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Alternative Splicing (AS) is a mechanism that generates different mature transcripts from
precursor mRNAs (pre-mRNAs) of the same gene. In plants, a wide range of physiological
and metabolic events are related to AS, as well as fast responses to changes in
temperature. AS is present in around 60% of intron-containing genes in Arabidopsis,
46% in rice, and 38% in maize and it is widespread among the circadian clock genes. Little
is known about how AS influences the circadian clock of C4 plants, like commercial
sugarcane, a C4 crop with a complex hybrid genome. This work aims to test if the daily
dynamics of AS forms of circadian clock genes are regulated by environmental factors,
such as temperature, in the field. A systematic search for AS in five sugarcane clock
genes, ScLHY, ScPRR37, ScPRR73, ScPRR95, and ScTOC1 using different organs of
sugarcane sampled during winter, with 4 months old plants, and during summer, with 9
months old plants, revealed temperature- and organ-dependent expression of at least
one alternatively spliced isoform in all genes. Expression of AS isoforms varied according
to the season. Our results suggest that AS events in circadian clock genes are correlated
with temperature.

Keywords: alternative splicing, circadian clock, diel rhythms, field experiment, gene expression, sugarcane
INTRODUCTION

During gene expression in a eukaryotic cell, pre-mRNAs undergo splicing to remove introns and join
exons in a mature transcript, generating an open reading frame (ORF) for protein synthesis. Splicing is
largely co-transcriptional in yeast, Drosophila melanogaster, mammals and Arabidopsis thaliana (L.)
Heynth. (Beyer and Osheim, 1988; Oesterreich et al., 2016; Saldi et al., 2016; Godoy Herz et al., 2019;
Jabre et al., 2019). Alternative splicing (AS) is a mechanism that generates different RNAm transcripts
from a single gene. As a result of AS, the mature mRNAs represent another level of gene expression
regulation at the post-transcriptional level by, for example, insertion of premature termination codons
(PTC), which can target some AS isoforms to degradation by the nonsense-mediated mRNA decay
(NMD) pathway (Filichkin andMockler, 2012; Kalyna et al., 2012;Marquez et al., 2012). Alternatively,
those transcripts carrying PTCs could produce truncated polypeptidesmissing functional domains and
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motifs that can compete with the corresponding functional protein
(Seo et al., 2011; Mastrangelo et al., 2012; Reddy et al., 2013). In
addition, AS can increase protein by producing mRNAs from the
same gene that encode protein variants with different diversity in
function, localization, and stability (Syed et al., 2012; Chaudhary
et al., 2019).AS is a ubiquitous process observed fromDrosophila to
humans and plants (Graveley, 2005; Filichkin et al., 2010;Marquez
et al., 2012; Kornblihtt et al., 2013). In plants, a wide range of
physiological andmetabolic events and responses are related toAS.
Thismechanism is so widespread that it was reported inmore than
60% of intron-containing genes in Arabidopsis, 46% in rice, and
38% in maize (Zhang et al., 2010; Marquez et al., 2012; Staiger and
Brown, 2013a; Thatcher et al., 2014; Chamala et al., 2015; Filichkin
et al., 2015b;Min et al., 2015). There is evidence of organ and tissue-
specific alternative transcript forms and even alternative transcript
isoforms in different subcellular locations (Nagashima et al., 2011;
Kriechbaumer et al., 2012; Remy et al., 2013; Vaneechoutte et al.,
2017). AS impacts development, from the early gametic cell
specification to the seed maturation (Moll et al., 2008; Liu et al.,
2009; Sugliani et al., 2010; Fouquet et al., 2011; Zhang et al., 2016;
Szakonyi and Duque, 2018) and even flowering time and floral
development (Zhanget al., 2011; Severinget al., 2012;Rosloski et al.,
2013). Both biotic and abiotic stress responses are also closely
related to AS (Staiger and Brown, 2013a; Shang et al., 2017; Wang
et al., 2018). Plantsunder stress conditions change theirASpatterns
dramatically (Palusa et al., 2007; Staiger and Brown, 2013a; Ding
et al., 2014; Filichkin et al., 2015a; Calixto et al., 2018; Calixto et al.,
2019). Also, many circadian clock genes generate alternative
transcript forms with PTCs under different environmental
conditions (Filichkin et al., 2010; James et al., 2012c; James et al.,
2012a; Jones et al., 2012; Filichkin et al., 2015a; Calixto et al., 2016).
The presence of alternative transcripts in the circadian clock genes
is highly conserved among different plant species, such as
Arabidopsis, Populus alba L., Brachypodium distachyon (L.) P.
Beauv., and rice (Oryza sativa L.)—all C3 plants (Filichkin and
Mockler, 2012). Little is known about how AS influences the
circadian clock of C4 plants.

The circadian clock is a 24 h endogenous timekeeper
mechanism that anticipates the Earth’s day/night and seasonal
cycles (Hsu and Harmer, 2014; Millar, 2016; McClung, 2019).
Like AS, the circadian clock is associated with growth,
photosynthesis, and biomass in plants, so these two regulatory
mechanisms may act together, or even regulate each other (Dodd
et al., 2005; Lu et al., 2005; Harmer, 2009; Lai et al., 2012; Syed
et al., 2012; Staiger and Brown, 2013a). The circadian clock
consists of multiple interlocked transcription–translation
feedback loops connected with input pathways that feed the
circadian clock function with environmental cues, such as light
and temperature, and with output pathways that are responsible
for coordinating several major metabolic and physiological
processes (Pokhilko et al., 2012; Haydon et al., 2013; Hsu and
Harmer, 2014). In Arabidopsis, the main loop consists in three
different components: CIRCADIAN CLOCK ASSOCIATED 1
(CCA1), LATE ELONGATED HYPOCOTYL (LHY), expressed
around dawn and TIMING OF CHLOROPHYLL A/B BINDING
PROTEIN 1 (TOC1), expressed around dusk (Alabadí et al.,
Frontiers in Plant Science | www.frontiersin.org 2
2001). Closely associated with this loop are the PSEUDO-
RESPONSE REGULATORS 7, 3 and 9 (PRR7, PRR3, PRR9)
(Locke et al., 2005; Zeilinger et al., 2006; Para et al., 2007;
Nakamichi et al., 2010). The components of the central loop
and the associated PRRs are conserved among other plant
species, including crops like rice, maize (Zea mays L.), barley
(Hordeum vulgare L.) and sugarcane (Saccharum hybrid)
(Murakami et al., 2007; Khan et al., 2010; Hotta et al., 2013;
Calixto et al., 2015). The sugarcane circadian clock, although
sharing conserved components with other plants, may have a
broader influence over sugarcane physiology, with 32% of
sugarcane transcripts showing rhythms under circadian
conditions (Hotta et al., 2013).

