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Food security is one of major concerns for the growing global population. Modern agricultural 
biotechnologies, such as genetic modification, are a possible solution through enabling an 
increase of production, more efficient use of natural resources, and reduced environmental 
impacts. However, new crop varieties with altered genetic materials may be subjected to 
safety assessments to fulfil the regulatory requirements, prior to marketing. The aim of the 
assessment is to evaluate the impact of products from the new crop variety on human, 
animal, and the environmental health. Although, many studies on the risk assessment of 
genetically modified (GM) food have been published, little consideration to GM feedstuff has 
been given, despite that between 70 to 90% of all GM crops and their biomass are used as 
animal feed. In addition, in some GM plants such as forages that are only used for animal 
feeds, the assessment of the genetic modification may be of relevance only to livestock 
feeding. In this article, the regulatory framework of GM crops intended for animal feed is 
reviewed using the available information on GM food as the baseline. Although, the majority 
of techniques used for the safety assessment of GM food can be used in GM feed, many 
plant parts used for livestock feeding are inedible to humans. Therefore, the concentration 
of novel proteins in different plant tissues and level of exposure to GM feedstuff in the diet 
of target animals should be considered. A further development of specific methodologies 
for the assessment of GM crops intended for animal consumption is required, in order to 
provide a more accurate and standardized assessment to the GM feed safety.

Keywords: traceability, environment, toxicological, allergenicity, forage, transgenic crops, regulatory framework, 
genome-editing

INTRODUCTION
The growth of the human population will create significant challenges for agricultural production, 
making food security a growing issue. Nearly 870 million people suffer from malnutrition, most of them 
in the developing countries of Africa, Asia, and South America (World Hunger, 2013). Additionally, 
climate change and environmental degradation are currently reducing the available agricultural land, 
creating additional challenges to fill the increasing food demand (Hanjra and Qureshi, 2010). The 
use of modern biotechnology, including genetic modification techniques, has been proposed as a way 
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to reduce the environmental footprint, by improving food quality 
and increasing productivity (Barros et al., 2019).

Animal derived food is a major contributor to human 
nutrition and health, largely through supplying protein. It also 
plays a crucial role in rural economies of most developing 
countries, particularly in dry areas (Godfray et al., 2010). 
In order to produce enough protein for the growing global 
population, farming systems are increasing the pressure on land, 
water resource use and biodiversity conservation. Solutions 
to face climate change and high demand for natural resources 
are urgently needed, especially in the area of forage production 
(Sakadevan and Nguyen, 2017), since it compromises nearly 80% 
of the world agricultural land and provides the grazing feed-base 
for the dairy and red meat industries (Bruinsma, 2017).

Implementation of molecular breeding technologies in forage 
crops can enhance the agricultural sector through increases 
in productivity, more efficient use of natural resources and 
decreases in environmental impacts (Ramessar et al., 2010). 
Breeding programs target the development of genetic solutions 
for forage quality limitations, pest and disease resistance, nutrient 
acquisition efficiency, tolerance to abiotic stresses, and the targeted 
modification of growth and development (Smith et al., 2007).

Transgenesis is a classical DNA modification methodology, 
which enables production of crops with desired traits based on 
the introduced transgene(s). Genome editing technologies were 
more recently established, which enable alteration of the DNA to 
produce defined multination(s) and/or insertion of foreign gene(s) 
at the targeted site(s), in contrast to GM where the insertion is 
random (Sprink et al., 2016). Genetic modification is typically 
defined as alteration of the genetic material of an organism in a 
way, which does not naturally occur (Wolt et al., 2015). Crop 
cultivars developed through use of transgenesis, therefore, have 
been regard as GM organisms (Hundleby and Harwood, 2019).

Transgenic crops can be further divided into four classifications/
classes, according to the structure and strategy for transgenesis 
(Lin and Pan, 2016). Most GM commercially available today are 
categorized as the first class of transgenics, also called single trait 
transgenics. These crops typically contain common transgenic 
elements, such as the 35s promoter sequence of cauliflower mosaic 
virus, and nopaline synthase terminator (nos-T) from Agrobacterium 
(Shaw et al., 1984; Wehrmann et al., 1996). The second class 
transgenics have stacked modified traits, and these varieties usually 
result from hybrid crosses of first-generation GM crop varieties. The 
hybrid cross procedure may increase economic values of the GM 
variety with a lower development cost. The third class of transgenics 
are so-called near-intragenics, these are GM crops where the 
transgene construction originates from the host with some minimal 
modifications. The last class are more related to true intragenic or 
cisgenic technologies, where the transgene is comprised of only 
products and elements from the host, without modifications and 
the only difference with its conventional counterpart is the specific 
order and insertion loci of the transgenes (Rommens et al., 2007; 
Jacobsen and Schouten, 2009; Lin and Pan, 2016).

On the other hand, genome editing technologies use biological 
tools such as sequence-specific nucleases to generate desired 
modifications within plant genomes, allowing the introduction 
of one or more transgenes at a specific locus, the removal of 

unwanted DNA from the host, or the control in the expression of 
endogenous or synthetic genes (Songstad et al., 2017).

Since approvals for commercialization of early-generation 
transgenic crops, safety issues for human consumption have been 
mainly considered. GM crops as animal feed and GM forage 
have not been considered as the primary target of the regulatory 
framework. Although there are some animal feedstuffs that 
crossover with human consumption (e.g., grain), there are many 
plants and plant parts that are not directly consumed by humans 
but are exclusively used by livestock as feed. This review article 
aims to summarize and discuss the elements needed for the safety 
assessment of GM crops for animal feed purposes, using the 
available information on the current practice of safety assessment 
that the product would be subjected to, as the baseline.

GM FeeD
The market share of GM products has rapidly increased from 
commercialization of the early generation of GM crops in the 
1990s, (I.S.A.A.A., 2017). The major GM crops available in the 
market are soybean (Glycine max L. Merr.) with 77% of the global 
area for individual crops (94.1 million hectares), maize (Zea mays 
L.) at 32% (59.7 million hectares), cotton (Gossypium arboretum 
L.) at 80% (24.21 million hectares), and canola (Brassica napus L.) 
30% (10.2 million hectares). The commercial use of transgenesis-
delivered crops cultivars has also recently expanded to more 
species including sugar beet (Beta vulgaris L.), papaya (Carica 
papaya L.), squash (Cucurbita L.), eggplant Solanum melongena 
L.), potatoes (Solanum tuberosum L.), and apples (Malus pumila 
Miller, 1768), and these products are already commercially 
available in US (I.S.A.A.A., 2017). A meta-analysis including 147 
food and feed crops, also has revealed that the adoption of GM 
technology has decreased the use of chemical pesticides by 37%, 
increased crop yields by 22%, and increased farmer profits by 
68% (Klümper and Qaim, 2014).

GM crops can be traded as food and feed products (Panel 
on Genetically Modified Organisms, 2010). The products are 
classified as GM food, when the direct consumers are mainly 
humans, and the products only intended for animal consumption 
are regarded as GM feed. However, a range of GM crops, such 
as maize, soybean, and canola, are used as both food and feed 
(Figure S1). Most GM crops available in the market, except for 
alfalfa (Medicago sativa L. ssp. sativa) and creeping bentgrass 
(Agrostis stolonifera) have been assessed as GM food, because 
they can be consumed by humans. On the basis of biomass, 
between 70 to 90% of all GM crops, however, are estimated to be 
used in farm as animal feed (Flachowsky et al., 2012).

