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Flowering is a critical stage of plant development and is closely correlated with seed 
production and crop yield. Flowering transition is regulated by complex genetic networks 
in response to endogenous and environmental signals. FLOWERING LOCUS C (FLC) is 
a central repressor in the flowering transition of Arabidopsis thaliana. The regulation of 
FLC expression is well studied at transcriptional and post-transcriptional levels. A subset 
of antisense transcripts from FLC locus, collectively termed cold-induced long antisense 
intragenic RNAs (COOLAIR), repress FLC expression under cold exposure. Recent studies 
have provided important insights into the alternative splicing of COOLAIR and FLC sense 
transcripts in response to developmental and environmental cues. Herein, at the 20th 
anniversary of FLC functional identification, we summarise new research advances in the 
alternative splicing of FLC sense and antisense transcripts that regulates flowering.
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HIGHLIGHTS
FLOWERING LOCUS C (FLC) is a key repressor in flowering transition. The alternative splicing 
of FLC sense and antisense transcripts regulated by external and internal cues modulates flowering 
transition.

INTRODUCTION
RNA splicing is a critical step in the post-transcriptional regulation of gene expression. This process 
occurs by removing intronic sequences and joining exons by spliceosome and numerous splicing 
factors (Jurica and Moore, 2003; Wahl et al., 2009; Matera and Wang, 2014; Vosseberg and Snel, 
2017). Spliceosome is a highly dynamic ribonucleoprotein complex that catalyses RNA splicing and 
is composed of five small nuclear ribonucleoprotein (snRNP) particles (U1, U2, U4/U6 and U5) 
(Will and Lührmann, 2011; Fica et al., 2019). Splicing factors are one of the key determinants as 
accessory non-snRNP proteins regulating RNA splicing (Cho et al., 2011; Liu et al., 2016; Long et 
al., 2019; Wang et al., 2019; Xiong et al., 2019a; Xiong et al., 2019b). A pre-mRNA may undergo 
different splicing patterns, creating various mature transcripts that encode distinct functional 
proteins (Samach et al., 2011; Wang et al., 2015; Zhu et al., 2017; Lockhart, 2018; Okumoto et al., 
2018). This phenomenon is called alternative splicing (AS).

AS fulfils important biological functions in plants, such as flowering transition and flower 
development (Wang et al., 2014; Melzer, 2017; Rodríguez-Cazorla et al., 2018; Park et al., 2019a; 
Park et al., 2019b; Wang et al., 2019). AS is also implicated in plant response to circadian rhythm 
regulation (Filichkin and Mockler, 2012), phytohormone (Hrtyan et al., 2015; Wang et al., 2015; Zhu 
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et al., 2017; Xiong et al., 2019a), ambient temperature (Verhage 
et al., 2017) and abiotic and biotic stresses (Lyons and Kazan, 2016; 
Huang et al., 2017; Mei et al., 2017; Shang et al., 2017; Laloum 
et al., 2018). These cues are all important for flowering transition; 
therefore, AS plays multiple roles in flowering by integrating 
endogenous developmental and exogenous environmental 
signals. The flowering inhibitor gene flowering locus c (FLC) 
encodes a MADS-box transcription factor and is a key regulator 
of vernalisation and autonomous pathways in Arabidopsis and 
related species (Michaels and Amasino, 1999; Sheldon et al., 
1999; Sheldon et al., 2000; Chen et al., 2019; Coupland, 2019). 
FLC inhibits flowering by repressing the expression of a subset of 
key genes in promoting flowering, such as flowering locus t (FT), 
suppressor of overexpression of constans 1 (SOC1) and target 
of flc and svp1 (TFS1) (Helliwell et al., 2006; Searle et al., 2006; 
Luo et al., 2019; Richter et al., 2019). Thus, FLC regulation is 
central for flowering at the transcriptional, post-transcriptional 
and post-translational levels (Michaels et al., 2003; Lempe et al., 
2005; Li et al., 2016; Kwak et al., 2017; Whittaker and Dean, 
2017; Xiong et al., 2019a). The AS of FLC sense and antisense 
transcripts is required for flowering transition in Arabidopsis and 
other dicots (Michaels and Amasino, 1999; Sheldon et al., 1999; 
Helliwell et al., 2006; Yuan et al., 2009; Wu et al., 2012).