Sugarcane is a C4 grass that stores large amounts of sucrose in
its stems, which can reach as much as 700 mM or 50% of the
culm dry weight (Moore, 1995). Its genome is exceptionally
complex, showing aneuploidy and a massive autopolyploidy that
can range from six to fourteen copies of each chromosome
(Garcia et al., 2013). The genome size of commercial modern
sugarcane is estimated to be around 10 Gb (de Setta et al., 2014;
Chan et al., 2018). Because modern sugarcane cultivars are
interspecific hybrids progenies from Saccharum officinarum L.
and Saccharum spontaneum L., about 80% of sugarcane
chromosomes comes from S. officinarum, 10% comes from S.
spontaneum and 10% are recombinants of these two species
(D’Hont et al., 1996; Cuadrado et al., 2004; D’Hont, 2005).
Sugarcane is a valuable commodity, responsible for 80% of
sugar and 40% of ethanol worldwide (FAO, 2015). The
remaining biomass from sugarcane can also be used for
bioenergy production: the bagasse can be either burned to
generate electricity or have its cell wall hydrolyzed to yield
simple sugars, which can be fermented to produce second-
generation biofuel (Amorim et al., 2011).

Although a great deal of data has been generated about the
plant circadian clock, sugarcane, and AS, the majority of these
studies have been performed under highly controlled
experimental conditions. Such conditions are essential for
reproducibility and, for the circadian clock, a constant
environment is one way to demonstrate the inner mechanism
generating self-sustained rhythms, as well as rhythmic responses.
However, those conditions are far from the environment that
crops face in nature, with fluctuations and complex interactions
between abiotic and biotic variables (Annunziata et al., 2017;
Annunziata et al., 2018; Shalit-Kaneh et al., 2018). In order to
better understand the relationship between the circadian clock
and AS and how this relationship impacts on crops, it is essential
to expand experiments to field conditions. Indeed, essential in-
field studies using Arabidopsis (Richards et al., 2012; Annunziata
et al., 2018) and rice (Izawa et al., 2011a; Sato et al., 2011; Nagano
et al., 2012) show that the complex natural cyclic environment
has a broader impact on rhythmic gene expression. So far, no
studies have approached the AS profile on circadian clock genes
under such conditions.

In this study, we examined whether the daily dynamics of AS
forms of circadian clock genes are regulated by environmental
factors in the field. We used sugarcane organs extracted from
December 2019 | Volume 10 | Article 1614
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field-grown plants when individuals were 4-months-old, during
the Brazilian winter, and 9-months-old, during the Brazilian
summer. We investigated the AS profile of sugarcane circadian
clock genes in this fluctuating natural environment. Data shows
that there is at least one alternatively spliced form for each of the
five circadian clock genes analyzed. During winter, when
temperatures are lower, alternative transcripts are more highly
expressed than in summer, with higher temperatures, which
suggests that AS might be related to the fluctuating
environmental temperature in the field. The different organs
also showed different levels of AS and leaf has most of the
diversity in AS events. Collectively, our data suggest temperature
correlates with AS in the circadian clock of sugarcane plants
grown in a natural environment, possibly as a mechanism of
dynamic adjustment of the circadian clock.
MATERIAL AND METHODS

Field Conditions and Plant Harvesting
The sugarcane field where the experiment was conducted was
located at the Federal University of São Carlos, campus Araras, in
SãoPaulo state,Brazil (22°21′25″ S, 47°23′3″W,at an altitudeof611
m). The soil of the site was classified as a Typic Eutroferric Red
Latosol. Sugarcane tillers from the commercial variety SP80-3280
(Saccharum hybrid) were planted in soil in April/2012. Field design
had 8 plots (Figure S1A). Each plot had 4 rows containing 20 tillers
each. Only sugarcane plants from both central lines were used in
order to avoid border effects. Sugarcane individuals were randomly
picked from two plots in order to avoid variability of both the local
environment and individual plants. Data on environmental
conditions was acquired from a local weather station (Figures
S1B, C). Leaves +1 (L1), a source organ and the first fully
photosynthetically active leaf in sugarcane, were sampled from the
selected individual plants during two different seasons, and
therefore different developmental stages. In the first harvest, 4-
months-old plants were sampled in August/2012, during winter; in
the second harvest, 9-months-old plants were sampled in January/
2013, during summer. In winter, dawn was at 6:30, and dusk was at
18:00 (11.5 h day/12.5 h night). In summer, dawn was at 5:45, and
dusk was at 19:00 (13.25 h day/10.75 h night). To compare the
rhythms of samples harvested in different seasons, the time of
harvesting were normalized to a photoperiod of 12 h day/12 h
night using the following equations: for times during the day: ZT =
12*T*Pd

‑1,whereZT is thenormalized time,T is the time fromdawn
(inhours), andPd is the lengthof theday (inhours); for times during
the night: ZT = 12 + 12*(T ‑ Pd)*Pn

‑1, where ZT is the normalized
time, T is the time from dawn (in hours), Pd is the length of the day
(inhours), andPn is the lengthof thenight (in hours). Because the 9-
month-old plants had their culms fully developed, internodes 1 and
2 (I1) and internode 5 (I5) were also sampled. Both internodes are
sink tissues with different profiles: internodes 1 and 2 mostly
undergo intense cell division and elongation, whereas internode 5
undergoes sucrose storage. For every time point, 9 individuals were
randomly selected in the assignedplots andharvested fromthe culm
up. After that, those 9 individuals were separated into three pools of
three individuals, each pool formed a biological replicate and then
Frontiers in Plant Science | www.frontiersin.org 3
their leaves +1 were extracted. For all harvests, plants were sampled
every 2 h for 26 h, starting 2 h before dawn. In total, the time course
consisted of 14 time points in each harvest/season. After every time
point sampling, a process that took less than 30 min on average,
tissue was immediately frozen in liquid nitrogen.