In contrast to GM food crops, only a few types of GM 
forage products have been commercially released. Alfalfa is an 
economically important legume forage mainly in temperate 
regions. The first GM forage crop commercialized in US was the 
Roundup Ready® Alfalfa from Forage Genetics International 
(Nampa, ID, US), which can be categorized as a first generation 
transgenic (van Deynze et al., 2004).The herbicide-resistance trait 
was produced through inserting two copies of an Agrobacterium-
derived gene (cp4 epsps) of which translational product (EPSPS; 
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5-enolpyruvylshikimate-3-phosphate synthase) contribute to 
glyphosate-tolerance. Such insertion of the foreign gene allows 
post-emergence applications of glyphosate-based herbicides for 
weed control (Putnam et al., 2016).

Following to Roundup Ready® Alfalfa, another first-generation 
transgenic, HarvXtra™ Alfalfa (Forage Genetics International) 
was developed and commercially released. Using RNA interference 
(RNAi)-based gene suppression mechanics, the lignin content 
and composition are modified in this cultivar. A transgene 
cassette including an inverted repeat of the interference-targeting 
sequence was introduced using A. tumefaciens for suppression 
of caffeoyl-CoA 3-O-methyltransferase (CCoAOMT), which is 
involved in lignin biosynthesis. The inverted repeat was designed 
to be transcribed under control of the phenylalanine ammonia-
lyase (PAL)2 promoter from common bean (Phaseolus vulgaris 
L.) for vascular tissue-specific expression, allowing the desired 
suppression of lignin biosynthesis without negative effects on 
forage yield (Barros et al., 2019).

Perennial ryegrass (Lolium perenne L.) is also one of most 
important forage species in the temperate regions. Although 
several transgenic perennial ryegrass plants with potentially 
economically useful traits have been developed, none of them 
has been commercially released. Using a similar approach to 
HarvXtra™ Alfalfa, low-lignin perennial ryegrass individuals 
have been generated (Hu et al., 2013). In the transgenic perennial 
ryegrass, lignin biosynthesis-related genes were down-regulated 
based on the RNAi mechanisms. As the transgenic low-lignin 
plants may have increased digestibility for cattle, the lignin 
biosynthesis-controlling technology may be useful for production 
of optimal feedstocks. The Chimeric REpressor Gene-Silencing 
Technology (CRES-T) is a newly developed transgenesis-based 
approach for functional analysis of transcription factors in 
plants (Mitsuda et al., 2011). A CRES-T transgenic construct 
was developed to target a zinc finger transcription factor gene, 
which is negatively related to salt tolerance (Cen et al., 2016). 
Transgenic perennial ryegrass plants with the CRES-T construct 
showed a higher tolerance to salt stress (up to 300 mM NaCl). 
Interestingly, the transgenic perennial ryegrass also showed a 
vigorous phenotype under non-salt stress condition, which may 
be useful for forage breeding purposes.

Perennial ryegrass plants with a high-energy trait have been 
also developed, using the transgenic technologies. A synthesized 
construct of perennial ryegrass 6-glucose fructosyltransferase 
(6G-FFT) and sucrose:sucrose 1-fructosyl-transferase (1SST) 
genes were introduced into the perennial ryegrass genome, aiming 
enhancement of fructan biosynthesis in the leaf blades (Panter 
et al., 2017). The transgenic plants showed a substantial increment 
in fructan accumulation in leaf blades, as well as enhanced biomass 
production. These traits could be beneficial for the livestock 
industry, as leaf blades are the major part as feed for grazing 
ruminants (Lee et al., 2003). The transgenic plants were generated 
through insertion of manipulated perennial ryegrass genes, and 
this cultivar can be regarded as a third generation transgenic.

Improvement of biotic stress tolerance in white Clover 
(Trifolium repens L.), an important pasture legume in temperate 
regions, has been also developed through the generation of 
plants immune to infection by Alfalfa mosaic virus (AMV) 

(Smith  et  al., 2007). Although, this AMV resistant clover has 
not been commercially released yet, different studies have 
demonstrated the expression and stability of the viral coat 
protein gene encoded, by the sub-genomic RNA4 of AMV in 
white clover, under glass house and field conditions (Panter et al., 
2012; Smith and Spangenberg, 2016).

Forage crops improvements, via genetic modifications 
and genome editing, have the potential to play a key role in 
fulfilling the increasing demand for animal products. Therefore, 
risk assessment must ensure its safety for humans, animals, 
and the environment, in order to have an agricultural system 
economically and environmentally sustainable.

GM OR Ge?
Genome edited (GE) plants are gaining popularity and are still 
classified as GMs in some jurisdictions, so the authors considered 
it necessary to address the issues on these crops as well in this 
manuscript. Both GM and GE crops and their products are 
required to be subjected to rigorous evaluations as a part of 
several regulatory requirements before their commercial release 
into the market. The legislation for GM and GE crops is based 
on the principle of assuring the safety of humans, animals, and 
the environment. Comprehensive studies on the risk assessment 
of GM food crops have been published previously (König et al., 
2004; Delaney, 2015; Domingo, 2016; Gurău and Ranchhod, 
2016; Dadgarnejad et al., 2017; Tutel’yan, 2017; De Santis et al., 
2018; Kumar et al., 2018).

Some variation between regulatory frameworks of GM 
crops exists across jurisdictions. In the US, safety assessment 
of new GM crops is mainly performed though comparison 
with conventional counterparts, to provide scientific evidence 
that GM products can be considered as safe as a conventional 
product, if the characteristics and composition are substantially 
equivalent (FAO/WHO, 2000). The assessment of the Canadian 
authority also focuses on the products itself (Alexandrova et al., 
2005). European regulation focuses more on the certification 
of the genetic modification process, instead of the products 
(European Parliament, 2001), as well as Argentina, Japan, and 
South Africa (Seyran and Craig, 2018). The Australian regulatory 
authority, the Office of the Gene Technology Regulator (OGTR), 
has followed a safety assessment model promoted by the World 
Trade Organization (WTO). Such model has provided as general 
guideline that safety assessment of GM plants should include 
consideration of the risk for humans, animals, and environment, 
and should be science-based (Dibden et al., 2013).

Similarly, there is variation in the regulation of GE products 
compare with GM across jurisdictions with much of the debate 
being polarized (Jones, 2015). Some regulatory bodies argue that 
genome editing techniques are very similar to those used to produce 
GMOs, so they should be regulated similarly (Seyran and Craig, 
2018). However, the scientific community argues that unintended 
effects can always occur, regardless of the types of techniques used 
for crop development (Fernandez and Paoletti, 2018).

From a scientific point of view, the number of alleles changed 
in the process of traditional breeding, such as crossing and 
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selection of superior genotype combinations, should be typically 
higher than that of transgenesis or genome-editing approach. 
With other breeding techniques such as radiation and chemical-
based mutagenesis, there is no established method for most crop 
species, to accurately assess the number of genes changed. In case 
of soybean, a combination of high-throughput DNA sequencing 
and molecular cytogenetics-based copy number variations assay, 
suggested that single nucleotide substitutions and structural 
variations generated during Agrobacterium-based transgenesis, 
was substantially less than those of radioactive-based 
mutagenesis (Anderson et al., 2016). The same approaches, also 
indicated that the frequencies of single nucleotide substitutions 
and structural variations generated through the transgenesis and 
mutagenesis, were considerably less than those found between 
existing soybean cultivars.