Twenty years ago, the works of Michaels and Amasino (1999), 
and Sheldon et al. (1999) provided a first glimpse of the central 
functions of FLC in flowering and the molecular basis of FLC in 
vernalisation (Coupland, 2019). Subsequent research works have 
demonstrated the regulation of FLC at the transcriptional and 
post-transcriptional levels, especially the epigenetic silencing 
of FLC by histone methylation in vernalisation, and the splicing 
regulation of FLC sense and antisense transcripts by splice factors 
(Bastow et al., 2004; Liu et al., 2007; Liu et al., 2010; Marquardt 
et al., 2014). In this review, we describe the current understanding 
of the AS of FLC sense and antisense transcripts in modulating 
flowering time and the splice factors involved in these processes.

AS OF FLC SeNSe TRANSCRIPTS 
MeDIATeS FLOweRING TIMe
Arabidopsis accessions exhibit markedly different flowering 
behaviour from different environments. The AS of FLC sense 
transcripts in these accessions generate multiple splice isoforms 
(Figure 1A). The naturally occurring splice variants of FLC are 
related to different vernalisation responses of various Arabidopsis 
accessions (Bloomer and Dean, 2017). Arabidopsis ecotype Bur-0 
is late flowering and vernalisation insensitive. FLC cDNA from 
Bur-0 contains 64 bp of intron sequence immediately upstream 
of exon 7, causing a mutation at the final position of intron 6. 
The 64 bp intron retention causes a frame shift and a premature 
stop codon in FLC cDNA. Thus, the encoded FLC lacking the 
C-terminal 33 amino acid residues is a null function protein in 
Bur-0 (Werner et al., 2005). Similarly, in variations of Cen-0 and 
Cal-0, alternative splice acceptor sites in the last exon and last 
intron are used, respectively. These aberrant splicing forms all 
lead to a frame shift of cDNA sequences and severely compromise 
protein function (Lempe et al., 2005). In Col-0 Arabidopsis, 

there are several additional splicing variants from FLC locus 
besides the canonical transcript (Severing et al., 2012; Park et al., 
2019a); however, their roles in flowering transition remains to 
be investigated. An additional shorter transcript from FLC locus 
is induced after vernalisation treatment for 15 days in Est-0 and 
Le-0 ecotypes, which is not observed at normal temperature 
(Caicedo et al., 2004). Whether this short transcript is involved 
in vernalisation-induced flowering in Arabidopsis is unknown.

In other plant species, the naturally occurring splice variants 
of the FLC locus also reveal that FLC AS is important for the 
control of flowering time. For example, four different transcripts 
of the FLC homologs in Brassica rapa BrFLC1 and BrFLC2 have 
been identified from naturally occurring splicing mutations 
(Yuan et al., 2009; Zhao et al., 2010; Wu et al., 2012). These 
different splice types of BrFLCs are significantly associated with 
a natural variation of flowering time in different germplasms 
of B. rapa. Additionally, differential splicing variants of BnFLC.
A3b, a FLC homolog in B. napus, have been observed in leaves 
at the seedling stage between winter cultivar Tapidor and semi-
winter cultivar Ningyou7. The transcripts from Tapidor are 
usually spliced canonically, but numerous incompletely spliced 
transcripts have been identified in Ningyou7, causing decreased 
functional transcripts (Zou et al., 2012). In tetraploid Capsella 
bursa-pastoris, splice site polymorphisms in the FLC loci create 
different transcripts which are nonfunctional (Slotte et al., 2009). 
These findings partially explain the differential flowering times 
of C. bursa-pastoris from different districts. A natural splicing 
site mutation in the BrpFLC1 gene causes early flowering in the 
cultivated variety of purple flowering stalk (Bras. campestris L. 
ssp. chinensis var. purpurea) compared with that of pakchoi 
(Bras. campestris ssp. chinensis var. communis) (Hu et al., 2011). 
Additionally, in an early flowering trifoliate orange (Poncirus 
trifoliata) mutant, five alternatively spliced transcripts of PtFLC 
have been identified; furthermore, their abundances are variable 
at the juvenile and adult stages, suggesting that the AS of PtFLC 
is related to flowering time (Zhang et al., 2009). Therefore, the 
AS of FLC is a target of natural selection for flowering regulation 
under natural conditions.