RNA Extraction
Sugarcane leaves previously frozen in liquid nitrogen were
pulverized using dry ice and a grinder. Then, 100 mg of this
ground tissue was used for total RNA extractions using Trizol
(Life Technologies, Carlsbad, CA, USA), followed by treatment
with DNase I (Life Technologies, Carlsbad, CA, USA) and
cleaned with RNeasy Plant Mini Kit (QIAGEN, Valencia, CA,
USA). The quality and quantity of each RNA sample were
checked using an Agilent RNA 6000 Nano Kit Bioanalyzer
(Agilent Technologies, Palo Alto, CA, USA). All RNA samples
were stored at ‑80°C.

cDNA Synthesis
cDNA was synthesized using SuperScript III First-Strand
Synthesis System for RT-PCR (Life Technologies, Carlsbad,
CA, USA) starting from 5 mg of total RNA. For all reactions,
both Oligo(dT) and Random Hexamers primers were used. All
cDNA samples were stored at ‑20°C.

PCR Reactions
Primers used in PCR reactions were designed using the software
PrimerQuest Tool (IDT) (http://www.idtdna.com/primerquest/
home/index). Each pair of primers was gene-specific and
amplified fragments ranging from 242 bp to 805 bp (Table
S1). All PCR reactions were carried out using Go Taq DNA
Polymerase (Promega, Madison, WI, USA) and following the
manufacturer’s protocol. Briefly, each 20-ml PCR reaction
contained 2 ml of template, 10 mM of each primer, 4 ml of 5x
Green Go Taq Buffer, 0.15 ml of Go Taq DNA Polymerase, 2 mM
of dNTPs. PCR conditions were: an initial step at 94°C for 2 min,
followed by 20 – 30 cycles of 94°C for 15 s, 50°C for 15 s, 72°C for
30 s, followed by a final extension of 72°C for 5 min. PCR
reactions using primers amplifying control genes ScGAPDH and
ScPP2AA2 were performed for all cDNA samples. Reactions
containing negative control using RNA as template and positive
control using genomic DNA as template were carried out. All
PCR-amplified fragments were analyzed by taking 10 ml of
reaction and run on an electrophoresis gel of 1.5% agarose
(Life Technologies, Carlsbad, CA, USA) and 1x TBE (50 mM
Tris–HCl pH 8, 50 mM Boric Acid, 1mM EDTA).

High-Resolution RT-PCR
High-Resolution RT-PCR (HR RT-PCR) reactions were
performed based on Simpson et al. (2007) and Simpson et al.
(2019). For all reactions, the forward primer was labeled with 6-
carboxyfluorescein (FAM). Reactions consisted of a final volume
of 20 ml which had 2 ml of cDNA, 10 mM of each primer, 2 ml of
10x PCR Reaction Buffer with MgCl2 (Roche Life Science,
Indianapolis, IN, USA), 0.15 ml Taq DNA Polymerase (Roche
Life Science, Indianapolis, IN, USA), and 2 mM of dNTPs. The
PCR detailed program was: an initial step at 94°C for 2 min,
December 2019 | Volume 10 | Article 1614
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followed by 22–26 cycles of 94°C for 15 s, 50°C for 15 s, 70°C for
30 s, followed by a final extension of 70°C for 5 min. Once PCR
reactions were complete, 1 ml of each reaction was added to a mix
containing 9 ml of Hi-Di Formamide (Applied Biosystems, Life
Technologies, Carlsbad, CA, USA) and 0.5 ml of GeneScan 500
LIZ Size Standard (Applied Biosystems, Carlsbad, CA, USA).
The RT-PCR products were separated on an ABI 3730
Automatic DNA Sequencer (Applied Biosystems, Life
Technologies, Carlsbad, CA, USA). The results were analyzed
using GeneMapper fragment analysis software (Applied
Biosystems, Carlsbad, CA, USA). LOESS (locally estimated
scatterplot smoothing) regression was used to detect trends in
the data. The maximum value of the LOESS curve between ZT0
and ZT22 was considered the peak of the rhythm. The code to
fully reproduce our analysis is available on GitHub (https://
github.com/LabHotta/AlternativeSplicing) and archived on
Zenodo (http://doi.org/10.5281/zenodo.3509232).

Cloning and Sequencing
In order to identify alternatively spliced forms, as well as
differentially expressed alleles, RT-PCR fragments were cloned
and sequenced. For this, PCR fragments were purified using the
QIAquick PCR Purification Kit (QIAGEN, Valencia, CA, USA).
Each purified fragment was cloned into pGEM-T Easy Vector
(Promega, Madison, WI, USA) following the manufacturer’s
protocol. Briefly, each reaction contained 3 ml of purified PCR
product, 5 ml of Rapid Ligation Buffer, T4 DNA Ligase, 1 ml of
pGEM-T Easy Vector (50 ng) and 1 ml T4 DNA Ligase (3 Weiss
units/ml). Ligation reactions were incubated overnight at 4°C.
Two micro-liter of each ligation reactions were used for heat-
shock transformation of 50 ml of JM109 High-Efficiency
Competent Cells (Promega, Madison, WI, USA), following
manufacturer’s instructions. Transformed cells were plated on
LB/ampicillin/IPTG/X-gal media and incubated overnight at 37°
C. Random colonies were selected to use in plasmid extraction
using QIAprep Miniprep Kit (QIAGEN, Valencia, CA, USA).
Positive plasmids were confirmed by PCR reactions, digestions
using restriction enzymes PstI and Nco1 (Promega, Madison,
WI, USA) and Sanger sequencing. In order to identify alternative
splicing events and single-nucleotide polymorphisms, results
were compared to sugarcane genomic sequences, and
sugarcane transcripts from Sugarcane Assembled Sequences
(SAS) from SUCEST (http://sucest-fun.org/) using Clustal
Omega (https://www.ebi.ac.uk/Tools/msa/clustalo/). In silico
translation was carried out using ExPaSy translation tool
(http://web.expasy.org/translate/).
RESULTS