Different breeding techniques and their requirement for safety 
assessment before commercialization are described in Figure 
S2. Traditional breeding and mutagenesis, in general, change a 
high number of genes and mutations generally involve loss of 
function, while GM offers the advantage of knowing the actual 
gene(s) being inserted and usually involves a gain of function 
(Gepts, 2002). Nevertheless, the regulatory system assesses plants 
resulting from hybridization, radiation, or chemical induced 
mutagenesis, which may produce thousands of uncharacterized 
random mutations, as non-GM crops (Urnov et al., 2018). A 
recently published article that evaluates the impact of the risk 
assessment on public acceptance, concluded that the rigorous 
regulatory vigilance of modern biotechnology (transgenesis and 
gene editing), leads to public distrust and contribute to the idea 
that GM crops are unsafe. Therefore, a risk-disproportionate 
regulation of these technologies not only confuses the purpose of 
risk assessment, but also interferes with the delivery of beneficial 
technologies to the market (Herman et al., 2019).

As a result of such opinion polarization between the scientific 
community and regulatory bodies, the Court of Justice of the 
European Union (CJEU; Luxembourg) has decided to classify 
genome-editing technologies as genetic modification, submitting 
this plant-breeding approach to severe GM regulations and 
risk evaluation (Eriksson, 2019). In contrast, both the United 
States and Canada regulate new crop varieties according to 
their characteristics rather than by the method with which they 
are produced (Wolt, 2017). Therefore, gene-edited products 
without any transgene and with history of production and safe 
consumption, do not require special regulations (Hundleby and 
Harwood, 2019). The regulations implemented in the United 
States and Canada, is shared by a number of bodies including 
the UK’s Biotechnology and Biological Sciences Research 
Council, the German Academies, the European Plant Science 
Organization, and the French High Council for Biotechnology 
(Laaninen, 2016).

Recently, the Australian regulator gene technology regulator 
(OGTR) has made amendments to make the legal position of 
genome editing clearer. These amendments clarify that organisms 
modified by SDN-1 (Site-Directed Nuclease 1) techniques, present 
no different risk than organisms carrying naturally occurring 
genetic changes, and do not require unnecessary regulation 
(OGTR, 2019). Although in many jurisdictions, a conclusive 

regulatory decision has not been provided, it is possible that the 
position regarding GE products of the United States, Canada, 
Australia, and some European national regulators, will affect 
regulatory decisions in other countries and regions.

Both GM and GE belong to the same or similar plant 
biotechnology applications. In some cases, plants are transformed 
using recombinant DNA to introduce the GE tools, and then, they 
are self-pollinated or crossed to remove the incorporated DNA, 
leaving only the intended mutation (Metje-Sprink et al., 2020). 
This ability of GE to produce changes without the integration of 
recombinant DNA can avoid GM regulations in some countries. 
The reduced risk of DNA integration into the genome provided 
by GE, along with the indirect human exposure to GM feed, can 
have great implications in the commercialization of new GE feeds.

LABeLING POLICIeS
Since the commercialization of the first GM crop in the mid-
90s, some consumer groups have argued for more detailed and 
comprehensive labeling or extensive labeling to enable choice 
for the purchaser (Halle, 2008). Therefore, in response to the 
difficulty of maintaining zero tolerances, each jurisdiction has 
established a tolerance threshold for the involuntary or inevitable 
presence of GM material in non-GM products. If the amount of 
GM material in a product exceeds the tolerance threshold, the 
products should be labeled as containing GM material (Devos 
et al., 2009).

Labeling policies can include a ban on labeling, voluntary 
labeling indicating that a product is GM free, or mandatory 
labeling indicating that a product contains GM. When the latter 
is implemented, a legal tolerance threshold is set, and it also 
varies between countries, making trade and shipment of goods 
complex. In the US, Canada and Japan for instance, the legal 
tolerance threshold for conventional food and feed products 
has been set at 5%. Australia, New Zealand, South Africa, 
Brazil and China have tolerance thresholds at 1%, while in the 
European Union if a commercial product has more than 0.9% 
of GM material, it must be labeled as a GM product to inform 
consumers (Ramessar et al., 2010). Most countries have GM 
mandatory labeling laws, however, the US authority regards the 
nature of the product more critical than the process itself, so that 
GM labeling may be voluntary (Huffman and McCluskey, 2017).

To date, mandatory GM labeling laws, however, have largely 
excluded products from animals fed with GM feed (such as meat, 
milk, and eggs) as well as GM processing aids and enzymes 
(such as rennet for making cheese) (Van-Eenennaam and 
Young, 2017). In Europe, the labeling requirements (European 
Regulation 1830/2003; European Parliament, 2003) on GM food 
and feed, results in those agricultural products not requiring 
labeling. However, some EU member countries have established 
regulations and guidelines to label animal products voluntarily as 
non-GM, to allow consumers to choose products where no GM 
feed stuff were directly used in its production (Venus et al., 2018).

Even though food products derived from animals fed with 
GM feed crops do not require labeling, the safety assessment 
procedure for GM feed crops is the same than for GM food. 
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Regulatory bodies have based such decision on the fact that it 
is impossible to prevent the contact of GM feed material with 
humans, during cultivation, transport and storage of the crops 
(Food Standards Australia and New Zealand, 2014).

SAFeTY ASSeSSMeNT
The scientific evidence that must be provided in the safety 
assessment of GM crops can vary among different legal 
jurisdictions (Alexandrova et al., 2005). However, a detailed 
molecular characterization of the transgene insertion, 
development of tracking and tracing methodologies to ensure 
legality and traceability, and environmental studies to enable 
coexistence frameworks, are common studies in the safety 
assessment of GM crops (Van Haver et al., 2003). Other 
studies, such as toxicological, allergenicity, nutritional, and 
horizontal transfer, have been performed following a case-by-
case approach considering newly emerging scientific knowledge 
and technologies (König et al., 2004). The use of GM crops as 
a feed can reduce concerns around human safety and underline 
other features such as feeding value and nutritional equivalence 
(Flachowsky et al., 2002).

From an industrial point of view, the assessment required 
for the regulatory authorities could be divided into two groups; 
pre- and post-marketing issues. The former includes relatively 
standard technologies for all GM food and feed, such as 
molecular characterization and development of tracking and 
tracing tools for traceability purposes. Pre-marketing issues also 
involves technologies under development that varies on a case-
by-case basis, including environmental, food/feed, toxicological, 
and allergenicity safety studies. Post-marketing issues are related 
with regulatory monitoring, which contemplate GM labeling and 
traceability (Figure S3).

Molecular Characterization
Molecular characterization of GM crops is a full description 
of the structural information of the transgene and stability of 
the trait (Li et al., 2017). It is the foundation of all GM product 
safety assessments before commercialization and also serves as 
a baseline for the development of detection and identification 
tools to satisfy traceability and labeling requirements (European 
Parliament, 2003). Stakeholders of both GM food and feed, must 
provide information on the genomic locus/loci modified, copy 
number of the inserted transgene, insertion site, and flanking 
regions (Guttikonda et al., 2016).

Selection of low insertion copy number DNA transformants 
is preferred for the subsequent safety assessment process as it 
facilitates risk and hazard characterization (Tiwari and Singh, 
2018). The methods most commonly used to determinate the 
number of transgenes integrated have been Southern blot analysis 
and polymerase chain reaction (PCR), in its various formats such 
as real-time PCR (qPCR) (Li et al., 2017).

The Southern blot analysis involves a careful selection and 
broad screening of restriction enzymes and designing of probes, 
which in some cases dependent on prior sequence information 

of the transgene insertion (Urquiza and Silva, 2014). However, 
the approach is relatively time-consuming and laborious, and 
also includes a manual interpretation process. In addition, the 
result may not accurately reflect the copy number of a transgene, 
if sequence rearrangements have occurred, which have affected 
the position(s) of the restriction enzyme recognition site(s) in 
the inserted transgene(s) (Yang et al., 2005).