AS OF FLC ANTISeNSe TRANSCRIPTS 
ReGULATeS FLC eXPReSSION
COOLAIR is a set of long noncoding RNAs expressed at the 
FLC locus in the antisense direction that was first identified in 
Arabidopsis (Liu et al., 2007; Swiezewski et al., 2007; Swiezewski 
et al., 2009; Ietswaart et al., 2012). COOLAIR RNAs functionally 
repress FLC sense expression at an early stage of cold exposure 
(vernalisation) via different ways, such as by directly associating 
with FLC chromatin or affecting H3K36me3 and H3K27me3 
levels (Csorba et al., 2014; Berry and Dean, 2015; Rosa et al., 2016; 
Pajoro et al., 2017; Whittaker and Dean, 2017; Tian et al., 2019) 
(Figure 1B). The AS of antisense transcripts generated from the 
FLC locus produces two main classes of COOLAIR isoforms, 
terminating at proximal (sense intron 6, class I) and distal (sense 
promoter, class II) sites of FLC locus (Liu et al., 2007; Swiezewski 
et al., 2009; Marquardt et al., 2014). Each class contains several 
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subclasses produced by AS associated with the usage of alternative 
3′polyadenylation in spliced variants (Figure 1A). These multiple 
spliced variants with alternative polyadenylation are linked to 
different FLC expression states. Class I COOLAIR RNAs with 
proximal polyadenylation are associated with FLC repression 
(Liu et al., 2007; Swiezewski et al., 2009; Liu et al., 2010; Hornyik 
et al., 2010; Csorba et al., 2014). By contrast, class II COOLAIR 
transcripts are associated with high FLC expression levels. These 
COOLAIR RNAs with distal polyadenylation affect the capping 
of FLC nascent transcripts (Li et al., 2015).

The efficient splicing of class I intron promotes proximal 
polyadenylation in the antisense transcripts of FLC. As a result, 
this proximal polyadenylation inhibits the transcription of 
FLC through triggering H3K4me2 demethylation in the FLC 
locus (Marquardt et al., 2014). A few 3′-end processing factors 
containing RNA-recognition motifs, such as flowering control 
locus a (FCA) and FPA, glycine-rich rna-binding protein7 
(GRP7), cleavage stimulation factor 64 (CstF64), CstF77, and 
nuclear speckle RNA binding protein a (NSRa), affect the splice 

site selection and polyadenylation site usage of COOLAIR 
transcripts, leading to an altered ratio of proximal–distal spliced 
variants (Liu et al., 2007; Streitner et al., 2008; Liu et al., 2010; 
Hornyik et al., 2010; Streitner et al., 2012; Xiao et al., 2015; Bazin 
et al., 2018). Loss-of-function mutations in these factors decrease 
or increase the usage of COOLAIR proximal polyadenylation 
site, leading to upregulated or downregulated FLC transcription.

The AS of COOLAIR is altered by environmental conditions 
and natural intronic polymorphisms. Cold exposure influences 
COOLAIR splicing (Swiezewski et al., 2009). For example, class 
I COOLAIR RNAs increase more rapidly than do class II ones 
during vernalisation (Csorba et al., 2014; Eom et al., 2018). 
Arabidopsis accessions show variable COOLAIR splicing patterns 
that affect FLC expression and flowering time. A single nucleotide 
polymorphism (SNP) specifically regulates COOLAIR AS (Li 
et al., 2015). This SNP is located next to the acceptor splice site 
of the intron of class IIi COOLAIR. In later flowering accessions, 
such as Var2-6 and Eden-1, this SNP reduces use of the splice 
acceptor site of the class IIi COOLAIR intron, leading to a shift to 

FIGURe 1 | Splicing patterns of FLC sense and antisense transcripts, and AS of FLC antisense transcripts regulating FLC expression. (A) Schematic diagram of the 
splicing patterns of FLC sense and antisense transcripts at FLC locus in Arabidopsis. Black rectangles, gray dash lines and boxes indicate exons, introns and non-
translated regions of FLC RNAs, respectively. Gray and black lines represent the genes and promoter regions of FLC and COOLAIR loci, respectively. (B) AS variants 
of COOLAIR transcripts effect FLC expression. Nascent COOLAIR RNAs are physically associated with the FLC locus to regulate the switching of chromatin states 
(Csorba et al., 2014; Li et al., 2015; Rosa et al., 2016). Two classes of COOLAIR transcripts bind to FCA and recruit PRC2 complex to FLC locus (Tian et al., 2019). 
The class I variants with proximal polyadenylation and the proximal–distal ratio of COOLAIR transcripts effect the histone methylation of H3K4me2, H3K36me3 
and H3K27me3 (Marquardt et al., 2014; Berry and Dean, 2015; Xiao et al., 2015; Rosa et al., 2016). The class II COOLAIR transcripts with distal polyadenylation 
influence the degree of capping of the FLC nascent transcripts (Li et al., 2015).
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a downstream distal splice acceptor site and the inclusion of an 
internal exon. This change of splicing site produces isoforms with 
altered secondary structure and upregulates FLC expression (Li 
et al., 2015; Hawkes et al., 2016).