Identification of Alternatively Spliced
Forms of Sugarcane Circadian
Clock Genes
In Arabidopsis, alternative splicing (AS) events of the circadian
clock genes are well known (James et al., 2012b). In order to
investigate AS of sugarcane circadian clock genes, it is important
Frontiers in Plant Science | www.frontiersin.org 4
to first determine and annotate their genomic sequences/
structures. We first described the gene structure of previously
identified homologs ScLHY, ScPRR73, ScPRR95 and ScTOC1
(Hotta et al., 2013). These homologs were identified by Hotta
et al. (2013) using BLAST searches of Arabidopsis and rice
circadian clock coding DNA sequence (CDS), on the sugarcane
Expressed Sequence Tags (ESTs) collection database at SUCEST
(http://sucest-fun.org/). This study identified only CDS
sequences of sugarcane circadian clock genes but not their
genomic sequences due to the relatively few genomic
sequences publicly available at that time for the sugarcane
cultivar of interest, plus a high percentage of incomplete
genomic sequences (Vicentini et al., 2012; de Setta et al., 2014).
Here we used the SUCEST sequences (Hotta et al., 2013) to
search for their genomic sequences in an unpublished sugarcane
genomic database (Souza et al., 2019) We identified genomic
contigs for ScLHY (previously identified as ScCCA1), ScTOC1,
ScPRR73 (previously identified as ScPRR3) and ScPRR95
(previously identified as ScPRR59) (Table S2). A new
homolog, ScPRR37, was identified here for the first time in
sugarcane (Table S2, Figure 1). The sugarcane genes were
annotated by comparison with genomic sequences of circadian
clock homologs from barley and sorghum (Calixto et al., 2015).
The exon/intron structures are shown in Figure 1; introns
contained the canonical GT–AG dinucleotides at the exon-
intron boundaries. The putative CDS of each gene analyzed
was translated in silico in order to confirm intact open reading
frames (ORFs).

To identify AS transcripts, RT-PCR was performed on cDNA
synthesized from L1 RNA, collected at three different time
points, which corresponded to the highest gene expression for
each clock gene, based on the findings from Hotta et al. (2013).
RT-PCR used pairs of primers to generate overlapping
amplicons to cover the full length of the transcripts for each
sugarcane circadian clock genes, ScLHY, ScPRR37, ScPRR73,
ScPRR95, and ScTOC1. RT-PCR products were cloned and
sequenced, which confirmed the annotation and identified AS
events. Confirmation of different transcript isoforms was carried
out by using two different approaches combined: RT-PCR
product size and fragment cloning followed by sequencing.

We found evidence of AS events in all five genes analyzed
(Table 1). Intron retention (IR) was the most frequent AS event
identified, resulting in the inclusion of premature termination
codons (PTC) in all cases (Figure 1). All five genes had at least
two IR events, and ScTOC1 had retention of the first intron (I1R)
combined with the skipping of exons 2 and 3 (E23S). ScLHY had
retention of introns 1 (I1R) and 5 (I5R). ScPRR37 had retention
of introns 3 (I3R), 6 (I6R) and 7 (I7R). ScPRR73 had retention of
introns 2 (I2R) and 6 (I6R). ScPRR95 had two introns retained:
intron 3 (I3R) and intron 7 (I7R) (Figure 1). All the other introns
in the genes were efficiently spliced. Exon skipping (ES) was
detected in ScPRR37 (E3S) and ScTOC1, the latter having two
exons skipped at once (E23S), combined with I1R (Figure 1).
Alternative 3′ splice sites (Alt 3′ ss) were found in both ScPRR37
and ScPRR95 in exon 4 (E4) and exon 5 (E5), respectively
(Figure 1). In ScPRR73, we found an AS event between exons
December 2019 | Volume 10 | Article 1614

https://github.com/LabHotta/AlternativeSplicing
https://github.com/LabHotta/AlternativeSplicing
http://doi.org/10.5281/zenodo.3509232
http://sucest-fun.org/
https://www.ebi.ac.uk/Tools/msa/clustalo/
http://web.expasy.org/translate/
http://sucest-fun.org/
https://www.frontiersin.org/journals/plant-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


Dantas et al. Alternative Splicing Correlates With Temperature
4 and 5 involving an alternative 5′ splice site (Alt 5′ss) in exon 4
(E4) being spliced to an Alt3′ss in exon 5. This AS event removes
104 nt and 142 nt from exons 4 and 5, respectively (total of 246
nt), but remains in frame and potentially produces a protein
missing 82 amino acids compared to the wild-type protein.

It is possible that some of the alternative sequences we found
are not AS events but different haplotypes since sugarcane is
highly polyploid and aneuploid. To exclude this possibility, we
obtained the sequences for circadian clock genes from four
different sugarcane sequencing projects (Riaño-Pachón and
Mattiello, 2017; Garsmeur et al., 2018; Zhang et al., 2018;
Souza et al., 2019). We found 11 sequences for the 5′ portion
of the ScLHY: 4 from S. spontaneum (Zhang et al., 2018), 6 from
the commercial Saccharum hybrid SP80-3280 (Riaño-Pachón
and Mattiello, 2017; Souza et al., 2019) and 1 from the
Frontiers in Plant Science | www.frontiersin.org 5
commercial Saccharum hybrid R570 (Garsmeur et al., 2018).
All ScLHY sequences had the complete intron 1 (Figure S2).
Similarly, all 16 sequences that had the end portion of ScLHY
contained the complete intron 5 (Figure S2). All other detected
AS events had 7 to 15 sequences supporting the conclusion that
these alternative sequences are not the result of different
sugarcane haplotypes (Figures S3–S6).