A qPCR-based assay can more accurately quantify the copy 
number of transgenes by comparing to an endogenous reference 
sequence (endogene), which has provided a simplified alternative 
to Southern blot analysis (Li et al., 2017). However, identification 
of a single copy reference gene is occasionally difficult in crop 
species, due to ancestral whole genome duplications or due to 
polyploidy, causing complex structures and genetic redundancy 
(Ren et al., 2018). To overcome the identification of a reference 
gene and dependency on DNA calibrations, droplet digital 
PCR (ddPCR), a method that identifies the absolute DNA copy 
number in a sample, has been proposed for determination of GM 
copy number (Głowacka et al., 2016; Dalmira et al., 2016).

Following identification of low-copy number transformants, 
the precise location(s) of the transgene(s) in the crop genome 
is required to be identified (Park et al., 2017). DNA sequencing 
approaches have been used for this purpose, and this process may 
also identify backbone sequence(s), which were not intended 
to be introduced from the transformation vector into the host 
genome (Kononov et al., 1997). The method traditionally used 
for this purpose was based on Sanger sequencing (Guttikonda 
et al., 2016). However, the second-generation sequencing (SGS) 
technologies have been proposed as a new tool for molecular 
characterization of GM crops, due to a larger sequencing capacity 
and potentially higher accuracy of the resulting assembled 
sequence (Kovalic et al., 2012; Yang et al., 2013; Pauwels et al., 
2015; Arulandhu et al., 2016).

The SGS approaches can increase speed, scalability, and 
automation in the selection of potential valuable events on the 
basis of their molecular profile, facilitating post-transformation 
screening (Kovalic et al., 2012; Pauwels et al., 2015; Guttikonda 
et al., 2016). However, these technologies do not directly provide 
information about the position of the insertion(s) in native DNA, 
due to short read lengths (50–400 base pairs) (Goodwin et al., 
2016), while transgenic constructs are typically thousands of base 
pairs. A computational process for alignment and/or assembly 
of the short sequencing reads is essential for the molecular 
characterization purposes, and repetitive elements commonly 
found in plant genomes can generate problems for the alignment/
assembly procedure (Liang et al., 2014).

Recently, single-molecule sequencing, also termed 
third-generation sequencing (TGS) platforms, have been 
commercialized allowing a large increase in read length up to 
tens of thousands of bases per read (Loose et al., 2016). Read 
length is limited by the input DNA fragment size, but over 300 
kb have been reported (Jain et al., 2016). The increment in read 
lengths up to tens of thousands can facilitate a more reliable 
GM characterization process, by extending the sequence reads 
of the flanking regions present in the captured fragments and 
potentially solving alignment problems.
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The most common TGS platforms are products from Pacific 
Biosciences (PacBio, Menlo Park, CA, US) and Oxford Nanopore 
Technologies (ONT Oxford Science Park, Oxford). PacBio uses 
a sequencing-by-synthesis method to capture a single DNA 
molecule and a circular consensus sequence (CCS) to increase 
accuracy. The CCS uses a circular DNA template by ligating 
hairpin adaptors to both ends of target double-stranded DNA, 
so the DNA template is sequenced multiple times to generate 
a continuous long read (Weirather et al., 2017). Nanopore 
sequencing, uses nanopores to sequence native single-stranded 
DNA, by measuring the changes in an electric current passed 
across the pore as the DNA bases pass through, disrupting the 
current to different levels with different nucleotides (Giordano 
et al., 2017).

Nanopore sequencing offers potential benefits in molecular 
characterization of GM products compared with PacBio, since it 
delivers raw data in real-time, is relatively easy to manipulate, and 
has low setup costs. The MinION from ONT is a portable device 
that has been successfully assessed for detection of unauthorized 
GM products (Fraiture et al., 2018). Further assessment 
demonstrated the capability of the MinION to determine the full 
molecular characterization of three transgenic crops (ryegrass, 
canola and clover) within 48 hours.

Although, new guidelines are emerging from regulatory bodies 
to generate pre-market submission of data using whole genome 
sequencing (Health Canada, 2019) and NGS (UCD Centre for 
Food Safety et al., 2018). Sequencing approaches are typically 
being used in tandem, for example Sanger sequencing with SGS 
or SGS with TGS, for verification and validation purposes during 
risk assessment of GM crops (Boutigny et al., 2019).

In short, GM forage species including Alfalfa (Barros et al., 
2019), Switchgrass (Dumitrache et al., 2017), Sorghum (Rooney 
et al., 2007) have been characterized adopting the same technologies 
used for GM food. However, the expression of introduced traits in 
plant parts not used for food, should be considered. For instance, 
a GM plant can be produced with specific production of the Bt 
toxin only in leaves, preventing insect attack and removing the 
exposure of humans to the compound when consuming its grains 
(OECD, 2003). However, in such cases those plant parts would 
substantially increase the exposure of animals to the GM toxin 
when consuming them, and this difference must be taken into 
account in the molecular characterization.

GM Traceability
GM traceability describes a system that enables tracking 
of GM food/feed products at all stages of the supply chain 
(Giraldo et  al., 2019). Detection methods for GM products 
in different matrixes or substrates, such as grain, flour 
and forage, are not only important to ensure legality and 
traceability, but also to comply with GM labeling regulations 
(European Parliament, 2003).

Methods for GM detection and identification usually rely on 
certified reference materials that are in powdered form, however, 
routine detection must be performed in different agricultural 
and food products (Cankar et al., 2006). The selection of DNA 
extraction protocols is of crucial importance, since the DNA 

can be present in low amounts, carrying inhibitors or degraded 
(SanJuan-Badillo et al., 2014). Therefore, the extraction method 
should be evaluated for each agricultural product, guaranteeing 
high DNA yield and purity (Turkec et al., 2015).

The method chosen to comply to traceability and labeling 
requirements, should be sensitive enough to detect the 
transgene(s) at levels below the corresponding jurisdiction 
tolerance threshold (e.g., 5% in US, 1% AU, and 0.9% in EU) 
(Ramessar et al., 2010). Additionally, it should be able to 
detect the transgene(s) from raw agricultural commodities 
entering the feed production chain. For instance, fresh leaves, 
dry leaves (hay), pollen, seeds, tillers or stems, and forage that 
could enter the feed chain as unprocessed material (Ardizzone 
et al., 2018; Giraldo et al., 2019).

Currently, qPCR is the standard method used in national 
reference laboratories for detection and quantification of GM 
events (Dalmira et al., 2016). The requirement for reference 
material to be used as calibrants, which sometimes are not 
commercially available, limits its effectiveness (Dobnik et  al., 
2016; Dalmira et al., 2016). The GM product detection process 
followed by national reference laboratories consist of two 
consecutive steps; first, a qPCR screening of vectors commonly 
found in GM products, such as the 35S promoter from cauliflower 
mosaic virus, Agrobacterium tumefaciens (tNOS) and selectable 
markers. Then, the samples with a potential presence of GM 
materials, are tested using the corresponding GM event-specific 
method (Fraiture et al., 2017).

Droplet digital PCR (ddPCR) technologies use the same 
DNA amplification principles as qPCR, but the technologies can 
provide a higher quantification precision through partitioning 
PCR mix into thousands of nanoliter-sized droplets in which 
PCR amplification is carried out (Dobnik et al., 2016; Dalmira 
et al., 2016). Features such as absolute quantification, avoidance 
of using standard curves, and high resilience to inhibitors, makes 
ddPCR a promising alternative for GM event detection (Rački 
et al., 2014; Corbisier et al., 2015).

