a recalcitrant line for maize
transformation. In total, only four positive calli were obtained
with empty vector transformation from 247 immature embryos.
In comparison, six positive calli were obtained with
overexpression of ZmBBM2 from 136 immature embryos of
the B73 line (Figure S5). Only one experiment was performed
for the B73 line transformation, and this preliminary result
indicate ZmBBM2 can increase transformational efficiency in
this recalcitrant maize line.
FIGURE 4 | Transcription factors analysis. (A) Pie chart showing the TF number and families. (B) Heatmap of LBD TFs with altered expression levels after induction.
The color scale of yellow (low) and red (high) represents the normalized expression levels. (C) Heatmap of AP2 TFs with altered expression levels after induction. The
color scale of yellow (low) and red (high) represents the normalized expression levels. (D) Phylogenetic trees of the AP2 TFs in Arabidopsis thaliana, Oryza sativa, and
Zea mays.
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DISCUSSION

Improving transformation efficiency is necessary for the
functional annotation of the maize genome and the generation
of transgenic maize with breeding value (Altpeter et al., 2016).
The efficiency of embryonic callus induction is an important
factor influencing the efficiency of callus-dependent
transformation in maize (Yadava et al., 2017). However, it is
difficult for many inbred maize lines to undertake
dedifferentiation and induce embryogenic callus (Ma et al.,
2018). Understanding the molecular mechanism of maize
embryogenic callus induction could facilitate maize transgene
production. In this study, we conducted a high-throughput RNA
sequencing of CAL, an inbred line with a high efficiency of
embryonic callus induction, to identify elaborate transcript level
changes during callus formation. We found 7,525 induced genes
by comparing the DEGs in the samples with or without 2,4-
D induction.

Previous studies had shown that callus could be induced from
aerial organs and resembles the tip of a root meristem (Sugimoto
et al., 2019). The root meristem regulator genes, such as WOX5
and WOX11, had been verified to play important roles in callus
initiation in A. thaliana and Oryza sativa (Hu et al., 2017; Cheng
et al., 2018; Liu et al., 2018a; Sang et al., 2018). In this study,
ZmWOX11 showed peak expression at D2 and dropped
afterward. In contrast, ZmWOX5a and ZmWOX5b exhibited
upregulation after D2, implying an involvement in the first- and
second-step cell fate transition in callus initiation like in A.
Frontiers in Plant Science | www.frontiersin.org 7
thaliana and O. sativa. In addition, LBD transcription factors,
which are downstream of WOX11, ARF, and JMJ30, act as the
key molecules governing genes in callus formation (Liu et al.,
2018b; Ikeuchi et al., 2019). In A. thaliana, overexpression of
some LBD transcription factors is sufficient to induce callus with
a similar appearance to CIM-induced callus (Fan et al., 2012).
Moreover, LBD16 forms a complex with the bZIP59
transcription factor and directly activates downstream genes,
such as FAD-BD (Xu et al., 2018). In this study, 13 LBD genes
were identified in the induced genes and four of them increased
dramatically at all the time points. In addition, the transcription
factor ZmbZIP65 showed downregulation after induction,
similar to the homologous gene bZIP59 in A. thaliana. These
findings indicate that plant cells may have common mechanisms
for callus induction at least in A. thaliana, O. sativa, and maize.