Expressed AS Forms in Different Seasons
in Sugarcane Leaves
We used HR RT-PCR (Simpson et al., 2019) to examine the daily
dynamics of the expressed isoforms of the sugarcane circadian
clock genes in two different seasons, winter and summer, using
field-grown plants that were 4 and 9 months old, respectively.
Briefly, the HR RT-PCR system uses fluorescently labelled
primers to amplify across an AS event, followed by fragment
analysis in an automatic DNA sequencer that quantifies the
relative levels of RT-PCR products and thereby splicing ratios
that reflect different splice site choices. The primers used for the
HR RT-PCR assays had the same sequence of those used to
amplify each gene region on RT-PCR experiments (Table S1).
Leaf +1 (L1), internode 1 and 2 (I1), and internode5 (I5) samples,
harvested every 2 h during 26 h, starting from 2 h before dawn
were used. As reference genes to normalize data, we used
ScGAPDH and ScPP2AA2 (Iskandar et al., 2004; James et al.,
2012a). As the experiments were done in different seasons, we
have normalized the time of sampling to fit in a 12 h day/12 h
night photoperiod such that ZT00 is set to dawn, and ZT12 is set
to dusk.

From the five sugarcane circadian clock genes analyzed, HR
RT-PCR experiments detected high levels of AS in ScLHY,
ScPRR37, and ScPRR73 (Figure 2), but not in ScPRR95 and
ScTOC1, in L1 (Figure S7). In general, the AS isoform peaked
earlier than the FS form in 8 of the 9 conditions assayed (Figures
FIGURE 1 | Alternative splicing events identified in the sugarcane circadian
clock genes. Alternative splicing (AS) events are shown in the gene structure of
ScLHY, ScPRR37, ScPRR73, ScPRR95, and ScTOC1. White boxes show 5′
and 3′ UTR regions; black boxes show exons; black lines represent introns.
The main protein domains are in grey. AS events are shown in colored solid
lines, colored dotted lines or in dotted white boxes and the splicing events are
illustrated below each event. Different colors were chosen to mark the AS
events investigated later, whereas events that were not investigated further are
in dark red. IR, intron retention; ES, exon skipping; Alt 5′ ss, alternative 5′
splice sites; Alt 3′ ss, alternative 3′ splice sites; Alt Ex, alternative exon.
TABLE 1 | AS events found in the sugarcane circadian clock genes analyzed.

Gene AS event* Effect on transcript

ScLHY Intron 1 retained (I1R) Inserts a PTC on the transcript
Intron 5 retained (I5R) Creates a PTC on Exon 6

ScPRR37 Alternative exon 2 (Ex2a) Inserts PTCs in the transcript
Exon 3 skipped (E3S) Inserts PTCs on Exon 4
Intron 3 retained (I3R) Creates PTC on Exon 3
Intron 6 retained (I6R) Inserts a PTC on the transcript
Intron 7 retained (I7R) Creates PTCs on Exon 8
Alternative 3′ splice site in
exon 4

Protein stays in frame, removes 30
nucleotides from the PRR domain

ScPRR73 Intron 2 retained (I2R) Inserts a PTC on the transcript
Alternative 5′ splice site in
exon 4 and alternative 3′
splice site in exon 5

Protein stays in frame, removes 245
nucleotides from transcript

Intron 6 retained (I6R) Inserts a PTC on the transcript
ScPRR95 Alternative 3′ splice site in

exon 5
Inserts a PTC on Exon 5

Intron 7 retained (I7R) Inserts a PTC on the transcript
ScTOC1 Intron 1 retained (I1R)

combined with Exons 2 and
3 skipped (E23S)

Inserts a PTC on the transcript

Exon 3 skipped (E3S) Inserts a PTC on the transcript
Decemb
*All AS events were confirmed by Sanger sequencing.
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2A–I), apart from ScLHY, where the FS forms peaked at the same
normalized time in winter and summer samples.

ScLHY had confirmed events of intron 1 and 5 retention (I1R
and I5R) in both harvests (Figures 2A–D). The peak of
expression of the ScLHY alternative isoforms did not match
the peak of expression of the fully spliced functional (FS)
isoform. ScLHY I1R peaked close to dawn in winter and
summer samples, while the FS for this region peaked one hour
after dawn in winter plants (ZT01) and five hours after dawn
(ZT05) in summer plants (Figures 2A, B). ScLHY I5R peaked at
Frontiers in Plant Science | www.frontiersin.org 6
dawn for plants in winter samples, while it was not considered
expressed for plants in summer samples (Figures 2C, D). The FS
form for this region peaked between ZT04-05 for plants in both
winter and summer samples (Figure 2).

ScPRR37 I6R had a peak at ZT05 in winter samples, but at
ZT07 in summer samples (Figures 2E, F). The corresponding FS
isoform had a peak at ZT08 in both conditions. In turn, ScPRR37
I7R had a peak at ZT07 in both winter and summer plants, but
the corresponding FS isoform had a peak at ZT090 and ZT11 in
winter and summer samples, respectively (Figures 2G, H).
FIGURE 2 | Diel expression profile of fully spliced and alternative transcript isoforms in different seasons. Biological replicates (circles and triangles) and their LOESS
curve (continuous lines ± SE) of fully spliced (FS, black) and alternative transcript forms (AS, colored) for the winter samples (4-month-old plants, left) the summer
samples (9-month-old plants, right). (A, B) ScLHY gene expression shows levels of I1R (orange) and (C, D) I5R events (blue). (E, F) ScPRR37 gene expression
shows levels of I6R (green), and (G, H) I6R (yellow); (I, J) ScPRR73 gene expression shows levels of I2R (purple). Inverted triangles show the time of the maximum
value of the LOESS curve. The light-gray boxes represent the night period. Statistical significance was analyzed by paired Student’s t-test, *p < 0.05.
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ScPRR37 I3R and E3S were not detectable using HR RT-PCR
(Figures S7A, B). Both the ScPRR73 I6R and its FS isoform only
had high levels in winter samples, with a peak at ZT07 (Figures
2I, J). The corresponding FS isoform had a peak at ZT10.