SGS technologies have also been proposed to comply with the 
requirements for GM traceability due to the ability to detect all 
target sequences in multiple samples without the development 
and validation of target-specific methods and reference 
material (Arulandhu et al., 2018). However, the requirement 
of bioinformatics knowledge for data analysis and more 
sophisticated devices limits its use in routine GM event detection 
(Park et al., 2017). Figure S4 compares qPCR, ddPCR, and SGS 
in terms of GM identification and quantification, multiplexing 
capacity and ability to detect known and unknown sequences. It 
also underlines that the cost and processing time increase from 
qPCR to ddPCR and to SGS.

In recent years, significant effort has been performed to 
replace the time-consuming and expensive qPCR screening 
procedure (Holst-Jensen et al., 2016; Salisu et al., 2017). As a 
result, other technologies are been evaluated including ddPCR 
(Dalmira et al., 2016; Dobnik et al., 2015; Köppel et al., 2015; 
Demeke et al., 2016; Dobnik et al., 2016; Gerdes et al., 2016; 
Głowacka et al., 2016; Iwobi et al., 2016; Grelewska-Nowotko 
et al., 2018; Niu et al., 2018; Corbisier and Emons, 2019; 
Giraldo et al., 2019), SGS (Willems et al., 2016; Fraiture et al., 
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2017; Arulandhu et al., 2018), DNA enrichment approaches 
(Arulandhu et al., 2016) and combined strategies of DNA 
walking and SGS (Fraiture et al., 2017).

However, all the above methods are lab-based and time 
consuming, so that the development of rapid and portable 
devices with more routine throughput screening methods are 
likely to continue into the immediate future. Recent research 
related to on-site detection of GM crops include; loop-mediated 
isothermal amplification (LAMP) (Hardinge et al., 2018; Singh 
et al., 2019; Loo et al., 2019), LAMP and a lateral flow biosensor 
(Cheng et al., 2017), PCR and a lateral flow biosensor (Gao et al., 
2019), handheld field-portable qPCR systems (Nguyen et al., 
2018; Russell et al., 2018), and nanopore sequencing (Fraiture 
et al., 2018; Russell et al., 2018).

Technologies to fulfil regulatory requirements for GM food 
traceability have been established. The qPCR-based method is 
suitable for a high-throughput screening of transgene(s), and 
the ddPCR-based approach can provide a higher accuracy of the 
measured GM product concentration, especially at a low level. 
Although, the same approaches of GM food may be used for GM 
feed to comply the regulatory requirements, for GM feedstuff 
special considerations should be given to the use of plant parts 
not used for human food and by-products from other industries 
using GM plants (OECD, 2003).

environmental Safety Studies
Environmental risk assessments (ERA) aim to determine 
whether a new GM crop variety has direct effects on the natural 
environment (Hilbeck et al., 2011; Devos et al., 2016). Although 
a range of factors, such as effects on biodiversity, modification 
of soil and water quality, and disease and weed control, must be 
considered in this process, the major concern of ERA is gene flow 
(GF) of the transgene(s) to wild relatives (Warwick et al., 2009).

GF is a result of the movement of gametes or individuals 
from a specific population to another, which may generate 
a significant change in the allele frequency of the receiving 
population (Slatkin, 1987). This phenomenon not only has been 
observed between populations of the same species, but also 
between closely related species (Wilson and Manhart, 1993; 
Bartsch et al., 2002). In case of natural plant populations, such 
movement can happen via seeds, vegetative propagules or pollen 
and its importance varies among plant species (Tsatsakis et al, 
2017). General approaches to quantify GF use foreign herbicide 
and antibiotic resistance genes to provide insight into the rates 
and importance of hybridization (Mallory-Smith et al., 2015). 
However, morphological and molecular markers are also required 
to assist with rapid identification or to identify/confirm hybrids.

To allow GM and non-GM crops to exits in mutual tolerance 
and minimize undesired GF, a concept defined by the term 
“coexistence” was introduced. Coexistence refers to the right that 
consumers have to choose between conventional, organic, and 
GM crop production, in compliance with the legal obligations 
for labeling defined in each jurisdiction (Devos et al., 2009). 
Although, different varieties of the same species have coexisted 
prior to appearance of GM crop variety, the need for the 
strategies to manage the consequence of inadvertent fertilization 

have become more outstanding with the commercial release of 
GM crops (Ramessar et al., 2010).

A potential risk of transgenes GF is cross-pollination between 
GM crops and native species, which has been intensively 
discussed since the commercial realize of GM plants (Messeguer, 
2003; Kuparinen et al., 2007; Warwick et al., 2009; Tsatsakis et al., 
2017). Pollen-mediated GF has been reported during production 
of commercial GM crops including maize, rapeseed, cotton, 
soybean, and creeping bentgrass (Reichman et al., 2006; Chifflet 
et al., 2011; Baltazar et al., 2015; Rizov and Rodriguez-Cerezo, 
2015; Loureiro et al., 2016; respectively).

One of the most common coexistence measures to reduce 
pollen-mediated GF is isolation distances. It is defined as the 
minimum distance between GM and non-GM crop fields 
of the same species that should prevent a cross-pollination 
rate from reaching to threshold levels (Cunliffe et al., 2004). 
Multiple factors, such as population size, distance, and flowering 
synchrony between donor and receiver fields, as well as local wind 
conditions, all influence the determination of an appropriate 
isolation distances (Devos et al., 2009).

Different isolations distances have been determinate to avoid 
or minimize cross-fertilization between GM and non-GM fields. 
Table 1 describes different isolation distances required for the 
four major GM crops (maize, canola, soybean, and cotton), to 
maintain cross-fertilization ratio below legal tolerance thresholds. 
For instance, to maintain cross-fertilization levels below 1% an 
isolation distance of 20 m is require for maize (Baltazar et al., 
2015), 9 m or more for cotton (Baltazar et al., 2015), and 5 m for 
soybean (Rizov and Rodriguez-Cerezo, 2015).

In GM forage species, undesired pollination can be the major 
type of GF, since forage grass species typically exhibit a highly 
outcrossed nature and are wind-pollinated (Holme et al., 2013). 
Smith and Spangenberg (2016) reviewed the most important 
coexistence strategies in outcrossing forage species, highlighting 
that a coexistence framework for the dominant cross-pollinated 
grain crops (canola and maize) is already well established in 
Europe, as well as alfalfa in the US. Hence, existing principles 
such as development of detection techniques, segregation and 
agronomic management can be applied to other forage crops 
when developing coexistence frameworks.

TABLe 1 | Cross-fertilization level in different isolation distances for the major 
forage crops commercially available.

Crop Isolation distance Cross-fertilization 
level

Reference

Maize 50 m <0.5% Sanvido et al., 2008
20 m <1% Baltazar et al., 2015

Canola 30 m <0.03% Staniland et al., 2000
33–200 m <0.015% Cai et al., 2008

Soybean 5 m 0.9% Rizov and Rodriguez-
Cerezo, 2015

10 m 0.1%
Cotton 10 m <0.9% Loureiro et al., 2016

>9 m <0.1% van Deynze et al., 2005
Alfalfa 150 m 1.39% Fitzpatrick et al., 2003

500 m 0.08%
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Compared with commercially available grain crops, studies 
on pollen-mediated GF in wind-pollinated forages is scarce. 
A study on transgenic alfalfa (Medicago sativa L.) using the 
cp4 epsps transgene as marker, showed that a 500-m isolation 
distance is required for maintenance of the cross-fertilization 
level below 0.1% (Fitzpatrick et al., 2003). Rigid ryegrass 
(Lolium rigidum) gene flow was reduced from 37.8% at 0 m and 
0.93% at 100 m (Busi et al., 2008). In other species with high 
levels of self-compatibility such as barnyardgrass (Echinochloa 
crus-galli), cross-fertilization rates at 0-m distance was 12.5% 
(Bagavathiannan and Norsworthy, 2014) and for tall fescue 
(Festuca arundinacea) 5% were detected at 50 m and less than 
1% at 150 m (Wang et al., 2004).