SPLICING FACTORS ReGULATe THe 
PROCeSSING OF FLC TRANSCRIPT
Splice sites, including 5′ donor splice site, branch point site, 
polypyrimidine tract and 3′ acceptor splice site, in pre-mRNA 
introns are precisely recognized by some splicing factors. 
Numerous splicing factors, such as BRR2, SC35 and SC35-like 
(SCL), RZ-1B and RZ-1C, are involved in the splicing of FLC 
in Arabidopsis flowering transition (Table 1). BRR2, an ATP-
dependent RNA helicase, is an integral component of the U5 
snRNP that is required for the activation of the spliceosome 
complex (Raghunathan and Guthrie, 1998). A missense 
mutation in Arabidopsis BRR2a results in defective FLC splicing 
and reduced FLC transcript levels (Mahrez et al., 2016). SC35 is a 
serine/arginine-rich (SR) protein that functions in the selection 
of splice sites (Valcárcel and Green, 1996). SC35 and SC35-like 
(SCL) proteins in Arabidopsis simultaneously modulate the 
splicing and transcription of FLC (Yan et al., 2017). Arabidopsis 
RZ-1B and RZ-1C, two heterogeneous nuclear ribonucleoproteins 
(hnRNPs), regulate FLC splicing and transcription by directly 
interacting with the SR protein (Wu et al., 2016). Interestingly, the 
retention of FLC introns 1, 5 and 6 in the brr2a mutant increases 
and the splicing efficiency of FLC intron 1 decreases in rz-1b 
rz-1c double mutants. These findings suggest that BRR2a, RZ-1B 
and RZ-1C promote the splicing of FLC introns. By contrast, the 
splicing efficiency of intron 1 in FLC increases compared with 
that in wild-type seedlings in quintuple mutants of SC35 and SCL 
genes, indicating that SC35 and SCL proteins inhibit the splicing 
of the first intron of FLC. The splicing efficiency of FLC introns 
is also inhibited by KHZ1 and KHZ2, two RNA-binding proteins 
containing CCCH zinc-finger and K homology (KH) domain 
(Yan et al., 2019).

U2 auxiliary factor (U2AF) regulates flowering via modulating 
FLC splicing. U2AF65, a large subunit of U2AF in mammalians, 
recognises and binds to the 3′ polypyrimidine tract of introns 
(Wang et al., 2008; Shao et al., 2014). The binding site of U2AF65 
with RNA is regulated and shifted in noncanonical introns (Shao 
et al., 2014; Howardet al., 2018). The genes AtU2AF65a and 

AtU2AF65b encode the U2AF large subunit in Arabidopsis (Jang 
et al., 2014). AtU2AF65b plays roles in regulating flowering 
transition by splicing the introns 1 and 6 of FLC (Xiong et al., 
2019a) (Table 1). AtU2AF65b expression is responsive to ABA, 
by which AtU2AF65b is involved in ABA-regulated flowering. 
AtU2AF65a is also implicated in FLC splicing (Park et al., 2019a). 
Strikingly, the loss-of-function mutants of AtU2AF65a and 
AtU2AF65b display opposite flowering phenotypes. Mutations 
in atu2af65a cause late flowering, whereas AtU2AF65b mutants 
exhibit early flowering (Park et al., 2019a; Xiong et al., 2019a). 
The differences in the noncanonical splicing variants between 
atu2af65a and atu2af65b null mutants (Park et al., 2019a) 
indicate that AtU2AF65a and AtU2AF65b might recognise 
different FLC introns.

In addition, some proteins play roles in RNA splicing by 
interaction with splicing factors. For example, the mRNA cap-
binding complex (CBC) is involved in modulating pre-mRNA 
splicing activities via interaction with the splicing factors that 
recognise the 5′ splice site of the cap proximal intron (Izaurralde 
et al., 1994; Lewis et al., 1996). The CBP80/ABA Hypersensitive 
1 (ABH1) and CBP20 are the large and small subunits of CBC 
protein complex in Arabidopsis, respectively (Hugouvieux et al., 
2001). Knockout mutants of ABH1/CBP80 and CBP20 showing 
early-flowering phenotypes result from the defective splicing of 
FLC introns, especially the large first intron (Kuhn et al., 2007) 
(Table 1). In the abh1 knockout mutant, the most prominent 
products are the splice intermediates containing the first intron, 
causing the downregulation of FLC transcript and the early-
flowering phenotypes (Kuhn et al., 2007). Similarly, CBP20 null 
mutation also results in increased unspliced–spliced ratio of FLC 
introns and low FLC mRNA levels (Geraldo et al., 2009).