Expressed AS Forms in the Different
Source-Sink Sugarcane Organs
We extended the investigation to two other sugarcane organs,
internodes 1 and 2 (I1) and internode 5 (I5). These internodes
have different physiology: I1 has a high cellular and metabolic
activity, whereas I5 is the first internode to actively accumulate
sucrose. Only the plants harvested in the summer (9-month-old)
had developed internodes that could be harvested. We only
measured AS forms in genes ScLHY and ScPRR37, which were the
homologs featuring the highest AS transcript expression in L1
(Figure 2). The main difference in expression levels between
organs was observed in ScPRR37 I6R, that had significantly higher
Frontiers in Plant Science | www.frontiersin.org 7
levels in leaves during thedaycompared to the internodes (One-way
ANOVA with post-hoc Tukey HSD test, *p < 0.05, Figure S8).

In both internodes, ScLHY showed detectable levels of both
AS events observed in L1. ScLHY I1R-containing transcript levels
were very low with a peak 2 h before dawn (ZT22), with the FS
isoform peaking between ZT03-04 (Figures 3A, B). ScLHY I5R
was also identified in both internodes, at higher levels than
ScLHY I1R. The AS isoform peaked at ZT22, while the FS
form peaked between ZT03-04 (Figures 3C, D). During the
end of the night, ScLHY I1R levels were significantly higher in the
leaves compared to the internodes (One-way ANOVA with post-
hoc Tukey HSD test, *p < 0.05, Figure S8).

The ScPRR37 homolog featured variable levels of FS and AS
isoforms when compared to both internodes. In I1, ScPRR37 I6R
and its FS isoform did not have a clear rhythm, with the I6R
showing low levels of expression, and the FS isoform showing
two peaks. In I5, ScPRR37 I6R and its FS isoform had higher
FIGURE 3 | Diel expression profile of fully spliced and alternative spliced transcript isoforms in internodes. Biological replicates (circles and triangles) and their
LOESS curve (continuous lines ± SE) of fully spliced (FS, black) and alternative spliced (AS, colored) transcript forms of sugarcane circadian clock genes during the
summer harvest in internode 1 and 2 (left) and internode 5 (right). (A, B) ScLHY gene expression shows levels of I1R (orange) and (C, D) I5R (blue); (E, F) ScPRR37
gene expression shows levels of I6R (green) and (G, H) I7R (yellow). Inverted triangles show the time of the maximum value of the LOESS curve. The light-gray
boxes represent the night period. Statistical significance was analyzed by paired Student’s t-test, *p < 0.05.
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levels and a peak between ZT08-09 (Figures 3E, F). In both
internodes, the I7R isoform was expressed at very low levels, but
the FS isoform for that transcript region peaked at ZT01 in I1
and ZT11 in I5 (Figures 3G, H).

Alternative Splicing Events Are Dependent
on the Time of the Day and Temperature
After the identification of rhythms in FS and AS transcripts, we
tried to identify rhythms in their relative levels by examining the
log of the splicing ratio of the AS to the FS transcripts [log (AS/
FS)] from the HR RT-PCR data. ScLHY, ScPRR37, and ScPRR73
showed evidence of splicing rhythms (Figure 4), but only ScLHY
had more than a 10-fold difference between the maximum and
Frontiers in Plant Science | www.frontiersin.org 8
the minimum log(AS/FS) (77-fold) (Figure 4A). The AS : FS
ratios of all the time-point samples and organs were grouped, as
they showed similar rhythmic patterns. In general, all AS events
of a gene showed a similar rhythmic pattern. The only exception
was E3S in ScPRR37 (Figure 4D), that had a different phase from
the other AS events found in ScPRR37 (Figure 4B). The AS
events observed in ScLHY and E3S in ScPRR37 had a peak at the
end of the night, between ZT20 and ZT24, and a trough between
ZT06 and ZT08. In contrast, ScPRR73 AS events and the
remaining ScPRR37 AS events had a peak between ZT05 and
ZT06, and a trough between ZT16 and ZT18.

The rhythmic changes in the log(AS/FS) values could be
explained by changes in the expression of putative regulatory
FIGURE 4 | Alternative splicing is rhythmic in sugarcane in field conditions. (A–D) The logarithm of the ratio of the expression levels of an AS isoform to its FS
isoform, annotated as the log(AS/FS), was plotted against the normalized time of the day (ZT). (A) ScLHY I1R (orange) and I5R (blue); ScPRR37 I3R (dark blue),
(B) I6R (green) and I7R (light yellow); (C) ScPRR73 I2R (gold) and I6R (purple); and (D) ScPRR37 E3S (red). (E–F) Normalized expression levels of rhythmic splicing-
related transcripts taken from oligo array data (Dantas et al., 2019) in (E) leaves +1 (L1, green), and internodes 1 and 2 (I1, red) and (F) internode 5 (I5, yellow).
Individual expression profiles were drawn in gray. LOESS regression was used to draw the trends in the data in all panels (continuous line ± SE). The light-gray
boxes represent the night period.
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genes, such as splicing factors or spliceosomal protein genes. In a
previous work, we have identified 6,705 rhythmic transcripts in
L1, 3,755 in I1 and 3,242 in I5 in field-grown sugarcane (Dantas
et al., 2019). Fourteen spliceosome-related transcripts in the oligo
array were expressed in all three organs (Table S2): 9 transcripts
were rhythmic only in L1, one was rhythmic in L1 and I1, one
was rhythmic in L1 and I5, and one was rhythmic in I1 and I5
(Table S3). In L1, 9 of the 11 rhythmic transcripts peaked
between ZT09 and ZT13, with a trough between ZT03 and
ZT5 (Figure 4E). In the internodes, most of the transcripts
peaked at ZT00 (Figure 4F).