Transgenic GF of the commercial GM grains has been 
intensively studied and discussed as a main part of ERA, some of 
such information can be apply to GM forage crops, the potential 
risks may be depending on the nature of transgenic traits. For GM 
forages considerations such as life cycle, since forage crops are 
largely perennial not annual or biannual, can have repercussions 
on pollen flow and it can remove management of gene flow 
through farming systems temporally.

Different regulations and laws about GM plants create 
complexities for the movement of agricultural products between 
borders and has a significant impact on international trade. The 
Cartagena Protocol on Biosafety is an international treaty that 
aims to protect biodiversity from the potential risk of GMO 
resulting from modern biotechnology. Such Protocol dictates 
that GM plants should follow the precautionary principle, 
which states that “In order to protect the environment, the 
precautionary approach shall be widely applied by States 
according to their capabilities” (Secretariat of the Convention on 
Biological Diversity, 2000). Therefore, standardized methods of 
ERA for GM crops has not been established and it is managed 
by individual laws in each country. Usually, a case-by-case 
assessment needs to be performed and the methods used for GM 
food and feed are the same.

Feed Safety Studies
The vast majority of forage crop products are fed to livestock; 
hence, any human consumption of GM feedstuff is an indirect 
effect and can easily be regulated and mitigated to ensure 
complete safety. Feed safety studies examine whether the genetic 
modification could unintentionally increase the potential 
toxicity or allergenicity of the transgenic plant for humans or 
animals, as well as changes in nutritional characteristics (Pauwels 
et al., 2015). As forage crop products are predominantly eaten by 
animals and human consumption of GM feedstuff represents an 
indirect effect, and this type of assessment should be unique to 
GM feed. Feeding studies focus on answering three main issues; 
substantial equivalence, the safety of the new crop for humans 
and animals, and the safety of the product derived from animals 
raised on transgenic feed. Those issues are comprehensively 
discussed in Aumaitre et al. (2002) and Ramessar et al. (2007).

According to The Organization for Economic Co-operation 
and Development (OECD), the substantial equivalence concept 
refers to the idea that existing food products can serve as a basis 

for comparison when assessing the nutritional value and safety 
of food modified by modern biotechnological methods (OECD, 
1993). This comparison helps quantify the effect of the transgene 
as well as understanding the variation in the natural species for 
the trait being modified. The analysis of chemical composition 
would serve as the first step for the nutritional evaluation. Such 
comparison is, however, largely based on the premise that an 
existing cultivar with a history of safe use, can serve as a comparator 
when evaluating the safety of a GM food/feed (Flachowsky et al., 
2012). The type of comparators, key characteristics selected, and 
interpretation of compositional data may vary change among 
different countries. The OECD, an intergovernmental organization 
in which representatives of 30 industrialized countries in North 
America, Europe, and the Pacific, have consensus documents 
about common GM plants, which are a valuable source to ensure a 
consistent assessment (OECD, 2000).

Some examples of GM products that passed the substantial 
equivalence test include a maize line with the sb401 gene 
incorporated to increase lysine content, the equivalent test with a 
conventional protein quality maize (Nongda 108) showed that the 
lysine-rich maize was safe (Tang et al., 2013). The compositional 
equivalence of a herbicide-tolerant rice (Bar 68-1) exhibited no 
significant differences, when compared with its isoline (D68) 
(Li et al., 2008). The evaluation of a Bt soybean (products Mon 
87701 * Mon 89,788) that confers pest resistance and glyphosate 
resistance, concluded that Bt soybean was as safe as its traditional 
counterparts (Berman et al., 2009). Similarly, Bollgard II cotton 
(event 15985) with insect resistance properties was compared 
with traditional cotton varieties, and the results demonstrate that 
it was as safe and nutritious as conventional cotton for food and 
feed use (Hamilton et al., 2004).

When substantial equivalence of GM feed product to its 
traditional analogues cannot be concluded, a further assessment 
comprises of the following steps: in silico, or in vitro preliminary 
studies, the study of nutritional value of the products; quotas in the 
diets of animals; methods of use in nutrition, and during lactation; 
digestibility, evaluation of intake of individual components (if 
the expected intake is more than 15% of the daily requirement); 
impact on the intestinal microflora (if GM product contains 
live microorganisms) (Levitsky 2016). The safety assessment of 
each country can be different and in some jurisdiction animal 
experiments are not required. For instance, the OECD consider 
that GM plants where compositional analyses demonstrate no 
significant differences from the comparator, animal feeding 
studies with target species will add little to a safety assessment, 
so that nutritional equivalence can be assumed (OECD, 2003).

As a part of assessment for animal safety issues, the in 
silico, or in vitro studies also can provide an estimation of the 
impact of GM feed in the nutrition of target animals, prior to 
the feeding studies involving animals. In silico evaluation may 
serve to identify changes in key nutritional components and in 
vitro simulated gastric and intestinal fluids to study the digestive 
stability of novel proteins (ILSI, 2007; DBT, 2008). All laboratory 
studies should be conducted according to the internationally 
recognized guidelines (OECD, 1998). The information obtained 
from these studies help to determine the need for future in 
vivo studies with target animals (EFSA, 2008). The OECD has 
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developed guidelines for different animal and in vitro testing 
(OECD, 1995: Guidelines 401, 407, 408, 414, 415, 416, 420, 421, 
423, 425, 451, 452, 453, 474, 475, 478, 486).

Tudisco and Infascelli (2014) used an in vitro gas production 
technique to compare the nutritional value of GM corn and 
soybean with their traditional counterparts. They found that 
the fermentation kinetics of GM corn and gas production of 
GM soybean were respectively faster and lower compared with 
their counterparts. Another in vitro experiment using batch 
fermentation models assessed the possibility of transfer of cry1Ab 
transgene to porcine jejunal microbiota, concluding that the 
transfer of transgene was not detected (Buzoianu et al., 2012a).

Swiatkiewicz et al. (2014), comprehensively reviewed the 
published information on health status, blood parameters, 
immunological characteristics, histopathological examination of 
cattle, poultry and fish. Concluding that the quality and potential 
risks for human consumption of livestock products such as meat, 
milk, and eggs and the metabolic parameters were not significantly 
affected when livestock were fed with commercialized GM crops. 
Although, there is a large proportion of studies on livestock 
animals, most of them focuses on the possibility of horizontal gene 
transfer (HGT) from GM crops to animal tissues.

Feeding test, using model animals has been conducted for a 
safety assessment of GM food crops. The main animal species, 
which would consume the GM feed products are, however, 
livestock, such as cattle, sheep, swine, and poultry (Nadal et al., 
2018). Cattle (dairy and beef) and sheep belong to the ruminant 
category, with a unique digestive system that gives them the 
ability to obtain nutrients from forage crops by breaking down 
its cellulose content in a special stomach compartment using 
microbial actions. On the other hand, swine have a monogastric 
digestive system with an enzymatic stomach very similar to 
humans, and poultry have an avian digestive system without 
teeth to chew the feed (France et al., 2006). Cattle and sheep 
are herbivores, whereby their diet is mainly forage-based, while 
swine, poultry, and humans are omnivores, so they eat mostly 
grains and some plants (Flanders and Gillespie, 2015).