Callus induction is influenced by multiple plant hormones,
particularly auxin and cytokinin (Ikeuchi et al., 2013). Although
the callus induction medium used in the study only contained
auxin, many genes involved in cytokinin, jasmonates (JAs),
abscisic acid, ethylene, and gibberellin production also had
obvious expression changes. In cytokinin signaling, ARRs are
the primary regulatory genes in callus induction and an
overexpression of ARR1 in cytokinin-containing media can
induce callus formation (To and Kieber, 2008). In the current
study,fiveARR genes exhibited expression changes, withZmARR1,
ZmARR7, and ZmARR12 having sustained upregulation during
callus induction. Xu (2018) recently reported that JAs serve as a
wound signal during de novo root regeneration in A. thaliana. F-
FIGURE 5 | Overexpression of ZmBBM2 promotes callus formation and proliferation in the CAL line. (A) Comparison of the control callus with the ZmBBM2
overexpressed callus under dim light selection and callus regeneration under fluorescent white light (Arrow refers to the ZmBBM2 positive callus). (B) Comparison of
the control callus with the ZmBBM2 overexpressed callus under darkness (Arrow refers to the ZmBBM2 positive callus). (C) The comparison of transformation
efficiency between ZmBBM2 overexpression and the control in CAL line. Data was shown as average ± S.D. of three independent experiments. Experimental data
was tested by student t-test analysis and asterisks in the column mean significant difference at P < 0.05 level. The numbers of total infected embryos and positive
calli are shown under the histogram.
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box protein CORONATINE INSENSITIVE1 (COI1) and JA
ZIM domain (JAZ) are the main repressor proteins in JA
signaling (Katsir et al., 2008). The bHLH transcription factor
Frontiers in Plant Science | www.frontiersin.org 8
MYC2 is the core regulator for stimulating the transcription of
stem cell regulators PLT1/2 (Chen et al., 2011). In our study, the
orthologous genes of COI1, JAZ, and MYC2 showed obvious
FIGURE 6 | ZmBBM2 overexpression increased callus size. (A) The representative positive calli for empty vector and ZmBBM2 vector after three rounds of 2-week
selection on the medium containing bialaphos. The left are two representative positive calli for empty vector, and the right are two representative positive ZmBBM2
calli. Scale bar = 0.5 cm. (B) Callus size of the positive ZmBBM2 calli and control calli. After three rounds of 2-week selection on the medium containing bialaphos,
the callus size was determined based on the diameter of callus masses. The data of three independent experiment replications (rep1, rep2, and rep3) was
presented. Error bars are the standard deviation of four independent calli. Asterisks in each column mean significant difference between ZmBBM2 positive calli and
control at P < 0.05 level. (C) PCR amplification of ZmBBM2 in positive calli. M, DNA marker; CK-1 and CK-2, callus transformed with empty vector; OE1~OE6,
ZmBBM2 positive calli. These calli were selected randomly from other positive calli, which were different from those shown in A and B. (D) ZmBBM2 expression level
in the ZmBBM2 positive and control calli shown in C; Data was shown as average ± S.D. of three independent experiments. Experimental data was tested by
student t-test analysis and asterisks in each column mean significant difference between ZmBBM2 positive calli and control at P < 0.05 level.
FIGURE 7 | Overexpression of ZmBBM2 promotes callus formation and proliferation in the Zong31 line. (A) Comparison of the control callus with the ZmBBM2
overexpressed callus under dim light selection and callus regeneration under fluorescent white light (Arrow refers to the ZmBBM2 positive callus); (B) The
comparison of transformation efficiency between ZmBBM2 overexpression and the control in the Zong31 line. Data was shown as average ± S.D. of three
independent experiments. Experimental data was tested by student t-test analysis and asterisks in the column mean significant difference at P < 0.05 level. The
numbers of total infected embryos and positive calli are shown under the histogram.
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expression changes with induction. In addition, JA can activate
ERF109 and the downstream gene CYCD6;1, which promotes
regeneration (Zhang et al., 2019). In our study, 46 ERF genes
were differentially expressed. Moreover, the expressions levels of
several genes involved in ethylene, brassinosteroid, abscisic acid,
and gibberellin signaling were changed during callus induction,
suggesting that all these hormone signals may play roles in the
callus formation.

The BBM gene belongs to the AIL family of the AP2/ERF
domain transcription factor, overexpression of which can induce
somatic embryogenesis and ectopic organ formation (Horstman
et al., 2014). BBM was first reported in Brassica campestris and
the overexpression of BBM could mediate somatic
embryogenesis and enhanced plant regeneration in Populus
tomentosa, maize, and other plant species (Jha and Kumar,
2018). BBM is mainly expressed in embryos and roots and
regulates cell identity and growth with other AIL proteins
(Horstman et al., 2014; Jha and Kumar, 2018). In Glycine max,
GmBBM1 was found to have a motif specific bbm-1 linking to
the euANT2 motif identified in two other AIL proteins (El
Ouakfaoui et al., 2010). The deletion of the euANT2 motif
individually and with other motifs in GmBBM1 prevented
somatic embryos, implying functional differences between
different AIL proteins (El Ouakfaoui et al., 2010). Lowe et al.
(2016) showed that ZmBBM could improve the transformation
efficiency of Zea mays, Sorghum bicolor, and O. sativa. In the
current study, ZmBBM2, a new AIL protein, was found to have a
43% similarity to ZmBBM. However, ZmBBM2 and ZmBBM
showed different expression changes and belonged to different
clusters. Further experiment in the study identified that the
overexpression of ZmBBM2 can promote callus formation and
proliferation in different inbred lines. The transgenic seedlings
ectopic expressing ZmBBM usually results in aberrant
phenotypes (Lowe et al., 2016). We did not observe obvious
aberrant phenotype for the mature transgenic plants
overexpressing ZmBBM2 (Figure S6), indicating that these two
maize BBM genes may play roles with somewhat different
mechanism. The promoter from maize phospholipid
transferase protein gene have been used to drive ZmBBM gene
to lessen the adverse impact of ZmBBM overexpression (Lowe
et al., 2018). In this study we only used 35S promoter to drive
ZmBBM2, and will check other weak or auxin-induced
promoters, i.e. Nos promoter in the future experiments.
Combining ZmBBM and ZmWUS2 led to the direct formation
of somatic embryos on the scutella, resulting in the callus-free
transformation (Lowe et al., 2018). ZmBBM2 in this study might
also be used for the callus-free transformation, together with
ZmWUS2. The results from our experiment can further an
understanding of AIL proteins in maize and identify new genes
for improving maize transformation efficiency.
CONCLUSION

A high-throughput RNA sequencing were carried out on the
embryos of maize line CAL and 7,525 genes were found to be
induced by auxin. The induced genes were categorized to eight
Frontiers in Plant Science | www.frontiersin.org 9
clusters and the cluster 2, 3 all showed an increasing trend with
the induction. An AP2 transcription factors in cluster 2,
ZmBBM2, were dramatically and rapidly induced by auxin,
and further study showed that overexpression of ZmBBM2 can
promote callus induction and proliferation in three maize inbred
lines. Therefore, our comprehensive analyses are useful for further
identification of the regulators governing callus formation.
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