To test if the temperature was a factor in the regulation of AS,
we correlated temperature information with log(AS/FS) values.
Only ScLHY AS events showed a significant negative correlation
(Figure 5). The negative correlation was found in both ScLHY AS
events, at both harvests/seasons, and all organs. This suggests that
the AS regulation of ScLHY genes are temperature-dependent.
Frontiers in Plant Science | www.frontiersin.org 9
DISCUSSION

In this paper, pioneer information on AS events in the sugarcane
circadian clock core genes ScLHY, ScPRR37, ScPRR73, ScPRR95,
and ScTOC1 in field-grown sugarcane plants are presented
(Figure 1). As for Arabidopsis and barley in previous studies,
AS is widespread among circadian clock genes (Filichkin et al.,
2010; Filichkin and Mockler, 2012; James et al., 2012a; Calixto
et al., 2016). The circadian clock homolog CCA1/LHY in rice also
displays the conserved I1R AS event, suggesting conserved
patterns in AS events between the two species (Filichkin et al.,
2015a). In barley, AS events were described for the homologs
HvLHY,HvPRR37,HvPRR73, andHvGI. There are conserved AS
isoforms expressed in both Arabidopsis and barley for HvLHY
and HvPRR37 (Calixto et al., 2016). The conservation of
expression of AS forms across different plant species highlights
the role that AS plays in gene expression of circadian clock genes.
FIGURE 5 | The proportion of alternative spliced and fully spliced forms has a negative correlation with ambient temperature. The logarithm of the ratio of the
expression levels of AS and FS isoforms, annotated as the log(AS/FS), was plotted against the ambient temperature for ScLHY I1R (orange) and I5R (blue).
Regression lines were added for each group of ratios. R2 and P-value were calculated for each regression. Negative correlations were significant in leaf +1 (L1) in the
(A) winter (4-month-old plants), and (B) summer, (C) internode 1 and 2 (I1), and (D) internode 5 (I5), both in the summer (9-month-old plants).
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Our data in sugarcane identified at least one AS event in each of
the clock gene homologs analyzed. Given the ploidy of
sugarcane, it was necessary to demonstrate that the alternative
transcript sequences did not originate from haplotypes but were
bona fide AS events. By examination of existing sequenced
genomic data, we conclude that they are AS events. The most
frequent AS event in the sugarcane circadian clock genes was
intron retention (IR), which was detected in all five genes. The
presence of transcripts containing retained introns might also be
an indication of partially spliced transcripts but the other introns
in these genes were efficiently removed. The presence of retained
introns in transcript isoforms can lead to post-transcriptional
regulation of gene expression (Reddy et al., 2013). Since retained
introns usually insert premature termination codons (PTCs) in
the transcript, they could be substrates for degradation via the
nonsense-mediated decay (NMD) pathway. However, in plants,
transcripts with detained introns appear to avoid NMD since
their abundance is unaffected in NMD mutants (Kalyna et al.,
2012; Marquez et al., 2012). Furthermore, such transcripts have
been shown to remain in the nucleus and thus avoid the NMD
machinery (Göhring et al., 2014). Nuclear intron detention is
now recognized as an important post-transcriptional regulatory
mechanism (Jacob and Smith, 2017). Intron retention transcripts
with PTCs can also potentially give rise to C-terminally
truncated and dysfunctional proteins (Seo et al., 2011;
Mastrangelo et al., 2012; Reddy et al., 2013). Other AS events
in sugarcane circadian clock genes that were in frame and did not
insert a PTC in the transcript were the alternative 5′ splice site in
ScPRR37 exon 3 (Alt 5′ss E3) and the ScPRR73 alternative splice
site between exons 4 and 5: Alt 5′ss E4 (‑104) and Alt 3′ ss E5
(‑142) (Table S2). In both cases, there is the removal of
nucleotides from the coding sequence. ScPRR37 Alt 5′ss E3
removes 30 nucleotides (10 amino acids) from the PRR
domain. The resulting sequence is likely to be translated into a
defective protein. In ScPRR73, the combination of Alt 5′ss E4
(-104) and Alt 3′ ss E5 (‑142) removes 246 nucleotides (82 amino
acids) from the coding sequence but still leaves an ORF.
However, it is possible that the loss of sequence could affect
the normal function of the ScPRR73 CTT domain. Therefore, the
AS events identified in the sugarcane core circadian clock genes
either produce transcripts that are likely to be kept in the nucleus
and degraded or that are translated into incomplete proteins that
are likely to be functionally defective. Thus, AS has an important
role in regulating expression and production of core clock
proteins. This might have a direct impact on the clock-
dependent plant metabolism and physiology.

The levels of alternative transcript isoforms can vary under
stress conditions (Staiger and Brown, 2013b; Shang et al., 2017;
Calixto et al., 2018), at specific developmental stages (Szakonyi
and Duque, 2018) or in different cell tissues (Shen et al., 2014;
Thatcher et al., 2014). In previous work using microarrays, we
found that rhythmic expression at the gene level was very organ-
specific in sugarcane (Dantas et al., 2019). Our data shows
differences in the AS in leaf and internodes at the transcript
level. In L1, circadian clock transcripts undergo AS at higher
relative levels than in I1 and I5 at the end of the night (Figures 2
Frontiers in Plant Science | www.frontiersin.org 10
and 3). In addition, the splicing ratios, log(AS/FS), had rhythms
in ScLHY, ScPRR37, and ScPRR73. In ScPRR37, the intron
retention events peaked in the middle of the day, while the
exon skipping event peaked at the end of the night, suggesting
that the temporal regulation of these two types of AS events are
independent of each other (Figures 4B–D). Although their
expression profiles differ, the consequences of ScPRR37 I3R
and E3S events are likely to be similar. I3R introduces PTCs
after exon 3 and E3S removes exon 3 (part of the PRR domain).
Arabidopsis PRR7 also has two mutually exclusive AS events in a
similar region of the gene: retention of intron 3 (I3R) and
skipping of exon 4 (E4S), both of which give nonproductive
mRNAs (James et al., 2012a). The switch from intron retention
(mainly during the day) to exon skipping (mainly during the
night) in ScPRR37 may reflect rhythmic changes in specific
splicing factors. The splicing ratio rhythms of ScLHY and
ScPRR73 showed the same pattern, irrespective of the sampling
season or organ (Figures 4A–C). This means that these splicing
ratios are not organ-specific and are environmentally and
circadian clock-regulated in order to have the same
distribution during the day and the night regardless of their
duration. To try and relate the rhythmic changes in splicing
ratios of clock genes to the expression of splicing factor or
spliceosomal protein genes, we examined the expression of the
splicing-related genes that were rhythmic in L1 in our previous
microarray study (Figure 4E) (Dantas et al., 2019). The gene-
level expression of the majority of these genes peak around dusk
(between ZT11 and ZT13), which does not coincide with the
peaks in splicing ratios observed in circadian clock genes. The list
of splicing-related genes in the microarray analysis was not
extensive (Table S1) and many splicing factors are
alternatively spliced to regulate the level of productive, protein-
coding transcripts (Reddy et al., 2013; Staiger and Brown, 2013a).
Transcript level RNA-seq will be required to more accurately
measure protein-coding transcripts of splicing factors to identify
candidate regulators of AS of the core clock genes analyzed here.