Until now the safety assessment of GM plants has focused in 
human exposure, animal safety while not ignored, has received 
less importance (Aumaitre et al., 2002). Pigs have been widely 
used as models for humans, because of their similar gut anatomy 
and physiology (especially mucosal immunity) and nutritional 
requirements (Ladics et al., 2010). Rodent tests have received 
the greatest importance from regulatory bodies, especially 
for toxicological and allergenicity studies of the products of 
introduced genes. However, these animals are not usually feed 
with the entire GM plant or their by-products, while livestock 
animals have greater exposure to GM feedstuff, compromising a 
high percentage of their diet on a daily basis and often for their 
complete lifespan (Aumaitre et al., 2002). Additionally, variations 
in the livestock system can determine the evaluation profile, for 
instance, forage grasses will be relevant to ruminant species and 
have little to no value to monogastric species.

Due to their anatomical and eating habits differences, it is 
impossible to assess the safety of a transgenic GM feed with a 
single and unified test. A more specialized case-by-case approach 
is essential for the safety assessment of GM feed. Development of 

standardized in silico and in vitro approaches, can reduce time 
and cost for this process and avoid the use of animals. When 
required, in vivo feed studies offer the possibility of conducting 
feeding trials in the target species, something not possible with 
GM food in humans.

Toxicological Studies
The purpose of toxicological studies is to characterize intended 
changes and detect active substances or compounds that could 
have unexpected toxic effects for non-targeted organisms (Van 
Haver et al., 2003). All toxicity assessment for GM material 
should be performed based on a case-by-case approach, 
considering the toxicological profile of new introduced 
substances (Domingo, 2007).

The methods to assess the toxicity of a specific compound 
in the body, usually compromise the use of animal studies, 
considering the target species and the critical effects (Levitsky, 
2016). However, new strategies to identify GM feed anti-nutrient 
or toxicants include research on the in-planta metabolism 
pathway, such as “-omics” techniques that may generate a 
better understanding of the complex pleotropic effects of new 
plant cultivars (Fernandez and Paoletti, 2018). Additionally, in 
vitro assays with gastric enzymes, cultured cell lines, receptor 
proteins, and in vivo animal studies can be performed (Van 
Haver et al., 2003).

High-throughput “-omics” profiling techniques, which involve 
the use of metabolomics, transcriptomics, and proteomics, have 
been suggested as a nontargeted approach to detect unintended 
effects in GM crops (Ricroch, 2013). Profiling studies using 
omics techniques include GM glyphosate-tolerant soybean, 
where some specific metabolites were different compared with 
the isogenic line and the results were explained by modifications 
in the regulation of the shikimate pathway (Garcia-Villalba 
et al., 2008). Nevertheless, a GM stacked rice carrying the 
herbicide-resistant gene bar and insect-resistance cry, was found 
substantially equivalent to its conventional genetic breeding 
and natural genetic cultivars, when their proteome profiles were 
compared (Gong et al., 2012). A review of the safety assessment 
of GM crops using omics techniques, indicated that transgenesis 
has less unintended impacts than conventional breeding 
(Ricroch, 2013). Another study showed that there were more 
transcriptomic alterations in mutagenized plants than transgenic 
plants (Batista et al., 2008).

Several toxicological studies in GM feed using omics 
techniques, involve the analysis of fungus or their secondary 
metabolites. For instance, mycotoxins, which are undesired 
substances produced by crop-related fungus. In hybrids Bt 
maize, one of the principal components of feeding formulas 
for livestock, plants experienced less fumonisin concentration 
compare with its isoline (Bowers et al., 2014). It was hypothesized 
that the reduction of fumonisins was due to the pest reduction in 
the GM maize, since the fungus spore migration and colonization 
may be facilitated with damages from insects. Therefore, it could 
be concluded that GM corn can provide reductions in the risk 
of fumonisins contamination, but not increment of toxicological 
risk for animals.
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Similarly, in the transgenic high-energy perennial ryegrass, 
an evaluation of alkaloids, secondary metabolites produced 
by endophytic fungus, found that the alkaloids concentration 
in transgenic plants was same or lower compare with the 
isogenic line. The lower alkaloid concentration could be 
partly attributed to higher growth of transgenic plants, which 
could generate a dilution effect in the modulation of fungal 
biomass (Giraldo et al., 2018).

When performing in vivo studies, toxicology acute (14 days 
studies), subacute (28 days studies), chronic (90 days studies), or 
specific toxicity (reproductive, mutagenicity, etc.) assessment can 
be considered (Levitsky, 2016). In a chronic study feeding mice 
with crushed Bt cotton seeds, cry genes and tnos promoter were 
detected only in intestinal tissue, while they were not found in 
stomach, blood, liver, kidney, heart, and brain (Sajjad et al., 2014). 
In long term studies (>100 days), no toxic effects were found in 
cattle and chickens fed with Bt maize. They concluded that short 
fragments of plant chloroplasts (<200 base pairs) can be detected 
in blood lymphocytes of cattle, but DNA fragments were not 
detected in other organs investigated (muscle, liver, spleen and 
kidney) (Einspanier et al., 2001). Similarly, some small changes 
in the metabolic profile of sheep fed with Bt176-maize were found 
when compared with non-GE maize, according to the authors 
such changes did not represent a health hazard (Snell et  al., 
2012). In pigs fed with Bt maize (MON810 event), although all 
serum biochemistry parameters were within the normal reference 
interval for pigs, small differences were reported. The authors 
concluded that the differences were the result of a lower enzyme-
resistant starch in the GM compare with the non-GM control 
(Buzoianu et al., 2012b).

Safety assessments of GM feeds should consider the maximum 
level present in any plant part consumed by animals or in any 
by-product used as a feed ingredient, since the introduced 
traits can express differently in the plant parts, affecting the 
concentration of novel proteins. This can have implications in the 
level of exposure, selection of comparators and determination 
of the novel protein concentration used in acute/sub-chronic 
toxicity studies (OECD, 2003).

In short, a case-by-case approach is also required for 
toxicological assessment of GM crops, and the assessment 
procedure has not been standardized. A comparison with 
conventional counterparts has been a common approach for GM 
food products, and a similar approach may be used for forage 
products. A more cautious and stringent examination may be 
required for GM feed, due to that a wider range of plant organs 
may be used for animal consumption than those for human 
consumption, and storage conditions of the GM forage products 
may be less uniformed and controlled than GM food.

Allergenicity Studies
Allergenicity and toxicological studies may be assessed at once, 
since both are designed to detect newly expressed substances. 
Allergenic reactions can cause more severe symptoms, but 
usually to only some individuals, while toxicity is predictable 
and reproducible between individuals as it affects the majority of 

exposed individuals with only minor differences in susceptibility 
(De Santis et al., 2018).

In US, concerns about potential risks for allergy have arisen 
from GM food crops, including one under development for 
several times. A 2S albumins gene from Brazil nut was introduced 
into a soybean cultivar, for a purpose of nutritional enhancement. 
The transgene products, however, were identified to have 
potential allergic risks for human, especially those with allergy 
to the Brazil nut, and development of the GM soybean cultivar 
was suspended (Moreno and Clemente, 2008; Delaney, 2015). 
Concerns for the Cry9C protein, a type of insect pest resistance 
protein from bacillus also arose, due to a higher stability to heat 
and possible prolong time for digestion (Wiedinmyer et al., 
2000). As a consequence, the StarLink maize, an unauthorized 
maize containing the Cry9C transgene, was not approved for 
human consumption by the US authority (Zhang et al., 2016).