To date, little is known about the splicing regulation of 
COOLAIR transcripts mediated by splicing factors. Only one 
splice factor, PRP8, a core spliceosome component, is found to 
function in modulating COOLAIR RNAs splicing (Marquardt 
et  al., 2014) (Table 1). PRP8 is specifically required for the 
splicing of antisense transcripts COOLAIR but not for that of 
FLC sense transcripts. Single-base mutations of PRP8 reduce the 
splicing efficiency of COOLAIR introns, especially class Ii introns. 
The decreased splicing efficiency of COOLAIR class Ii reduces 
proximal poly(A) site usage, leading to increased H3K4me2 and 
the transcriptional upregulation of FLC expression (Liu et al., 
2010; Marquardt et al., 2014). NSRa, as a nuclear speckle RNA 
binding protein, modules flowering time through regulation of 

TABLe 1 | Proteins involved in pre-mRNA splicing of FLC and COOLAIR.

Proteins Type of Proteins Splicing References

U2AF65a, U2AF65b Subunits of U2 auxiliary factors FLC introns Park et al., 2019a; Xiong et al., 2019a
SC35, SCL28,30,30A,33 SR proteins FLC intron 1 Yan et al., 2017
BRR2a U5 snRNP FLC introns 1, 5 and 6 Mahrez et al., 2016
RZ-1B, RZ-1C hnRNP proteins FLC intron 1 Wu et al., 2016
ABH1/CBP80, CBP20 CAP-binding complex subunits; Interaction 

proteins of splicing factor
FLC introns Geraldo et al., 2009; Kuhn et al., 2017

KHZ1, KHZ2 RNA-binding proteins FLC introns Yan et al., 2019
PRP8 Core spliceosome component COOLAIR introns Marquardt et al., 2014
NSRa Nuclear speckle RNA binding protein COOLAIR introns Bazin et al., 2018
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the COOLAIR AS (Table 1). Only distal variants are decrease 
in the nsra mutant. This change in relative variant usage of 
proximal-distal RNAs leads to a down-regulation of FLC mRNA 
and an early flowering phenotype of nsra mutant (Bazin et al., 
2018).

CONCLUSION AND PeRSPeCTIve
FLC is a key inhibitor in flowering transition in Arabidopsis 
and other dicots (Michaels and Amasino, 1999; Sheldon et al., 
1999; Helliwell et al., 2006; Yuan et al., 2009; Wu et al., 2012). 
Therefore, the regulation of FLC is central to the transition to 
flowering in these plants. The AS of FLC sense and antisense 
transcripts is a critical step for FLC expression regulation. In 
Arabidopsis, multiple spliced variants of FLC sense and antisense 
transcripts have been determined (Kuhn et al., 2007; Severing et 
al., 2012; Li et al., 2015; Hawkes et al., 2016; Park et al., 2019a); 
however, we know little about functions in vivo of these spliced 
isoforms, especially, the COOLAIR-mediated regulation of 
switching of chromatin states at FLC and processing of FLC sense 
transcripts (Figure 1B). The further investigation will focus on 
how regulation of COOLAIR AS is linked to FLC chromatin 
modifications in response to external and internal influences.

Alternative splicing is regulated by splicing factors; however, 
only few splicing factors have been identified to be involved in the 
AS of FLC, especially those in the AS of COOLAIR transcripts. 
The identification of splicing factors and their functions is 
important for understanding the AS regulation of FLC sense 
and antisense transcripts in flowering transition. Additionally, 
the patterns of FLC AS is altered in response to environmental 
and signal stimuli (Swiezewski et al., 2009; Hornyik et al., 2010; 
Liu et al., 2010; Xiong et al., 2019a). Thus, the mechanisms by 

which the activities of splicing factors are regulated in response 
to external and internal cues must be investigated to study the AS 
of FLC sense and antisense transcripts in flowering regulation.

In agriculture, flowering is a prerequisite for crop production. 
Changes in the splicing patterns of FLC sense and antisense 
transcripts have enabled adaptation in response to changing 
environment for Arabidopsis accessions. Moreover, cold-induced 
sense and antisense RNAs of FLC are evolutionarily conserved 
in Arabidopsis perennial relatives and sugar beet (Reeves et al., 
2007; Castaings et al., 2014; Li et al., 2015; Hawkes et al., 2016). 
Therefore, the molecular dissection of the diversity in splicing 
patterns of FLC across natural populations of Arabidopsis 
provides an important insight into how splicing regulation 
influences the switch from vegetative to reproductive growth. 
These findings propose a possible application for cultivating new 
varieties and augmenting the control of flowering time to adapt 
the environmental changes via modulating FLC expression in 
some crops, such as Brassicaceae.
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