Another interesting observation is the noticeable variation in
the AS transcripts across the different organs analyzed (Figure 3).
The differences in transcript expression between source and sink
tissues might reflect their metabolical differences. While L1 is a
fully photosynthetically active leaf in sugarcane, therefore
undergoing photosynthesis, both internodes sink in the
assimilated carbon for different purposes: cell division and
elongation in I1 and sucrose storage in I5. In Arabidopsis,
sucrose has been shown to decrease PRR7 levels, which
decrease ScLHY levels as a consequence (Haydon et al., 2013;
Frank et al., 2018). Thus, differences in ScPRR37 I6R and ScLHY
I1R levels (Figures 3 and S8) could be due to the sucrose that is
stored in the internodes. In turn, these differences in the levels of
circadian clock genes might affect circadian clock outputs. We
have found that transcriptional rhythms are very organ-specific in
sugarcane (Dantas et al., 2019).

In Arabidopsis, the circadian clock is associated with
photosynthesis (Dodd et al., 2009), cell division (Fung-Uceda
et al., 2018), and sugar accumulation (Graf et al., 2010; Graf and
Smith, 2011; Ko et al., 2016). Taken together, these data suggest
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that the circadian clock might regulate the different sugarcane
organs in distinctive ways. It is already known that metabolites
can feedback to regulate the circadian clock, as data show in
Arabidopsis that photosynthetic sugars regulate clock
functioning (Haydon et al., 2013). Considering that in
Arabidopsis different tissues are enriched with different levels
of circadian clock transcripts (Endo et al., 2014), a similar
phenomenon might occur in sugarcane and explain the
different organ transcript expressions and profiles, as well as
helping to keep each organ different metabolic and
physiologic profiles.

We found that the splicing ratios from ScLHY AS transcripts
are negatively correlated with temperature in all organs. Previous
studies on the presence of AS in circadian clock genes in
Arabidopsis and barley revealed that, under controlled
conditions, the AS status of circadian clock genes is regulated
by temperature, especially LHY and its paralog CCA1 (James
et al., 2012a; James et al., 2012b; Park et al., 2012; Seo et al., 2012;
Kwon et al., 2014; Filichkin et al., 2015a; Calixto et al., 2016;
Marshall et al., 2016; Calixto et al., 2018). Lower temperatures led
to increased abundance of alternative non-productive forms of
LHY, PRR7 and PRR5 in Arabidopsis (James et al., 2012a). This
could affect the expression of fully spliced transcripts of the
circadian clock genes, promoting a functional modulation in the
circadian clock central oscillator, which might be reflected by
altered temporal control of the clock outputs. In Arabidopsis,
cold temperatures reduced the amplitude of CCA1/LHY, as well
as disrupted the circadian clock function (Bieniawska et al.,
2008). Considering the natural environment context, where
plants like sugarcane face fluctuations in temperature on a
daily and yearly basis, the continuous temperature-regulation
of AS of the circadian clock network could have a more profound
impact on metabolism and, ultimately, on crop yield.

The data in our work shows that from winter to summer, as
the temperature increases (Figure S1B), the expression of
alternative forms of the circadian clock genes decreases,
noticeably for ScLHY (Figures 2A–D). In Arabidopsis, there is
evidence linking the circadian clock with sugar accumulation as
starch through CCA1 and LHY (Ni et al., 2009; Miller et al., 2012;
Ng et al., 2014) and in field-grown maize, a C4 plant like
sugarcane , two CCA1 homologs are associated to
photosynthesis and, therefore, sugar accumulation (Ko et al.,
2016). All this evidence allows us to speculate that there might be
differences in the sugar accumulation by the field-grown
sugarcane from winter to summer, but a metabolomic analysis
focused on sucrose and hexoses content would be necessary to
bring evidence to support such speculation.

Recent studies featuring experiments conducted in field
conditions in Arabidopsis, rice and tomato highlight the
differences in gene expression, circadian regulation and plant
metabolism compared to experiments conducted inside growth
chambers (Annunziata et al., 2017; Annunziata et al., 2018; Izawa
et al., 2011b; Higashi et al., 2016; Shalit-Kaneh et al., 2018).
Because AS has an impact on the regulation of gene expression,
which impacts circadian regulation and plant metabolism, it is
important to start investigating the dynamic adjustment of AS in
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response to a fluctuating environment. RNA-seq data from time-
series experiments revealed that the AS status of Arabidopsis
transcriptome is widely responsive to changes in temperature
(Calixto et al., 2018). By progressively lowering temperature,
rapid changes in the spliced forms of transcripts were detected,
which suggests that AS might also act to regulate low-
temperature responses and how plants tolerate such stress
(Calixto et al., 2018). The Arabidopsis circadian clock also acts
in regulating plant abiotic stress tolerance (Grundy et al., 2015).
This also suggests that both AS and the circadian clock might act
in synergy to help plants to cope with temperature changes in
both the short and long term. In the field, this regulation might
be even more important, due to the unexpected fluctuations in
light, temperature, and humidity in which plants are exposed.

Our data show that AS occurs in sugarcane circadian clock
genes and that the different transcript isoforms show a dynamic
expression profile in sugarcane grown under field conditions.
Furthermore, ScLHY AS regulation correlates with temperature
in sugarcane circadian clock genes. Thus, the changes in
expression of alternative isoforms of ScLHY transcripts
observed across winter and summer might illustrate the
combined effect of both the circadian clock and AS regulation
and AS in ScLHY might be a key mechanism that allows the
continuous dynamic adjustment of the circadian clock by
temperature in sugarcane. It is important to start further
studies on the impact of the seasonal variation on the AS
isoforms of the circadian clock gene expression and, ultimately,
sugarcane metabolism and yield.
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