In case of a GM feed safety assessment, both human and 
animals may need to be included in an allergenicity study as 
test subjects. An allergenicity assessment for animals could be 
performed with a similar approach to that for human. There 
is, however, currently no standardized procedure to predict 
allergenic reactions to non-endogenous proteins even in humans. 
The European Food Safety Authority (EFSA) has recommended 
using animal models to evaluate the sensitizing potential of novel 
proteins on a case-by-case basis (Marsteller et al., 2015). The 
most common species to assess GM allergenicity are rodents, also 
referred to as a rat 90-day evaluation, which is now compulsory 
in the EU for new GM crops (Hong et al., 2017). However, the 
published studies on rats, mice, and pigs, aimed to assess the 
allergic risk of humans (Ladics et al., 2010), using animals mostly 
as food allergy models.

The most common approaches to assess allergenicity include 
amino-acid sequence homology, in vitro digestibility tests, 
serum screening and animal models (Van Haver et al., 2003). 
Amino acid sequence homology or similarity uses bioinformatic 
methods to determine the possibility, that a novel protein can be 
closely similar to a known allergen that can create a risk of cross-
reactions (Naegeli et al., 2017). However, such bioinformatic 
methods cannot predict the likelihood that the novel protein 
might become a de novo allergen, so other methods like in vitro 
digestibility tests, serum screening, and animal models may need 
to be used (Ladics et al., 2010). The in vitro pepsin resistance 
assay is the most commonly used protein digestion test, which 
provide information about the susceptibility of a novel protein 
to digestion. This assay can be used as an additional evidence of 
possible adverse reactions to GM food/feed, since gastrointestinal 
digestion can affect the immunogenicity of dietary proteins 
related to both IgE and non-IgE reactions (Naegeli et al., 2017).

Serum screening and immunoassays are alternative ways 
to assess endogenous allergens, using sera from individuals 
with relevant allergies. Although, these types of assays are the 
current reference method for in vitro detection and definition 
of an allergenic proteins, detection of allergic animals pose 
limitations for the applicability in the safety assessment of GM 
feed. Alternatively, there are other analytical and molecular 
profiling techniques, which can serve as alternative tests for 
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the comparative assessment of the endogenous allergenicity 
between the GM plant and its non-GM comparator (Fernandez 
et al., 2013).

Information on immunological responses, and particularly 
allergenic reactions on livestock fed with GM products is scarce 
and is likely to need more extensive research. Nevertheless, 
allergenicity assessment of GM feed offers the advantage of direct 
evaluations in target species, something not possible with GM 
food in humans.

Horizontal Gene Transfer
HGT refers to the movement of a genetic material to a living 
cell or organism across boundaries between species. In the 
case of GM organisms, movement of transgene(s) into other 
species, especially microorganism, or natural population of 
the taxonomically related species have been concerned, as 
such transfer may have impacts on human/animal health, and 
natural environments. (EFSA, 2007; EFSA, 2009; ADAS, 2013; 
Nicolia et al., 2014; Van Eenennaam and Young, 2014; Giacomo 
et al., 2016). This section relates to environmental, feed safety, 
toxicological, and allergenicity studies, since the transfer of 
recombinant DNA into other organisms can affect the health of 
humans, animals, and the environment.

Although assessment of the digestion fate of recombinant 
DNA or its new proteins can be performed using in vitro gastric 
or intestinal fluid-based digestion systems to assess HGT in 
bacteria (Fuchs et al., 1993; Wehrman et al., 1996; Entransfood 
2004; Sharma et al., 2004; Bertrand et al., 2005), studies using 
cattle species have been also commonly conducted evaluating 
the digestive process of recombinant DNA and proteins from 
feedstuff (Faust and Miller, 1997; Ash et al., 2000; Aulrich et al., 
2001; Jennings et al., 2003; Aumaitre, 2004; Phipps et al., 2005; 
FASS, 2006; Rizzi et al., 2012; Swiatkiewicz et al., 2014; Van 
Eenennaam and Young, 2014; Levitsky, 2016; Van Eenennaam 
and Young, 2017; Nadal et al., 2018). For example, recombinant 
DNA has been found in ruminal solid phase and duodenal 
digesta of cattle, but the DNA was not detected in liquid ruminal 
and duodenal phase, as well as milk, blood, and faeces. Those 
results indicate a rapid degradation of the transgene in the first 
digestive stages (Phipps et al., 2003).

In studies using cows fed with transgenic maize, recombinant 
DNA was not detected from milk (Faust and Miller, 1997; Giacomo 
et al., 2016), blood, muscle, kidneys, liver, or spleen (Einspanier 
et al., 2001). Also, recombinant DNA was not detected from 
milk of cows grown with feed including up to 26% of transgenic 
glyphosate-tolerant soybean (Phipps et al., 2002). Similarly, in 
studies on poultry fed with transgenic maize, recombinant DNA 
was not detected from muscle, kidneys, liver, and spleen, as 
well as eggs (Einspanier et al., 2001). Only a little possibility of 
incorporation of recombinant DNA into the genomes of human 
or animal of digestive organs has been suggested from some of 
these studies, and the majority of the studies concluded that such 
risk of horizontal transfer of transgene is insignificant (Chambers 
et al., 2002; Ramessar, et al., 2007; Levitsky, 2016). As the risk 
of incorporation of recombinant DNA into germ cells should 

be even lower, the possibility of inheritance of the recombinant 
DNA into the following generation should be insignificant.

In case of GM feed products, possible risks on human health 
may need to be also considered, as the products are indirectly 
consumed by human via cattle. The rapid digestion process 
of recombinant DNA, evidenced by the studies described 
above, suggests that the indirect risks on human health are 
low. The safety of food products produced from animals feed 
on transgenic crops has also been widely studied, and in the 
majority of studies, any recombinant DNA was not found in 
animal products. However, in a couple cases, short fragments 
of the recombinant DNA were detected in milk (Phipps et al., 
2002; Agodi et al., 2006). The authors, however, interpreted their 
presence as a contamination of faecal or airborne material with 
feed particles (Agodi et al., 2006).

Most of the scientific finding till the date has not found 
significant risk directly related with the consumption of GM 
crops and these findings can be extrapolated to forage species. In 
general, proteins derived from recombinant DNA, as any protein, 
are degraded in the gastro-intestinal tract, while dietary DNA is 
not totally degraded and, in some cases, small fragments can be 
found into animal tissues (Nadal et al., 2018).

CONCLUSION
The use of molecular breeding technologies such as genetic 
modification and genome editing in forage crop species 
can help farmers address the challenges of climate change, 
sustainability, and global food security. Information about 
the safety assessment of GM forage crops intended only for 
animal feeding is scarce, even though most of GM products 
and its biomass is destined for livestock animals feeding. 
The regulatory assessment scheme is designed for GM food 
and a similar approach can be used for the assessment of 
forage crops considering the differences in risk profile of the 
contrasting outcomes.

The same techniques used for molecular characterization, 
GM traceability, environmental safety studies and HGT 
can be used for both GM food and feed. However, specific 
adjustments to the techniques may be required, considering 
that parts of the GM plant used to feed livestock may have 
different concentrations of the novel proteins, changing its 
level of exposure. Feed, toxicological, and allergenicity studies 
for GM feed only destined for animal consumption are not 
well defined. The design of specific strategies to cover GM 
feed safety can be more targeted for the safety of species that 
are going to consume the crop, while also potentially having a 
lower regulatory cost.

A new framework for the risk assessment procedure, for 
both GM food and feed, is necessary in order to make a more 
efficient use of resources and avoid unnecessary evaluation. 
The final aim should be to assess GM novel crops in a more 
effective way, to increase the commercialization of products 
with potential to provide economic and health benefits to 
consumers and producers.
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